On a quantitative piecewise rigidity result and Griffith-Euler-Bernoulli functionals for thin brittle beams

Bernd Schmidt

Universität Augsburg, Germany

Variational Models of Fracture,

Banff, May 12th, 2016

Overview

2 Thin brittle beams

3 Quantitative piecewise geometric rigidity

Overview

2 Thin brittle beams

3 Quantitative piecewise geometric rigidity

Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Ω of elastic material, subject to boundary conditions and applied loads.

 $\Omega \subset \mathbb{R}^d$, d = 2, 3: ref'config. $v : \Omega \to \mathbb{R}^d$: deformation.

Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Ω of elastic material, subject to boundary conditions and applied loads.

$$\begin{split} \Omega \subset \mathbb{R}^d, \ d = 2, 3: \ \text{ref'config.} \\ v: \Omega \to \mathbb{R}^d: \ \text{deformation.} \end{split}$$

Hyper-elastic energy functional for a bulk material on $W^{1,2}(\Omega; \mathbb{R}^d)$:

$$E_{ ext{elast}}(v) = \int_{\Omega} W(\nabla v(x)) dx,$$

with stored energy function $W : \mathbb{R}^{d \times d} \to \mathbb{R}$

Nonlinear elasticity theory

Elastostatics: Understand stable deformations of a block Ω of elastic material, subject to boundary conditions and applied loads.

$$\begin{split} \Omega \subset \mathbb{R}^d, \ d = 2, 3: \ \text{ref'config.} \\ v: \Omega \to \mathbb{R}^d: \ \text{deformation.} \end{split}$$

Hyper-elastic energy functional for a bulk material on $W^{1,2}(\Omega; \mathbb{R}^d)$:

$$E_{\mathrm{elast}}(v) = \int_{\Omega} W(\nabla v(x)) dx,$$

with stored energy function $W: \mathbb{R}^{d imes d}
ightarrow \mathbb{R}$ which is

- frame indifferent, ≥ 0 with $W(F) = 0 \iff F \in SO(d)$,
- sufficiently regular,
- non-degenerate: $W(F) \ge c \operatorname{dist}^2(F, SO(n)).$

Classical beam theory

Interesting in many applications: thin objects such as membranes, plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling, bending).

Classical beam theory

Γ

Interesting in many applications: thin objects such as membranes, plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling, bending).

The basic example: A planar beam.

$$\Omega \qquad v \qquad v(\Omega) \qquad \Omega = (0, L) \times (-\frac{h}{2}, \frac{h}{2}), \ h \ll L,$$

Euler-Bernoulli theory: Energy functional for bending dominated configurations in terms of the mid-line deformation.

$$E_{\rm EB}(v) = \frac{\alpha h^3}{24} \int_0^L |\kappa(t)|^2 dt,$$

 κ : curvature of $t \mapsto v(t,0)$, α the Euler-Bernoulli constant.

Classical beam theory

Γ

Interesting in many applications: thin objects such as membranes, plates, shells, rods and beams.

New phenomena: Large deformations at low energy (crumpling, bending).

The basic example: A planar beam.

$$\Omega \qquad v \qquad v(\Omega) \qquad \Omega = (0, L) \times (-\frac{h}{2}, \frac{h}{2}), \ h \ll L,$$

Euler-Bernoulli theory: Energy functional for bending dominated configurations in terms of the mid-line deformation.

$$E_{\rm EB}(v) = \frac{\alpha h^3}{24} \int_0^L |\kappa(t)|^2 dt,$$

 κ : curvature of $t \mapsto v(t,0)$, α the Euler-Bernoulli constant.

Note: α is the 'Poisson effect relaxed' elastic modulus (cf. Friesecke/James/Müller '02).

Bernd Schmidt (Universität Augsburg) Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams

Energy scaling

Classical problem in elasticity theory: Derive effective energy functionals in the limit of singular geometries.

Energy scaling

Classical problem in elasticity theory: Derive effective energy functionals in the limit of singular geometries.

For a beam with

$$E^h_{ ext{elast}}(\mathbf{v}) = \int_{\Omega_h} W(
abla \mathbf{v}),$$

- *E*^h_{elast} ~ *h*: nonlinear finite strains (finite energy per unit volume)
- $E^h_{\rm elast} \sim h^3$: small strain, finite bending
- $E_{\rm elast}^h \ll h^3$: small deflection

Energy scaling

Classical problem in elasticity theory: Derive effective energy functionals in the limit of singular geometries.

For a beam with

E^h_{elast} ~ *h*: nonlinear finite strains (finite energy per unit volume)

$$E_{\text{elast}}^{h}(v) = \int_{\Omega_{h}} W(\nabla v), \quad \bullet \quad E_{\text{elast}}^{h} \sim h^{3}: \text{ small strain, finite bending}$$
$$\bullet \quad E_{\text{elast}}^{h} \ll h^{3}: \text{ small deflection}$$

For rigorous Γ -convergence results (even 3D \rightarrow 2D), see

- LeDret/Raoult '93: membranes
- Friesecke/James/Müller '02 & '06: hierarchy of plate theories

Variational fracture mechanics

Fracture:

deformation $v \in SBV(\Omega; \mathbb{R}^d)$. - jumps on codim 1 surface J_v , - $Dv = \nabla v \mathcal{L}^d$ outside J_v .

