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Background on ductile fracture 
brittle ductile 

(Courtesy NSW HSC online) 

Fracture surface in SA333 steel, 
room temp., dε/dt=3×10-3s-1 
(S.V. Kamata, M. Srinivasa and P.R. Rao, 
Mater. Sci. Engr. A, 528 (2011)  
4141–4146) 
 

• Ductile fracture in metals 
occurs by void nucleation, 
growth and coalescence  

• Fractography of ductile-
fracture surfaces exhibits 
profuse dimpling, vestige 
of microvoids 

• Ductile fracture entails 
large amounts of plastic 
deformation (vs. surface 
energy) and dissipation. 
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Background on ductile fracture 

Photomicrograph of a copper disk tested in a gas-gun 
experiment showing the formation of voids and their 

coalescence into a fracture plane 
Heller, A., How Metals Fail,  

Science & Technology Review Magazine,  
Lawrence Livermore National Laboratory, 

pp. 13-20, July/August, 2002  
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Background on ductile fracture 

• Ductile fracture is a multiscale phenomenon: 
– Void nucleation occurs at the microscale 
– Void growth and coalescence occurs at the mesoscale 
– Fracture occurs at the macroscale 

• Challenges:  
– Bridging of scales (micro-to-macro) 
– Upscaling of material properties from lower scales 
– Determination of macroscopic effective behavior 

• Approach: 
– Mathematize the problem! (entry level requirement) 
– Micro-to-macro optimal scaling relations 
– Calibration of relevant properties from microscale 
– Application of effective laws at macroscale 
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Naïve model: Local plasticity 

Ti 

Eleiche & Campbell (1974) 
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Naïve model: Local plasticity 

• Energies with sublinear growth relax to 0. 
• For hardening exponents in the range of 

experimental observation, local plasticity yields 
no useful information regarding ductile fracture 
properties of materials 

• Need additional physics, structure… 
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Strain-gradient plasticity 

W. Nix & H. Gao (1998) 

N. Fleck et al. (1993) 

• The yield stress of metals is 
observed to increase in the 
presence of strain gradients  

• Deformation theory of strain-
gradient plasticity: 

• Strain-gradient effects may be 
expected to oppose localization 

• Growth of W with respect to the 
second deformation gradient? 
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Strain-gradient plasticity 

Fence structure  
in copper 

(J.W. Steeds, Proc. Roy. Soc. London,  
A292, 1966, p. 343) 

Dislocation wall 
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Strain-gradient plasticity 

• For metals, local plasticity exhibits sub-linear 
growth, which favors localization of deformations 

• Strain-gradient plasticity may be expected to 
exhibit linear growth, which opposes localization  

• Question: Can ductile fracture be understood as 
the result of a competition between sublinear 
growth and strain-gradient plasticity? 

• Mathematical model: Minimize 
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Optimal scaling – Uniaxial extension 

L. Fokoua, S. Conti & M. Ortiz, ARMA, 212: 331-357, 2014.  
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Optimal scaling – Uniaxial extension 

L. Fokoua, S. Conti & M. Ortiz, ARMA, 212: 331-357, 2014.  
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Sketch of proof – Upper bound 

Heller, A., Science & Technology Review Magazine,  
LLNL, pp. 13-20, July/August, 2002  

void 
sheet 

void 
sheet 
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Sketch of proof – Upper bound 

void 
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Optimal scaling – Atomic Ni 

EAM Nickel, 
[111] loading, 

NPT 300K1 

1M.I. Baskes and M. Ortiz, JAM, 82: 071003-1-071003-5, 2015  



Michael Ortiz 
BANFF0516 

Optimal scaling – Atomic Ni 

1M.I. Baskes and M. Ortiz, JAM, 82: 071003-1-071003-5, 2015  

p=0.57 (fit) 
n=0.39 (ASM)  
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Optimal scaling – Uniaxial extension 

• Optimal (matching) upper and lower bounds: 

• Bounds apply to classes of materials having the 
same growth, specific model details immaterial 

• Energy scales with area (L2): Fracture scaling! 
• Energy scales with power of opening 

displacement (δ): Cohesive behavior! 
• Lower bound degenerates to 0 when the 

intrinsic length (ℓ) decreases to zero… 
• Bounds on cohesive energy: 
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Upscaling: Effective cohesive law 

from 
simulations 
of nano/ 
microvoid 
decohesion 
from second 
phase 
particles  

From optimal upscaling: 

strength  
intrinsic length  
hardening  

calibrated from 
nano/microvoid 

calculations, 
multiscale 
models of 
plasticity 

Failure of ligaments? 

