Gradient damage models coupled with plasticity

Jean-Jacques Marigo

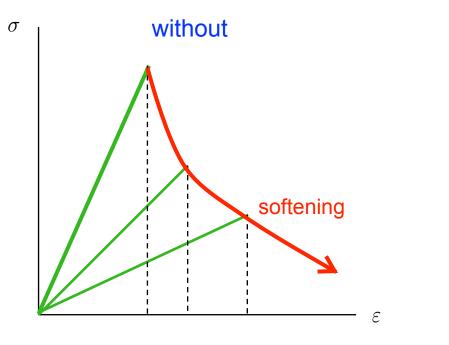
(Palaiseau, Ecole Polytechnique)

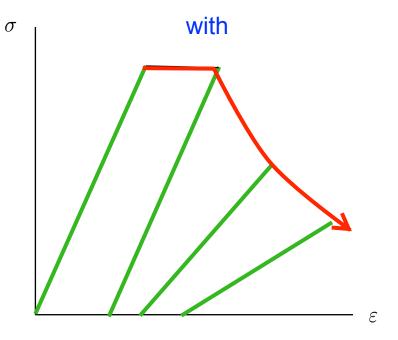
joint work with

Roberto Alessi, Stefano Vidoli (Roma, La Sapienza) Corrado Maurini (Paris, UPMC) Erwan Tanne (Palaiseau, Ecole Polytechnique) Blaise Bourdin (Baton Rouge, LSU)

Damage models without or with plasticity

- quasi-static, rate independent evolution law
- scalar damage variable
- variational approach





Justification of "standard" laws

✓ Drucker-Ilyushin Postulate

The strain work must be non negative in every strain cycle

$$\oint_{\mathcal{C}} \boldsymbol{\sigma} \cdot d\boldsymbol{\varepsilon} \ge 0, \quad \forall \mathcal{C}$$

\checkmark In perfect plasticity

The D-I postulate is equivalent to the Hill principle of maximal plastic work which is equivalent to the convexity of the yield surface and the normality rule

Drucker-Ilyushin \iff Hill

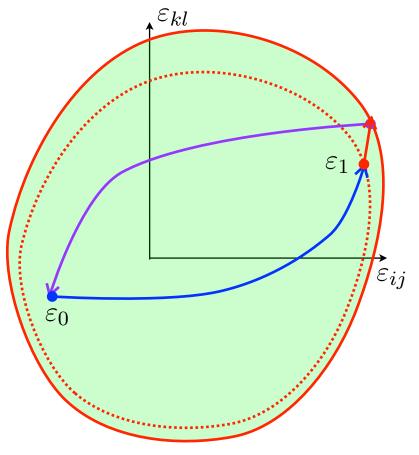
\checkmark For brittle scalar damage laws

stress-strain relation

$$\sigma = \frac{\partial \psi}{\partial \varepsilon}(\varepsilon, \alpha), \qquad \alpha \in [0, \alpha_M)$$

- yield criterion : damage grows only when the strains (or the stresses) reach some yield surface which is damage dependent
- Théorem (JJM, '89)

Drucker-Ilyushin \iff Standard Law



yield criterion :

$$-rac{\partial\psi}{\partialoldsymbol{lpha}}(oldsymbol{arepsilon},oldsymbol{lpha})\leq w'(oldsymbol{lpha})$$

Damage without plasticity

General form of standard non regularized damage laws

\checkmark constitutive relations

 $\sigma - \varepsilon$ relation : $\sigma = \frac{\partial \psi}{\partial \varepsilon}(\varepsilon, \alpha)$ irreversibility : $\dot{\alpha} \ge 0$

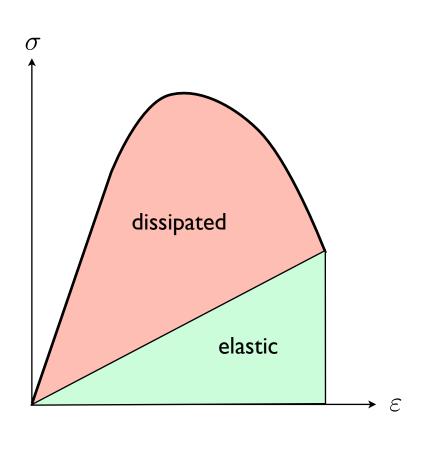
yield criterion : $-\frac{\partial \psi}{\partial \alpha}(\varepsilon, \alpha) \leq w'(\alpha)$

:
$$\left(\frac{\partial\psi}{\partial\alpha}(\varepsilon,\alpha) + w'(\alpha)\right)\dot{\alpha} = 0$$

✓ energetic interpretation

the strain work is a state function equal to the sum of the elastic energy and the dissipated energy

$$\int_{\overrightarrow{o\varepsilon}} \boldsymbol{\sigma} \cdot d\boldsymbol{\varepsilon} = W(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) = \psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) + w(\boldsymbol{\alpha})$$