Variational fracture mechanics

Fracture:

deformation $v \in SBV(\Omega; \mathbb{R}^d)$. - jumps on codim 1 surface J_v , - $Dv = \nabla v \mathcal{L}^d$ outside J_v .

Griffith-type energy functional (cf. Francfort/Marigo):

$$E_{\text{Griff}}(\boldsymbol{v}) = \underbrace{\int_{\Omega \setminus J_{\boldsymbol{v}}} W(\nabla \boldsymbol{v})}_{\boldsymbol{\Omega} \setminus J_{\boldsymbol{v}}} + \beta \mathcal{H}^{d-1}(J_{\boldsymbol{v}}),$$

elastic energy

crack energy

W: stored energy function, β : crack energy / surface area

Overview

2 Thin brittle beams

3 Quantitative piecewise geometric rigidity

The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated configurations: a Griffith-Euler-Bernoulli theory.

$$E^{h}_{\mathrm{Griff}}(v) = \int_{\Omega_{h} \setminus J_{v}} W(\nabla v) + \beta_{h} \mathcal{H}^{d-1}(J_{v}), \quad \begin{array}{l} \Omega_{h} = (0, L) \times (-\frac{h}{2}, \frac{h}{2}), \ h \ll L, \\ v \in SBV(\Omega_{h}; \mathbb{R}^{2}). \end{array}$$

The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated configurations: a Griffith-Euler-Bernoulli theory.

$$E^{h}_{\mathrm{Griff}}(v) = \int_{\Omega_{h} \setminus J_{v}} W(\nabla v) + \beta_{h} \mathcal{H}^{d-1}(J_{v}), \quad \begin{array}{l} \Omega_{h} = (0, L) \times (-\frac{h}{2}, \frac{h}{2}), \ h \ll L, \\ v \in SBV(\Omega_{h}; \mathbb{R}^{2}). \end{array}$$

Energy scaling:

- Purely elastic (no cracks): $\int_{\Omega \setminus J_{\nu}} W(\nabla \nu) \sim h^3$.
- Breaking vertically into several pieces: $\sim \beta_h h$.

The model and the main goal

Goal: Find effective theory for thin brittle beams for bending dominated configurations: a Griffith-Euler-Bernoulli theory.

$$E^{h}_{\mathrm{Griff}}(v) = \int_{\Omega_{h} \setminus J_{v}} W(\nabla v) + \beta_{h} \mathcal{H}^{d-1}(J_{v}), \quad \begin{array}{l} \Omega_{h} = (0, L) \times (-\frac{h}{2}, \frac{h}{2}), \ h \ll L, \\ v \in SBV(\Omega_{h}; \mathbb{R}^{2}). \end{array}$$

Energy scaling:

- Purely elastic (no cracks): $\int_{\Omega \setminus J_{\nu}} W(\nabla \nu) \sim h^3$.
- Breaking vertically into several pieces: $\sim \beta_h h$.

Consequence: To model materials which

- respond elastically to small (e.g. infinitesimal) deflection,
- may fracture at large (finite) bending,

we assume that $\beta_h = h^2 \beta$.

Goal: Determine the Γ -limit of $h^{-3}E_{\text{Griff}}^h$ as $h \to 0$.

More precise setup:

Rescale to common domain $\Omega = \Omega_1$ via $y(x_1, x_2) = v(x_1, hx_2)$ and for a large fixed $M \gg 1$ let

$$I^{h}(y) = h^{-3} \int_{\Omega_{h}} W(\nabla v) \, dx + h^{-1} \beta \mathcal{H}^{1}(J_{v})$$

if $v \in SBV(\Omega; \mathbb{R}^2)$, max{ $||v||_{L^{\infty}}$, $||\nabla v||_{L^{\infty}}$ } $\leq M$. (Extend to all of $SBV(\Omega; \mathbb{R}^2)$ by $+\infty$.)

More precise setup:

Rescale to common domain $\Omega = \Omega_1$ via $y(x_1, x_2) = v(x_1, hx_2)$ and for a large fixed $M \gg 1$ let

$$I^{h}(y) = h^{-3} \int_{\Omega_{h}} W(\nabla v) \, dx + h^{-1} \beta \mathcal{H}^{1}(J_{v})$$

if $v \in SBV(\Omega; \mathbb{R}^2)$, max{ $\|v\|_{L^{\infty}}, \|\nabla v\|_{L^{\infty}}$ } $\leq M$. (Extend to all of $SBV(\Omega; \mathbb{R}^2)$ by $+\infty$.)

Remark. *M* models a large box containing $v(\Omega_h)$ and also forbids (unphysically) large strains.