Mg 

Mg 

Y 
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Implementation: Cohesive elements 

12-node quadratic  
cohesive elements 

Insertion of cohesive element  
between two volume elements 

cohesive law from 
optimal scaling 

Ortiz, M. and Pandolfi, A., IJNME, 44 (9): 1267-1282, 1999. 
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● Ni specimen, D = 50 mm, t = 4.95 mm 
● J2 plasticity, power-law hardening 
● h= 0.49 mm, 191,960 tets, 456,262 nodes 
 
  

back- 
surface 
loading 
profile 

Spall fracture simulations 
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● Ni specimen, D = 50 mm, t = 4.95 mm 
● J2 plasticity, power-law hardening 
● h= 0.49 mm, 191,960 tets, 456,262 nodes 
 
  

Spall fracture simulations 

spall plane,  
final configuration 
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● Ni specimen, D = 50 mm, t = 4.95 mm 
● J2 plasticity, power-law hardening 
● h= 0.49 mm, 191,960 tets, 456,262 nodes 
 
  

Spall fracture simulations 

back-surface 
velocimetry record, 
pullback signal 
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Fracture of polymers 

T. Reppel, T. Dally, T. and K. Weinberg, 
Technische Mechanik, 33 (2012) 19-33. 

Crazing in steel/polyurea/steel  
sandwich specimen (Zhu et al., 2008). 

• Polymers undergo 
entropic elasticity and 
damage due to chain 
stretching and failure 

• Polymers fracture by 
means of the crazing 
mechanism consisting of 
fibril nucleation, 
stretching and failure 

• The free energy density 
of polymers saturates in 
tension once the majority 
of chains are failed: p=0! 

• Crazing mechanism is 
incompatible with strain-
gradient elasticity… 
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Network theory of polymer elasticity 

• Polymer: Cross-linked long-chain molecules 
• Chains: Freely jointed, far from full extension 
• Cross-linking points follow macroscopic def. 
• Polymer nearly incompressible 
• Chain links break at critical elongation 
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Network theory of polymers 
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Network theory of polymers 

Energy has zero growth! 
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Fracture of polymers 

Strain-gradient elasticity 
precludes crazing! 
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Fracture of polymers 

Topology of crazing 
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The topology of crazing 
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Fracture of polymers 
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Sketch of proof: Upper bound 
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Upscaling: Effective cohesive law 

from  
atomistic 
simulations 
of polymers 

From optimal upscaling: 

strength  
intrinsic length  
fractional exp.  

calibrated from 
atomistic 

calculations  
of polymers 

Failure of ligaments? 

5 nm 

5 nm 

5 nm 

AFM image of a polyurea (Grujicic M 
et al, MMMS, 9(2013):548-578). 
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Implementation: Eigenfracture 

1Schmidt, B., et al., SIAM Multi. Model., 7 (2009) 1237. 
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Implementation: Eigenfracture 

1Schmidt, B., et al., SIAM Multi. Model., 7 (2009) 1237. 
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Implementation: Eigenerosion 

2Pandolfi, A., Li, B. & Ortiz, M. , Int. J. Fract., 184 (2013) 3. 
1Pandolfi, A. & Ortiz, M. , IJNME, 92 (2012) 694. 
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Taylor-anvil tests on polyurea 

Shot #854:  
R0 = 6.3075 mm,  
L0 = 27.6897 mm,  

v = 332 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 
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Experiments and simulations 

Shot #861:  
R0 = 6.3039 mm,  
L0 = 27.1698 mm,  

v = 424 m/s 
 

Experiments conducted by W. Mock, Jr. and J. Drotar, 
at the Naval Surface Warfare Center (Dahlgren Division) 

Research Gas Gun Facility, Dahlgren, VA 22448-5100, USA 
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Taylor-anvil tests on polyurea 

Comparison of damage and fracture patterns  
in recovered specimens and simulations 

Shot #854  Shot #861  
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Concluding remarks 

• Ductile fracture can indeed be understood as the 
result of the competition between sublinear growth 
and (possibly fractional) strain-gradient effects 

• Optimal scaling laws are indicative of a well-defined 
specific fracture energy, cohesive behavior, and 
provide a (multiscale) link between macroscopic 
fracture properties and micromechanics (intrinsic 
micromechanical length scale, void-sheet and 
crazing mechanisms…) 

• Upscaled properties can be efficiently implemented 
through cohesive or material-point erosion schemes 

• Highly to be desired: Full Γ-limit as ℓ → 0, evolution… 
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Concluding remarks 
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