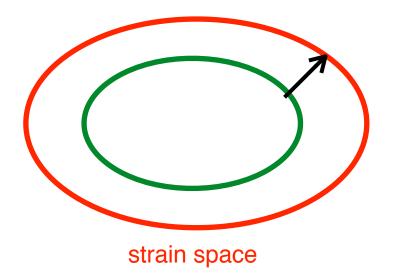


$$\psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) = \frac{1}{2} \mathsf{E}(\boldsymbol{\alpha})_{ijkl} \boldsymbol{\varepsilon}_{ij} \boldsymbol{\varepsilon}_{kl}$$

"linear" case

Hardening and softening conditions

✓ Strain hardening

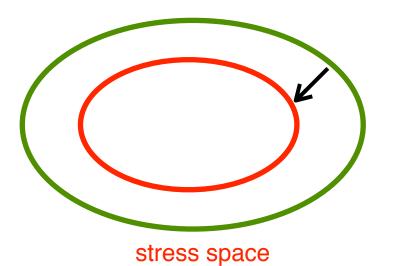


$$-rac{1}{2} \, \mathsf{E}'({oldsymbol lpha}) arepsilon \cdot arepsilon \leq \mathsf{w}'({oldsymbol lpha})$$

 $\alpha \mapsto \mathsf{E}'(\alpha)/\mathsf{w}'(\alpha)$ increasing

✓ Stress softening

$$\varepsilon = \mathsf{S}(\alpha)\sigma$$



 $\frac{1}{2} \mathsf{S}'(\alpha) \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \leq \mathsf{w}'(\alpha)$

 $\alpha \mapsto \mathsf{S}'(\alpha)/\mathsf{w}'(\alpha)$ increasing

Construction of the gradient damage models

$\checkmark Definition of the strain work density function$

$$W(\varepsilon, \alpha, \nabla \alpha) = \frac{1}{2} \mathsf{E}(\alpha)(\varepsilon - \varepsilon^{th}) \cdot (\varepsilon - \varepsilon^{th}) + \mathsf{w}(\alpha) + \frac{1}{2} \mathsf{w}_1 \ell(\alpha)^2 \nabla \alpha \cdot \nabla \alpha$$

 $\ell(\alpha)$ = material characteristic length

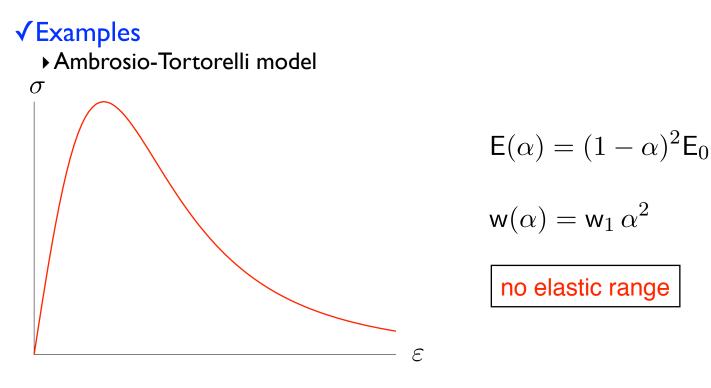
✓ Choice of the damage parameter

$$W(\varepsilon, \alpha, \nabla \alpha) = \mathsf{w}(\alpha) + \frac{1}{2}\mathsf{w}_1 \ell^2 \nabla \alpha \cdot \nabla \alpha + \frac{1}{2}\mathsf{E}(\alpha)(\varepsilon - \varepsilon^{th}) \cdot (\varepsilon - \varepsilon^{th}) \qquad \alpha \in [0, 1]$$

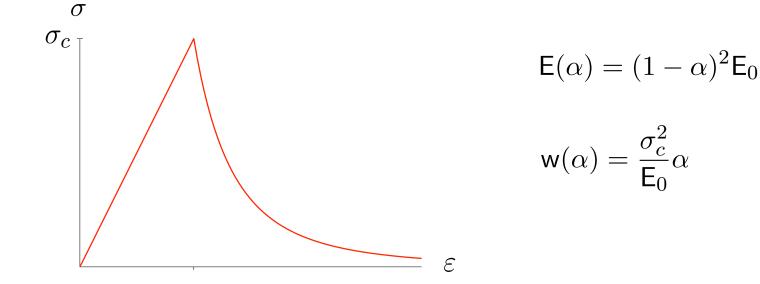
✓ Constitutive inequalities

$$E(0) = E_0 > 0, \quad E(1) = 0 \qquad E(\alpha) > 0, \quad E'(\alpha) < 0$$
$$w(0) = 0 \qquad w'(\alpha) > 0 \qquad w_1 = w(1) < +\infty$$
stress softening = $\alpha \mapsto S'(\alpha)/w'(\alpha)$ increasing

 $\mathsf{S}(\alpha) = \mathsf{E}(\alpha)^{-1} = \text{compliance tensor}$



A model with finite critical stress and stress softening



✓ the global evolution problem▶ the global total energy

$$\mathcal{E}_t(\boldsymbol{u},\boldsymbol{\alpha}) = \int_{\Omega} W_t(\varepsilon(\boldsymbol{u}),\boldsymbol{\alpha},\boldsymbol{\nabla}\boldsymbol{\alpha})dV - f_t(\boldsymbol{u})$$