More precise setup:

Rescale to common domain $\Omega = \Omega_1$ via $y(x_1, x_2) = v(x_1, hx_2)$ and for a large fixed $M \gg 1$ let

$$I^{h}(y) = h^{-3} \int_{\Omega_{h}} W(\nabla v) \, dx + h^{-1} \beta \mathcal{H}^{1}(J_{v})$$

if $v \in SBV(\Omega; \mathbb{R}^2)$, max{ $\|v\|_{L^{\infty}}, \|\nabla v\|_{L^{\infty}}$ } $\leq M$. (Extend to all of $SBV(\Omega; \mathbb{R}^2)$ by $+\infty$.)

Remark. *M* models a large box containing $v(\Omega_h)$ and also forbids (unphysically) large strains.

If $y(x) = \bar{y}(x_1)$ for a.e. $x \in \Omega$ we also set

$$I^0(y) = \frac{\alpha}{24} \int_0^L |\kappa(t)|^2 dt + \beta \# (J_{\bar{y}} \cup J_{\bar{y}'}),$$

if $\bar{y} \in \text{PW-}W^{2,2}((0, L); \mathbb{R}^2)$, $|\bar{y}| \leq M$ and $|\bar{y}'| = 1$ a.e., $\kappa = \bar{y}'' \cdot (\bar{y}')^{\perp}$. (Extend to all of $SBV(\Omega; \mathbb{R}^2)$ by $+\infty$.)

Theorem. (Gamma-convergence) [S. '16] The I^h Γ -converge to I^0 on $SBV(\Omega; \mathbb{R}^2)$ (w.r.t. L^1) as $h \to 0$, i.e.,

(i) lim inf inequality: whenever $y^h \rightarrow y$ in L^1 , $\liminf_{h \rightarrow 0} I^h(y^h) \ge I^0(y);$ (ii) recovery sequences: $\forall y \exists y^h \text{ with } y^h \rightarrow y \text{ in } L^1 \text{ s.t.}$ $\lim_{h \to 0} l^h(y^h) = l^0(y).$

Theorem. (Gamma-convergence) [S. '16] The I^h Γ -converge to I^0 on $SBV(\Omega; \mathbb{R}^2)$ (w.r.t. L^1) as $h \to 0$, i.e.,

(i) lim inf inequality: whenever $y^h \to y$ in L^1 , lim inf $I^h(y^h) \ge I^0(y)$; (ii) recovery sequences: $\forall y \exists y^h \text{ with } y^h \to y \text{ in } L^1 \text{ s.t.}$ $\lim_{h \to 0} I^h(y^h) = I^0(y)$.

Theorem. (Compactness) [S. '16] If $I^h(y^h) \leq C$ (*C* independent of *h*), then for a subsequence (not relabeled) $y^h \rightarrow y$ in L^1 for some *y*.

Theorem. (Gamma-convergence) [S. '16] The I^h Γ -converge to I^0 on $SBV(\Omega; \mathbb{R}^2)$ (w.r.t. L^1) as $h \to 0$, i.e.,

(i) lim inf inequality: whenever $y^h \to y$ in L^1 , lim inf $I^h(y^h) \ge I^0(y)$; (ii) recovery sequences: $\forall y \exists y^h \text{ with } y^h \to y \text{ in } L^1 \text{ s.t.}$ $\lim_{h \to 0} I^h(y^h) = I^0(y)$.

Theorem. (Compactness) [S. '16] If $I^h(y^h) \leq C$ (*C* independent of *h*), then for a subsequence (not relabeled) $y^h \rightarrow y$ in L^1 for some *y*.

Remarks.

- In fact, $y^h \to y$, $\partial_1 y^h \to y'$, $h^{-1} \partial_2 y^h \to y'^{\perp}$ in L^p strongly for all $p < \infty$ and $D^s y^h \stackrel{*}{\rightharpoonup} D^s y$ weakly* as Radon measures.
- Body forces and clamped boundary conditions can be included.
- Entails a convergence theorem for (almost) minimizers (subject to suitable body forces and boundary conditions).

Note: Other choices for the scaling behavior of β are possible, e.g.:

• $\beta_h \sim 1$: $E_{\rm Griff} \sim h^3 \implies$ limiting energy purely elastic.

Note: Other choices for the scaling behavior of β are possible, e.g.:

• $\beta_h \sim 1$: $E_{\rm Griff} \sim h^3 \implies$ limiting energy purely elastic.

• $\beta_h \ll h^2$: $E_{\text{Griff}} \sim h^3 \implies$ limiting energy trivial (cracks for free).

Note: Other choices for the scaling behavior of β are possible, e.g.:

• $\beta_h \sim 1$: $E_{\text{Griff}} \sim h^3 \implies$ limiting energy purely elastic.

Should instead look at $E_{\rm Griff} \sim h$:

nonlinear finite strain deformation \sim vertical crack

⇒ Griffith type membrane theory (cf. Braides/Fonseca '01 and Babadjian '06 even $3D \rightarrow 2D$). Applies to 'not too brittle' materials. → crumpling favored over fracture

• $\beta_h \ll h^2$: $E_{\rm Griff} \sim h^3 \implies$ limiting energy trivial (cracks for free).

Note: Other choices for the scaling behavior of β are possible, e.g.:

• $\beta_h \sim 1$: $E_{\rm Griff} \sim h^3 \implies$ limiting energy purely elastic.

Should instead look at $E_{\rm Griff} \sim h$:

nonlinear finite strain deformation \sim vertical crack

 \implies Griffith type membrane theory (cf. Braides/Fonseca '01 and Babadjian '06 even 3D \rightarrow 2D). Applies to 'not too brittle' materials.

 \rightarrow crumpling favored over fracture

• $\beta_h \ll h^2$: $E_{\rm Griff} \sim h^3 \implies$ limiting energy trivial (cracks for free).

Should instead look at $E_{\rm Griff} \sim h \beta_h$:

infinitesimal deflection \sim vertical crack

 \implies Griffith type small deflection beam theory

(in analogy to the results presented).

Applies to 'very brittle' materials.

Overview

2 Thin brittle beams

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates (cf. Friesecke/James/Müller '02 & '06): a quantitative geometric rigidity estimate.

Theorem. [Friesecke/James/Müller '02] Let $\Omega \subset \mathbb{R}^d$ a (connected) Lipschitz domain. For all $y \in W^{1,2}(\Omega, \mathbb{R}^d)$ there is $R \in SO(d)$ s.t.

 $\|\nabla y - R\|_{L^2(\Omega)} \leq C(\Omega) \|\operatorname{dist}(\nabla y, \operatorname{SO}(d))\|_{L^2(\Omega)}.$

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates (cf. Friesecke/James/Müller '02 & '06): a quantitative geometric rigidity estimate.

Theorem. [Friesecke/James/Müller '02] Let $\Omega \subset \mathbb{R}^d$ a (connected) Lipschitz domain. For all $y \in W^{1,2}(\Omega, \mathbb{R}^d)$ there is $R \in SO(d)$ s.t.

$$\|\nabla y - R\|_{L^2(\Omega)} \leq C(\Omega) \|\operatorname{dist}(\nabla y, \operatorname{SO}(d))\|_{L^2(\Omega)}.$$

Problem: Cannot be true on SBV.

Geometric rigidity: known results

Basic ingredient in the derivation of effective theories for elastic plates (cf. Friesecke/James/Müller '02 & '06): a quantitative geometric rigidity estimate.

Theorem. [Friesecke/James/Müller '02] Let $\Omega \subset \mathbb{R}^d$ a (connected) Lipschitz domain. For all $y \in W^{1,2}(\Omega, \mathbb{R}^d)$ there is $R \in SO(d)$ s.t.

$$\|\nabla y - R\|_{L^2(\Omega)} \leq C(\Omega) \|\operatorname{dist}(\nabla y, \operatorname{SO}(d))\|_{L^2(\Omega)}.$$

Problem: Cannot be true on SBV.

But there is a qualitative version:

Theorem. [Chambolle/Giacomini/Ponsiglione '07] Suppose $y \in SBV(\Omega; \mathbb{R}^d)$, $\mathcal{H}^1(J_y) < \infty$ and $\nabla y \in SO(d)$ a.e. Then there exists a (Caccioppoli) partition (P_i) and $R_i \in SO(d)$, $c_i \in \mathbb{R}^d$ such that

$$y(x) = \sum_{i} (R_i x + c_i) \chi_{P_i}(x).$$

I.e.: y is a collection of an at most countable family of rigid deformations

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative version! \implies serious difficulties, e.g.:

• Thin 'tunnels' connecting large regions close to different rotations.

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative version! \implies serious difficulties, e.g.:

- Thin 'tunnels' connecting large regions close to different rotations.
- Highly irregular crack geometry \rightarrow no uniform rigidity estimates

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative version! \implies serious difficulties, e.g.:

- Thin 'tunnels' connecting large regions close to different rotations.
- Highly irregular crack geometry \rightarrow no uniform rigidity estimates
- Infinite crack patterns accumulating on different scales.

Quantitative SBV rigidity: difficulties

Problem: We need a quantitative version! \implies serious difficulties, e.g.:

- Thin 'tunnels' connecting large regions close to different rotations.
- Highly irregular crack geometry \rightarrow no uniform rigidity estimates
- Infinite crack patterns accumulating on different scales.

• Could even have a dense crack set.

Theorem (cheating version). [Friedrich/S. '15] Let $\Omega \subset \mathbb{R}^2$ a Lipschitz domain, M > 0 and $0 < \eta < 1$. $\exists C = C(\Omega, M, \eta), \hat{C} = \hat{C}(\Omega, M, \eta, ...)$ such that $\forall \varepsilon > 0$: Suppose $y \in SBV(\Omega; \mathbb{R}^2)$ with $|y|, |\nabla y| \leq M$ a.e. satisfies $\varepsilon^{-1} \int_{\Omega} dist^2(\nabla y, SO(2)) + \mathcal{H}^1(J_y) \leq M$.