▶the evolution problem in its variational form

I. Irreversibility

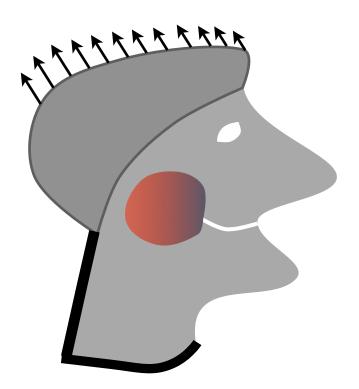
 $\dot{\alpha}_t \ge 0$

2. First order stability condition

 $\mathcal{E}_t'(\boldsymbol{u_t}, \boldsymbol{\alpha_t})(v - \boldsymbol{u_t}, \beta - \boldsymbol{\alpha_t}) \geq 0, \quad \forall v \in \mathcal{C}_t, \quad \forall \beta : \boldsymbol{\alpha_t} \leq \beta \leq 1$

2'. Complete stability condition $\forall (v, \beta) \text{ admissible and } h \text{ small enough}, \quad \mathcal{E}_t(u_t, \alpha_t) \leq \mathcal{E}(u_t + hv, \alpha_t + h\beta)$ $\beta \geq 0$

3. Global energy balance $\frac{d}{dt}\mathcal{E}_t(\boldsymbol{u_t}, \boldsymbol{\alpha_t}) = \frac{\partial \mathcal{E}_t}{\partial t}(\boldsymbol{u_t}, \boldsymbol{\alpha_t})$



▶ the evolution problem in its local form

$$\begin{cases} \operatorname{div} \boldsymbol{\sigma}_t + f_t = 0 & \text{in} & \Omega \\ \boldsymbol{\sigma}_t n = F_t & \text{on} & \partial_F \Omega \\ \boldsymbol{u}_t = U_t & \text{on} & \partial_D \Omega \end{cases}$$

Stress-strain relation : $\sigma_t = \mathsf{E}(\alpha_t)(\varepsilon_t - \varepsilon_t^{th})$

Damage condition

in Ω

Irreversibility :
$$\dot{\alpha}_t \ge 0$$
 in Ω

:
$$\frac{1}{2}\mathsf{S}'(\boldsymbol{\alpha}_t)\boldsymbol{\sigma}_t \cdot \boldsymbol{\sigma}_t - w'(\boldsymbol{\alpha}_t) + \boldsymbol{w}_1 \ell^2 \Delta \boldsymbol{\alpha}_t \leq 0$$
 in Ω

Consistency condition :
$$\left(\frac{1}{2}\mathsf{S}'(\alpha_t)\sigma_t\cdot\sigma_t - w'(\alpha_t) + w_1\ell^2\Delta\alpha_t\right)\dot{\alpha}_t = 0$$
 in Ω

Boundary condition :
$$\frac{\partial \alpha_t}{\partial n} \ge 0$$
, $\frac{\partial \alpha_t}{\partial n} \dot{\alpha}_t = 0$ on $\partial \Omega$

✓ numerical method

- time discretization
- alternate minimization algorithm:

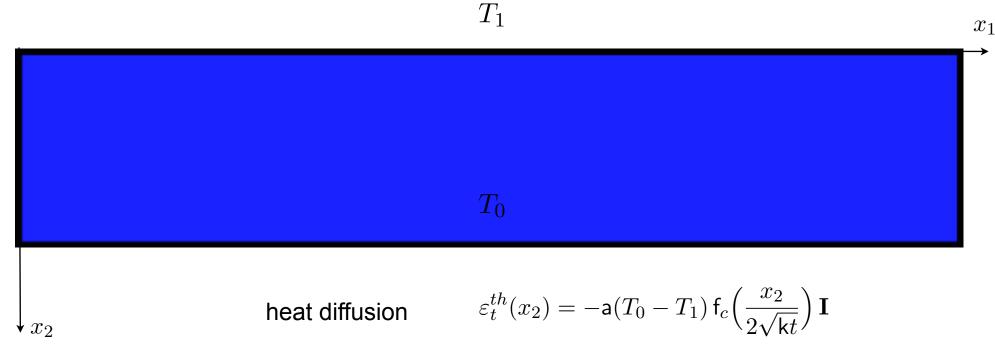
$$u_i^n = \operatorname{argmin}_u \mathcal{E}_i(u, \alpha_i^n)$$
$$\alpha_i^{n+1} = \operatorname{argmin}_{\alpha \ge \alpha_{i-1}} \mathcal{E}_i(u_i^n, \alpha)$$