Theorem (cheating version). [Friedrich/S. '15] Let $\Omega \subset \mathbb{R}^2$ a Lipschitz domain, M > 0 and $0 < \eta < 1$. $\exists C = C(\Omega, M, \eta), \hat{C} = \hat{C}(\Omega, M, \eta, ...)$ such that $\forall \varepsilon > 0$: Suppose $y \in SBV(\Omega; \mathbb{R}^2)$ with $|y|, |\nabla y| \leq M$ a.e. satisfies $\varepsilon^{-1} \int_{\Omega} dist^2(\nabla y, SO(2)) + \mathcal{H}^1(J_y) \leq M$.

There is a Caccioppoli partition $\mathcal{P} = (P_j)_j$ of Ω with

$$\sum_{j} \frac{1}{2} \operatorname{Per}(P_{j}, \Omega) \leq \mathcal{H}^{1}(J_{y})$$

Theorem (cheating version). [Friedrich/S. '15] Let $\Omega \subset \mathbb{R}^2$ a Lipschitz domain, M > 0 and $0 < \eta < 1$. $\exists C = C(\Omega, M, \eta), \hat{C} = \hat{C}(\Omega, M, \eta, ...)$ such that $\forall \varepsilon > 0$: Suppose $y \in SBV(\Omega; \mathbb{R}^2)$ with $|y|, |\nabla y| \leq M$ a.e. satisfies $\varepsilon^{-1} \int_{\Omega} dist^2(\nabla y, SO(2)) + \mathcal{H}^1(J_y) \leq M$.

There is a Caccioppoli partition $\mathcal{P} = (P_j)_j$ of Ω with

$$\sum_{j} \frac{1}{2} \operatorname{Per}(P_{j}, \Omega) \leq \mathcal{H}^{1}(J_{y})$$

and, for each P_j , a corresponding rigid motion $R_j \cdot +c_j$, $R_j \in SO(2)$ and $c_i \in \mathbb{R}^2$, such that

$$u(x) := y(x) - (R_j x + c_j)$$
 for $x \in P_j$

Theorem (cheating version). [Friedrich/S. '15] Let $\Omega \subset \mathbb{R}^2$ a Lipschitz domain, M > 0 and $0 < \eta < 1$. $\exists C = C(\Omega, M, \eta), \hat{C} = \hat{C}(\Omega, M, \eta, ...)$ such that $\forall \varepsilon > 0$: Suppose $y \in SBV(\Omega; \mathbb{R}^2)$ with $|y|, |\nabla y| \leq M$ a.e. satisfies $\varepsilon^{-1} \int_{\Omega} dist^2(\nabla y, SO(2)) + \mathcal{H}^1(J_y) \leq M$.

There is a Caccioppoli partition $\mathcal{P} = (P_j)_j$ of Ω with

$$\sum_{j} \frac{1}{2} \operatorname{Per}(P_{j}, \Omega) \leq \mathcal{H}^{1}(J_{y})$$

and, for each P_j , a corresponding rigid motion $R_j \cdot +c_j$, $R_j \in SO(2)$ and $c_j \in \mathbb{R}^2$, such that

$$u(x) := y(x) - (R_j x + c_j) \quad ext{for } x \in P_j$$

satisfies the estimates

$$\|u\|_{L^{2}(\Omega)}^{2}+\sum_{j}\|\operatorname{sym}(R_{j}^{T}\nabla u)\|_{L^{2}(P_{j})}^{2}+\varepsilon^{\eta}\|\nabla u\|_{L^{2}(\Omega)}^{2}\leq\hat{C}\varepsilon.$$

Modifications

As stated, the theorem cannot be true.

Modifications

As stated, the theorem cannot be true.

- \rightarrow We need to
 - introduce a little bit of extra crack,
 - neglect small portions of Ω ,
 - modify y slightly: y → ŷ (interpolate on neglected regions).

Modifications

As stated, the theorem cannot be true.

- ightarrow We need to
 - introduce a little bit of extra crack,
 - neglect small portions of Ω ,
 - modify y slightly: y → ŷ (interpolate on neglected regions).

Caveat: Do not introduce artificial energy! We still want that

$$\int_{\Omega} W(\nabla \hat{y}) \, dx \approx \int_{\Omega} W(\nabla y) \, dx \quad \text{and} \quad \mathcal{H}^1(J_{\hat{y}}) \approx \mathcal{H}^1(J_y).$$

Bernd Schmidt (Universität Augsburg)

Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams

Quantitative piecewise geometric rigidity ... the full story

Theorem. [Friedrich/S. '15] Let $\Omega \subset \mathbb{R}^2$ a Lipschitz domain, M > 0 and $0 < \eta, \rho < 1$. There are constants $C = C(\Omega, M, \eta)$, $\hat{C} = \hat{C}(\Omega, M, \eta, \rho)$ and c > 0 such that for h > 0 small enough:

Suppose $y \in SBV(\Omega; \mathbb{R}^2)$ with $|y|, |
abla y| \leq M$ a.e. satisfies

$$h^{-1}\varepsilon := h^{-1} \int_{\Omega} \operatorname{dist}^2(\nabla y, \operatorname{SO}(2)) + \mathcal{H}^1(J_y) \leq M,$$

and set $\Omega_{\rho} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > c\rho\}.$

Then there is an open Ω_y with $|\Omega_{\rho} \setminus \Omega_y| \leq C\rho h^{-1}\varepsilon$, a modification $\hat{y} \in SBV(\Omega)$ with $|y|, |\nabla y| \leq cM$ and

•
$$\|\hat{y} - y\|_{L^2(\Omega_y)}^2 + \|\nabla \hat{y} - \nabla y\|_{L^2(\Omega_y)}^2 \le C\rho\varepsilon$$
,

•
$$\mathcal{H}^1(J_{\hat{y}}\cap\Omega_{\rho})\leq Ch^{-1}arepsilon$$
,

•
$$h^{-1}\int_{\Omega_{\rho}}W(\nabla \hat{y})\,dx\leq h^{-1}\int_{\Omega}W(\nabla y)\,dx+C\rho h^{-1}\varepsilon,$$

with the following properties:

Quantitative piecewise geometric rigidity ... the full story

There is a Caccioppoli partition $\mathcal{P} = (P_j)_j$ of Ω_ρ with

$$\sum_{j} \frac{1}{2} \operatorname{Per}(P_{j}, \Omega_{\rho}) \leq \mathcal{H}^{1}(J_{y}) + C\rho h^{-1} \varepsilon$$

and, for each P_j , a corresponding rigid motion $R_j \cdot +c_j$, $R_j \in SO(2)$ and $c_j \in \mathbb{R}^2$, such that the modified displacement $\hat{u} : \Omega \to \mathbb{R}^2$ defined by

$$\hat{u}(x) := egin{cases} \hat{y}(x) - (R_j \, x + c_j) & ext{ for } x \in P_j \ 0 & ext{ for } x \in \Omega \setminus \Omega_
ho \end{cases}$$

satisfies the estimates

(i) $\mathcal{H}^{1}(J_{\hat{u}}) \leq Ch^{-1}\varepsilon$, (ii) $\|\hat{u}\|_{L^{2}(\Omega_{\rho})}^{2} \leq \hat{C}\varepsilon$, (iii) $\sum_{j} \|\operatorname{sym}(R_{j}^{T}\nabla\hat{u})\|_{L^{2}(P_{j})}^{2} \leq \hat{C}\varepsilon$, (iv) $\|\nabla\hat{u}\|_{L^{2}(\Omega_{\rho})}^{2} \leq \hat{C}\varepsilon^{1-\eta}$.

Proof strategy

The proof is very long and involved. Basic (oversimplified) idea:

- Start with very very small cracks (1st generation).
 - \rightarrow Either heal them, if surrounded by a region with small energy,

 \rightarrow or enlarge them to very small cracks by using the (large) energy of the surrounding region.

- Consider now very small cracks (2nd generation).
- And so on ...
- Caveat: The (elastic + crack) energy of a region is 'used' to
 - heal cracks or
 - enlarge cracks.

But: Possibly infinitely many generations of scales. Must make sure that energy is 'used' not too often.

A Korn-Poincaré inequality in SBD

Important ingredient: a novel Korn-Poincaré inequality in *SBD* obtained by Friedrich '15.

Theorem (cheating version). [Friedrich '15] Let ε , $h_* > 0$ (small), $\tilde{Q} \subset \subset Q = (-\frac{1}{2}, \frac{1}{2})^2$. There is a constant $C = C(h_*)$ and a universal constant c > 0 such that for all $u \in SBD^2(Q; \mathbb{R}^2)$ there is an exceptional set $E \subset \tilde{Q}$ with

$$\|u - (A \cdot + c)\|^2_{L^2(\tilde{Q} \setminus E)} \leq C \big(\|e(u)\|^2_{L^2(Q)} + \varepsilon \mathcal{H}^1(J_u)\big)$$

for some $A \in \mathbb{R}^{2 imes 2}_{ ext{skew}}$, $c \in \mathbb{R}^2$, where

$$|\mathsf{E}| \leq (1+\mathsf{ch}_*) ig(\mathcal{H}^1(J_u) + arepsilon^{-1} \| \mathsf{e}(u) \|_{L^2}^2ig)^2$$

and

$$\mathcal{H}^1(\partial E) \leq (1 + ch_*) \big(\mathcal{H}^1(J_u) + \varepsilon^{-1} \| e(u) \|_{L^2}^2 \big).$$

Remark. A similar recent results by Chambolle/Conti/Francfort '15 even works in any dimension, but has no control on ∂E .