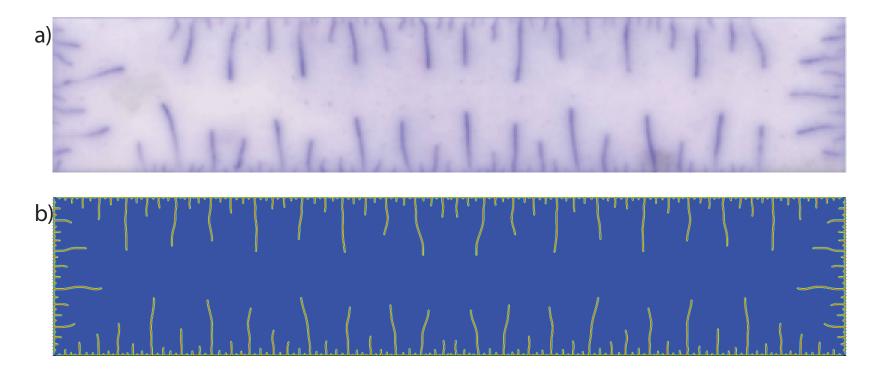
model

$$\sigma_c = \sqrt{\mathsf{w}_1 \mathsf{E}_0}$$

 $\mathsf{E}(\alpha) = (1 - \alpha)^2 \mathsf{E}_0$

$$\mathsf{w}(\alpha) = \mathsf{w}_1 \alpha \qquad \qquad \ell$$



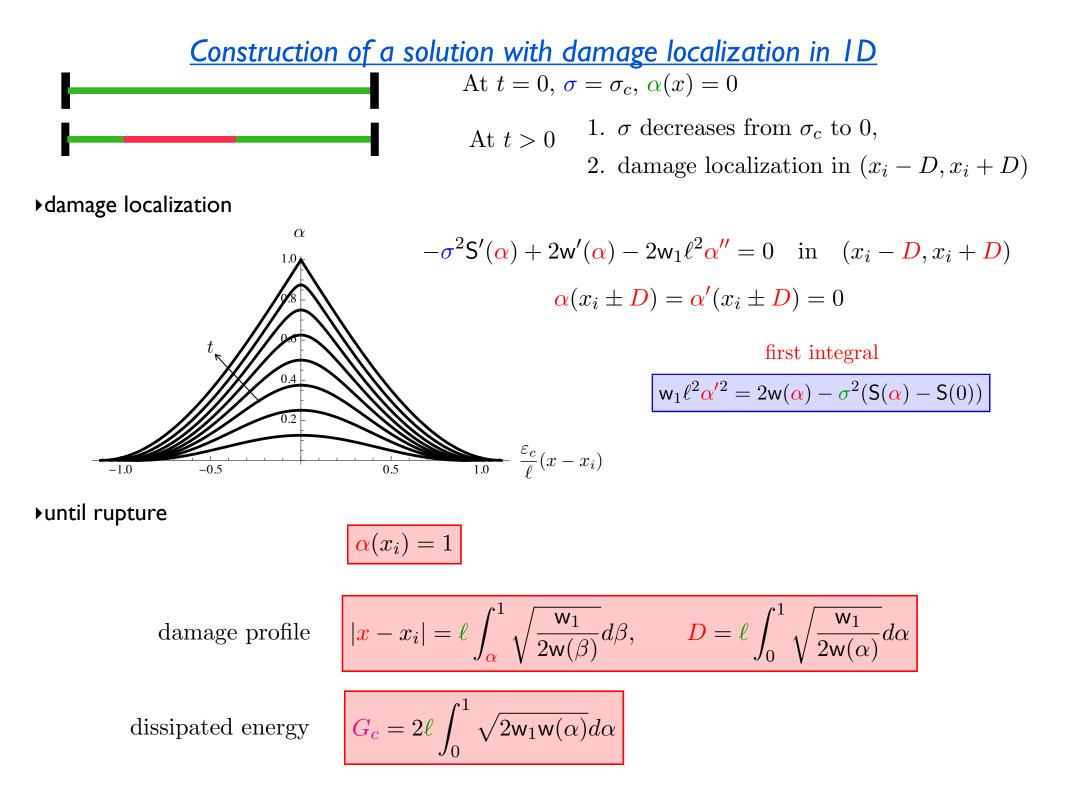


Ceramic parameters: E_0 =340 GPa, G_c =42 J.m⁻², σ_c =340 MPa, ν = .22 (from G_c and σ_c one deduces ℓ = .05 mm) Temperature gradient T_0 - T_1 = 380°.

(a) Experimental crack pattern in a slab (10 mm \times 50 mm \times 1mm) after a thermal shock (from Jiang et al. [2012]).