Other applications

Remark. The crack energy of \hat{y} can be estimated more thoroughly. In fact:

$$\sum_{P\in\mathcal{P}} \frac{1}{2} \mathrm{Per}(P;\Omega) + \int_{J_{\hat{\mathcal{Y}}} \setminus \bigcup_{P\in\mathcal{P}} \partial P} \min\Big\{\Big|\frac{[\hat{\mathcal{Y}}]}{\sqrt{\varepsilon}\rho}\Big|,1\Big\} d\mathcal{H}^1 \leq \mathcal{H}^1(J_{\mathcal{Y}}) + c\rho.$$

Other applications

Remark. The crack energy of \hat{y} can be estimated more thoroughly. In fact:

$$\sum_{P \in \mathcal{P}} \frac{1}{2} \mathrm{Per}(P; \Omega) + \int_{J_{\hat{y}} \setminus \bigcup_{P \in \mathcal{P}} \partial P} \min \Big\{ \Big| \frac{[\hat{y}]}{\sqrt{\varepsilon}\rho} \Big|, 1 \Big\} d\mathcal{H}^1 \leq \mathcal{H}^1(J_y) + c\rho.$$

Example. Nonlinear-to-linear bulk Griffith models in the small strain limit (cf. Dal Maso, Negri, Percivale '02 for the elastic case). In the presence of cracks Friedrich '15 obtains a Γ -convergence result with a limiting energy defined on triples (u, \mathcal{P}, T) , where

- $u \in SBV(\Omega; \mathbb{R}^2)$, $\Omega \subset \mathbb{R}^2$, a deformation,
- \mathcal{P} a Caccioppoli partition of Ω ,
- T piecewise rigid motion subordinate to \mathcal{P} ,

of the form

$$E(u, \mathcal{P}, T) = \int_{\Omega} \frac{1}{2} Q(\operatorname{sym}(\nabla T^{T} \nabla u)) + \mathcal{H}^{1}(J_{u} \setminus \bigcup_{P \in \mathcal{P}} \partial P) + \sum_{P \in \mathcal{P}} \frac{1}{2} \operatorname{Per}(P; \Omega).$$

Overview

2 Thin brittle beams

3 Quantitative piecewise geometric rigidity

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Müller '02) ... in a nutshell:

- Cover beam with small squares Q_1, Q_2, \ldots of side-length h.
- Geometric rigidity \rightarrow approximating rigid motions $R_i \cdot +c_i$ on Q_i .

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Müller '02) ... in a nutshell:

- Cover beam with small squares Q_1, Q_2, \ldots of side-length *h*.
- Geometric rigidity \rightarrow approximating rigid motions $R_i \cdot + c_i$ on Q_i .
- Estimate on $|R_{i+1} R_i| \rightarrow W^{2,2}$ compactness.

Pure elasticity

Warm up: Purely elastic case (cf. Friesecke/James/Müller '02) ... in a nutshell:

- Cover beam with small squares Q_1, Q_2, \ldots of side-length *h*.
- Geometric rigidity \rightarrow approximating rigid motions $R_i \cdot + c_i$ on Q_i .
- Estimate on |R_{i+1} − R_i| → W^{2,2} compactness.
- Fine estimate on h⁻¹(∇v − R_i) and a weak convergence argument give
 - limiting infinitesimal strain
 - its x2-linearity and
 - the Γ-lim inf inequality.

Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

- Cover beam with small (overlapping) squares Q_1, Q_2, \ldots
- If energy in Q_i large $\rightarrow Q_i$ 'bad', if energy in Q_i small $\rightarrow Q_i$ 'good'.

Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

- Cover beam with small (overlapping) squares Q_1, Q_2, \ldots
- If energy in Q_i large $\rightarrow Q_i$ 'bad', if energy in Q_i small $\rightarrow Q_i$ 'good'.

• In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

- Cover beam with small (overlapping) squares Q_1, Q_2, \ldots
- If energy in Q_i large $\rightarrow Q_i$ 'bad', if energy in Q_i small $\rightarrow Q_i$ 'good'.

• In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

• Fix
$$\eta = \frac{9}{10}$$
 and let $\rho > 0$. On each good Q_i we get

 $Q_{i,\rho}, Q_{i,\nu}, \hat{v}_i, (P_{i,j})_j, (R_{i,j})_j, (c_{i,j})_j$ s.t. ... with $C, \hat{C}(\rho)$.

• Isoperimetric inequality $\implies \exists$ unique large $P_{i,1}$ on which $\hat{y} \approx R_{i,1} + \cdot c_{i,1}$.

Elasticity + fracture: first steps

Idea: Try a similar approach. Preparations:

- Cover beam with small (overlapping) squares Q_1, Q_2, \ldots
- If energy in Q_i large $\rightarrow Q_i$ 'bad', if energy in Q_i small $\rightarrow Q_i$ 'good'.

• In the following, consider portions covered by good squares.

Now apply the quantitative piecewise rigidity estimate on good squares:

• Fix
$$\eta = \frac{9}{10}$$
 and let $\rho > 0$. On each good Q_i we get

 $Q_{i,\rho}, Q_{i,v}, \hat{v}_i, (P_{i,j})_j, (R_{i,j})_j, (c_{i,j})_j$ s.t. ... with $C, \hat{C}(\rho)$.