(b) Value of the computed damage field. Numerical simulation: $20 \times 10^6 \text{ d.o.f.}$, mesh size h = .01mm

Case
$$T_0 - T_1 \le \frac{\sigma_c}{aE_0}$$
 : no damage, no crack $\sigma_c = \sqrt{w_1 E_0}$
Case $T_0 - T_1 > \frac{\sigma_c}{aE_0}$ $\lambda \sim \frac{\sigma_c}{E_0 a(T_0 - T_1)} \ell$



Damage with plasticity

Damage alone

Plasticity alone

$$\mathsf{W}_D = \frac{1}{2} \mathsf{E}(\alpha) \varepsilon \cdot \varepsilon + \mathsf{w}(\alpha) + \mathsf{w}_1 \ell^2 \nabla \alpha \cdot \nabla \alpha$$

$$W_P = \frac{1}{2} \mathsf{E}(\varepsilon - \varepsilon^p) \cdot (\varepsilon - \varepsilon^p) + \sigma_Y p$$
$$\dot{p} = \sqrt{\frac{2}{3}} \dot{\varepsilon}^p \cdot \dot{\varepsilon}^p$$

Damage with Plasticity

$$\mathsf{W} = \frac{1}{2} \mathsf{E}(\alpha) (\varepsilon - \varepsilon^p) \cdot (\varepsilon - \varepsilon^p) + \mathsf{w}(\alpha) + \frac{\sigma_Y(\alpha)p}{\sigma_Y(\alpha)p} + \mathsf{w}_1 \ell^2 \nabla \alpha \cdot \nabla \alpha$$

 $\sigma_Y(\alpha)$ decreasing from σ_Y^0 to 0

Evolution law (variational approach)

- ✓ Stress-strain relation $\sigma = E(\alpha)(\varepsilon \varepsilon^p)$
- ✓ Plasticity criterion

$$\sqrt{\frac{3}{2}\sigma^D \cdot \sigma^D} \le \sigma_Y(\alpha)$$

Flow rule :
$$\dot{\varepsilon}^p = \dot{p} \; \frac{\sigma^D}{\sigma_Y(\alpha)}$$

✓ Damage criterion

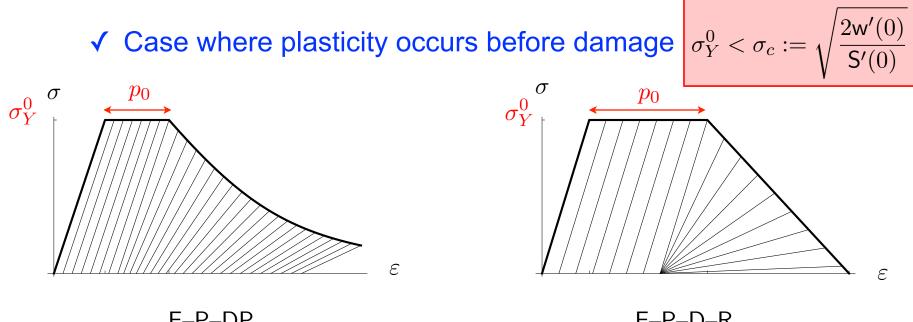
$$\frac{1}{2}\,\mathsf{S}'(\alpha)\sigma\cdot\sigma+2\mathsf{w}_1\ell^2\Delta\alpha\leq\mathsf{w}'(\alpha)+\frac{\sigma'_Y(\alpha)p}{\sigma'_Y(\alpha)p}$$

2 critical stress

$$\sigma_Y^0 := \sigma_Y(0)$$

$$\sigma_c := \sqrt{\frac{2\mathsf{w}'(0)}{\mathsf{S}'(0)}}$$

Uniaxial local response



E-P-DP

E-P-D-R

Evolution of the damage criterion during the P stage

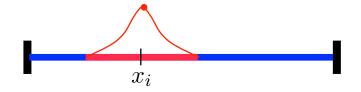
$$\frac{1}{2} \mathsf{S}'(0) \sigma_Y^{0\,2} \le \mathsf{w}'(0) - \left\| \sigma_Y'(0) \right\| p$$

Onset of damage :
$$p_0 = \frac{\mathsf{S}'(0)}{2 |\sigma'_Y(0)|} (\sigma_c^2 - {\sigma_Y^0}^2)$$

Then damage alone or damage with plasticity according to $w(\alpha)$, $S(\alpha)$, $\sigma_Y(\alpha)$ properties

Response with damage localization

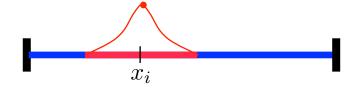
At
$$t = 0$$
, $\sigma = \sigma_Y^0$, $\alpha(x) = 0$, $\varepsilon^p(x) = p(x) = p_0$



1. σ decreases from σ_Y^0 to 0,

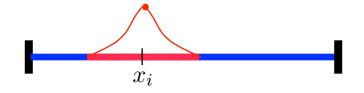
At
$$t > 0$$
 2. damage localization in $(x_i - D, x_i + D)$

3. $\alpha(x)$ maximal at x_i



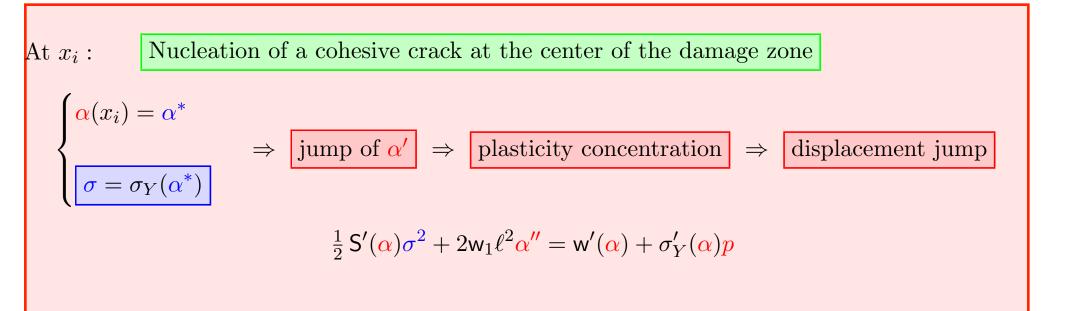
In the damage zone except at x_i :

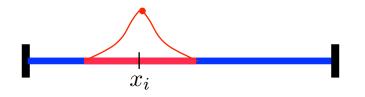
$$\begin{cases} \sigma < \sigma_Y(\alpha(x)) \implies p(x) = p_0 \\ \\ \frac{1}{2} \mathsf{S}'(\alpha) \sigma^2 + 2\mathsf{w}_1 \ell^2 \alpha'' = \mathsf{w}'(\alpha) + \sigma'_Y(\alpha) p_0 \implies \text{first integral} \end{cases}$$



In the damage zone except at x_i :

$$\begin{cases} \sigma < \sigma_Y(\alpha(x)) \implies p(x) = p_0 \\\\ \frac{1}{2} \mathsf{S}'(\alpha) \sigma^2 + 2\mathsf{w}_1 \ell^2 \alpha'' = \mathsf{w}'(\alpha) + \sigma'_Y(\alpha) p_0 \implies \text{ first integral} \end{cases}$$





In the damage zone except at x_i :

$$\begin{cases} \sigma < \sigma_Y(\alpha(x)) \implies p(x) = p_0 \\\\ \frac{1}{2} \mathsf{S}'(\alpha) \sigma^2 + 2\mathsf{w}_1 \ell^2 \alpha'' = \mathsf{w}'(\alpha) + \sigma'_Y(\alpha) p_0 \implies \text{ first integral} \end{cases}$$

At x_i :

 $\begin{cases} \alpha(x_i) = \alpha^* \\ \Rightarrow \text{ jump of } \alpha' \Rightarrow \text{ plasticity concentration } \Rightarrow \text{ displacement jump} \end{cases}$ $\frac{1}{2}\mathsf{S}'(\boldsymbol{\alpha})\sigma^2 + 2\mathsf{w}_1\ell^2\boldsymbol{\alpha}'' = \mathsf{w}'(\boldsymbol{\alpha}) + \sigma'_Y(\boldsymbol{\alpha})\boldsymbol{p}$

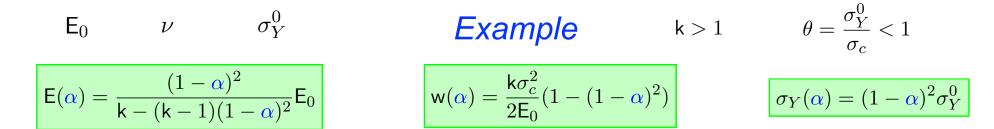
cohesive law

 \Rightarrow

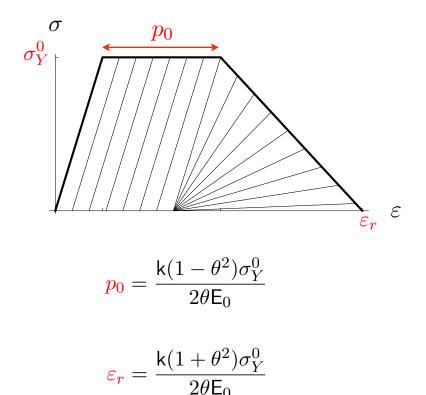
damage criterion : $2\mathbf{w}_1\ell^2\llbracket \alpha' \rrbracket = \sigma'_Y(\alpha^*)\llbracket u \rrbracket$

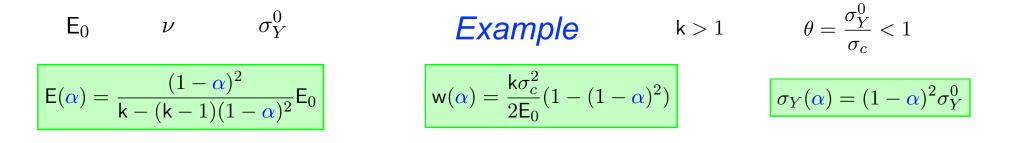
first integral :

$$\sqrt{\mathsf{w}_1}\ell[\![\boldsymbol{\alpha'}]\!] = -2\sqrt{\mathsf{w}(\boldsymbol{\alpha}^*) - (\sigma_Y^0 - \sigma_Y(\boldsymbol{\alpha}^*))p_0 - \frac{1}{2}\left(\mathsf{S}(\boldsymbol{\alpha}^*) - \mathsf{S}_0\right)\sigma^2}$$