- Isoperimetric inequality $\implies \exists$ unique large $P_{i,1}$ on which $\hat{y} \approx R_{i,1} + c_{i,1}$.
- So ... What's the problem?

New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

$$\|\nabla \hat{v} - R_{i,1}\|_{L^2(P_{i,1})} \le \|\operatorname{dist}(\nabla v, \operatorname{SO}(2))\|_{L^2(P_{i,1})}^{9/10}.$$

Still: E.g., estimating $R_{i+1} - R_i$ is still possible.

(Controlling of $\|\hat{v} - R_{i,1} \cdot - c_{i,1}\|_{L^2(P_{i,1})}$ and $\|\operatorname{sym}(R_{i,1}^T \nabla \hat{v}) - \operatorname{Id}\|_{L^2(P_{i,1})})$.)

New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

$$\|\nabla \hat{v} - R_{i,1}\|_{L^2(P_{i,1})} \le \|\operatorname{dist}(\nabla v, \operatorname{SO}(2))\|_{L^2(P_{i,1})}^{9/10}$$

Still: E.g., estimating $R_{i+1} - R_i$ is still possible.

(Controlling of $\|\hat{v} - R_{i,1} \cdot - c_{i,1}\|_{L^2(P_{i,1})}$ and $\|\operatorname{sym}(R_{i,1}^T \nabla \hat{v}) - \operatorname{Id}\|_{L^2(P_{i,1})})$.)

Problem 2 (more severe): Eventually, we must take the limit $\rho \to 0$. But $Q_{i,\rho}$, $Q_{i,\nu}$, \hat{v}_i , $(P_{i,j})_j$, $(R_{i,j})_j$, $(c_{i,j})_j$ and \hat{C} depend on ρ .

New problems

Problem 1 (a bit severe ... more nasty): We only have the estimate

 $\|\nabla \hat{\nu} - R_{i,1}\|_{L^2(P_{i,1})} \le \|\text{dist}(\nabla \nu, \text{SO}(2))\|_{L^2(P_{i,1})}^{9/10}.$

Still: E.g., estimating $R_{i+1} - R_i$ is still possible.

(Controlling of $\|\hat{v} - R_{i,1} \cdot - c_{i,1}\|_{L^2(P_{i,1})}$ and $\|\text{sym}(R_{i,1}^T \nabla \hat{v}) - \text{Id}\|_{L^2(P_{i,1})})$.)

Problem 2 (more severe): Eventually, we must take the limit $\rho \to 0$. But $Q_{i,\rho}$, $Q_{i,\nu}$, \hat{v}_i , $(P_{i,j})_j$, $(R_{i,j})_j$, $(c_{i,j})_j$ and \hat{C} depend on ρ .

Problem 3 (most severe): To identify the limiting infinitesimal strain, we need to join the different \hat{v}_i to one single beam deformation \tilde{v} .

Note: Piecewise gluing \rightarrow too much crack, mollification thereof \rightarrow too high energy near small cracks. **Instead:** Blend smoothly with partitions of unity: $\tilde{v} = \sum_{i} \varphi_{i} \hat{v}_{i}$ (only cheating a bit).

Two main difficulties

Two challenges to overcome:

Need sharp estimates on $\hat{v}_{i+1} - \hat{v}_i$ on overlap $Q_{\rho,i} \cap Q_{\rho,i+1}$, also where $\hat{v}_i \not\approx v$. (In fact, will get only sufficiently strong L^p -estimates for p < 2.)

Two main difficulties

Two challenges to overcome:

Need sharp estimates on $\hat{v}_{i+1} - \hat{v}_i$ on overlap $Q_{\rho,i} \cap Q_{\rho,i+1}$, also where $\hat{v}_i \not\approx v$. (In fact, will get only sufficiently strong L^{ρ} -estimates for p < 2.)

2. Linearity of the limiting infinitesimal strain in x_2 , morally

$$\partial_2 \left(\lim_{h\to 0} h^{-1} (\tilde{R}^h)^T \nabla \tilde{\nu}\right)_{11} \stackrel{!}{=} \bar{y}'' \cdot \bar{y}'^{\perp}.$$

Problem: $\nabla \tilde{v}$ is not a derivative.

Trick: Consider $(\tilde{R}^h)^T \tilde{v}$. Using a novel *GSBD* compactness argument due to Dal Maso '13, we get, morally, $\partial_2 (\lim_{h \to 0} h^{-1} \nabla [(\tilde{R}^h)^T \tilde{v}])_{11} = 0$.

ightarrow Can move abla to $ilde{R}^h$.

Bernd Schmidt (Universität Augsburg)

Quantitative piecewise rigidity and Griffith-Euler-Bernoulli beams

Thanks

Thank you for your attention!

References:

F. FRIEDRICH, B. SCHMIDT: A quantitative geometric rigidity result in SBD, Preprint, http://arxiv.org/abs/1503.06821

B. SCHMIDT. A Griffith-Euler-Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics, Preprint, http://arxiv.org/abs/1602.07594