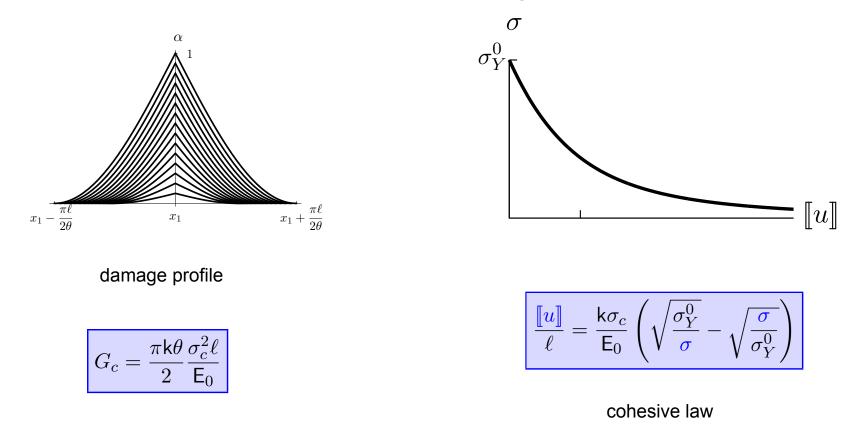


Homogeneous response





Response with damage localization



dissipated energy to create a crack

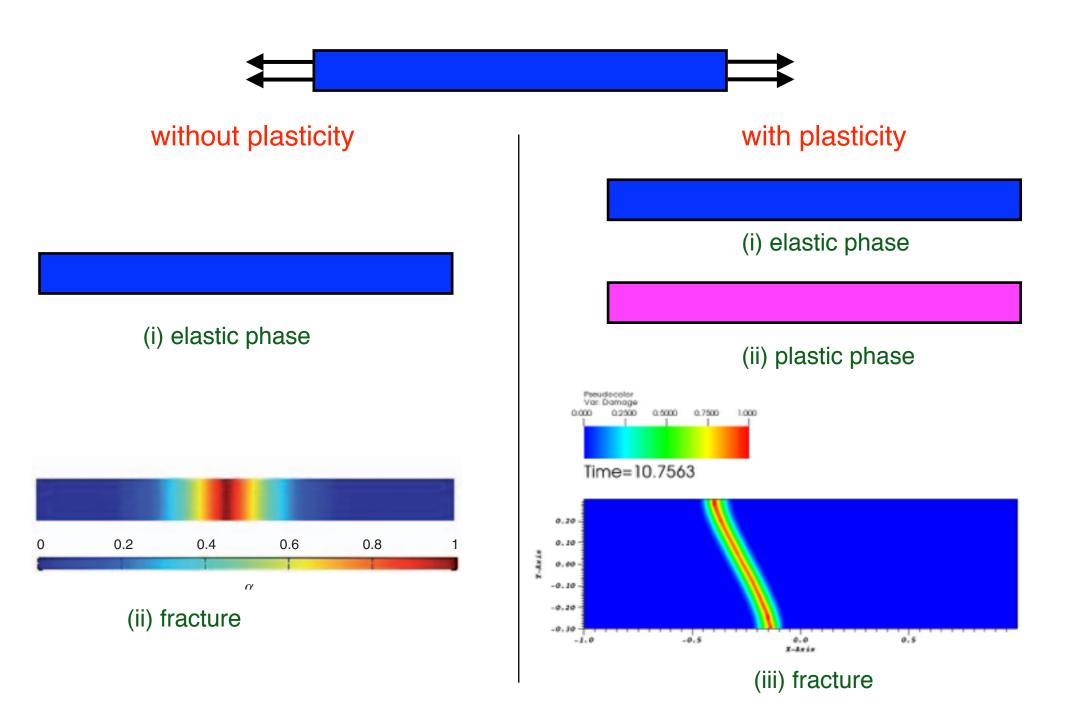
✓ numerical method

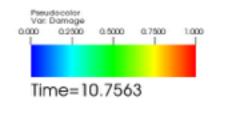
- time discretization

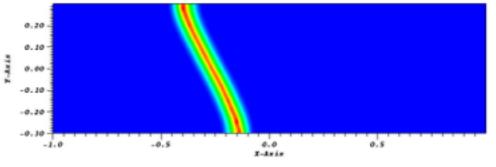
$$\begin{aligned} \mathcal{E}_{i}(u,\alpha,\varepsilon^{p}) &= \int_{\Omega} \Big(\frac{1}{2} \, \mathsf{E}(\alpha)(\varepsilon(u) - \varepsilon^{p}) \cdot (\varepsilon(u) - \varepsilon^{p} + \mathsf{w}(\alpha) + \mathsf{w}_{1}\ell^{2} \nabla \alpha \cdot \nabla \alpha \Big) dx \\ &+ \int_{\Omega} \sigma_{Y}(\alpha) \Big(p_{i-1} + \|\varepsilon^{p} - \varepsilon^{p}_{i-1}\| \Big) dx - f_{i}(u) \end{aligned}$$

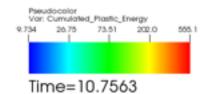
- alternate minimization algorithm:

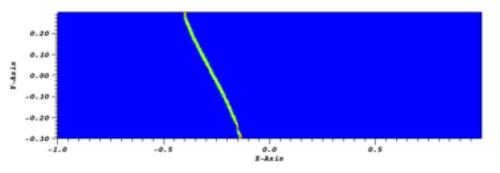
$$\begin{split} u_i^n &= \operatorname{argmin}_u \mathcal{E}_i(u, \alpha_i^n, (\varepsilon^p)_i^n) \\ \alpha_i^{n+1} &= \operatorname{argmin}_{\alpha \geq \alpha_{i-1}} \mathcal{E}_i(u_i^n, \alpha, (\varepsilon^p)_i^n) \\ (\varepsilon^p)_i^{n+1} &= \operatorname{argmin}_{\varepsilon^p} \mathcal{E}_i(u_i^n, \alpha_i^{n+1}, \varepsilon^p) \quad \text{local problem=projection} \end{split}$$

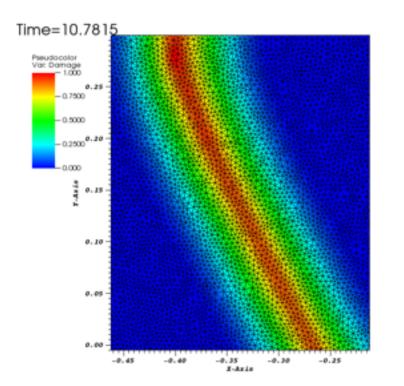


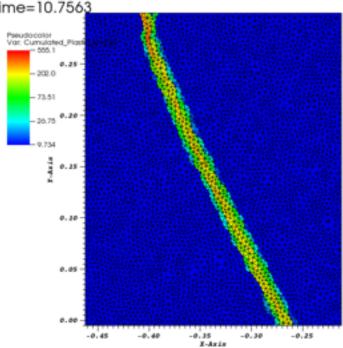






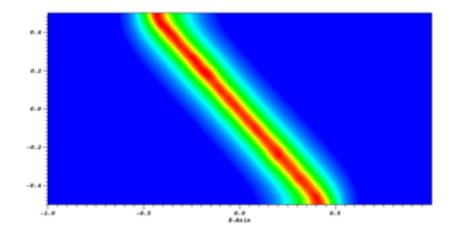






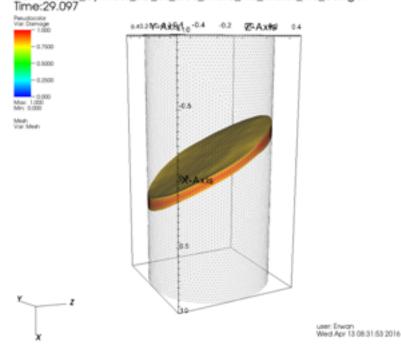
Time=10.7563

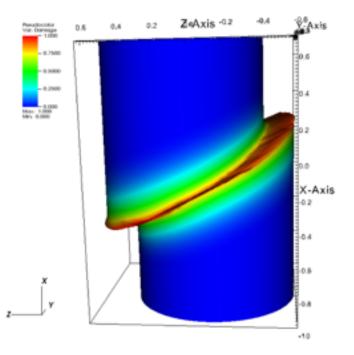
Illustration of ductile cracks:



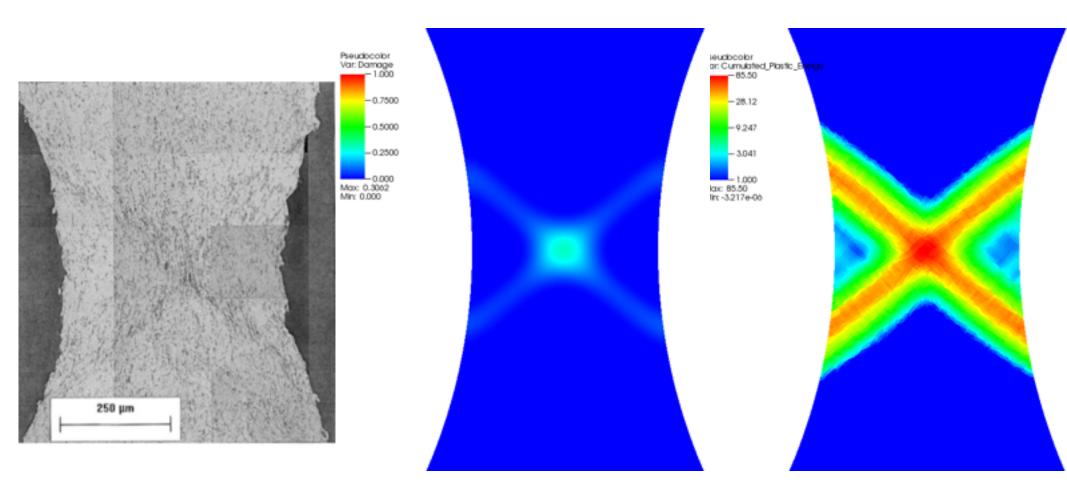
Ductile response (slant crack 45°) in 2D plane strain theory for VM plasticity.

Cylinder in compression 3D

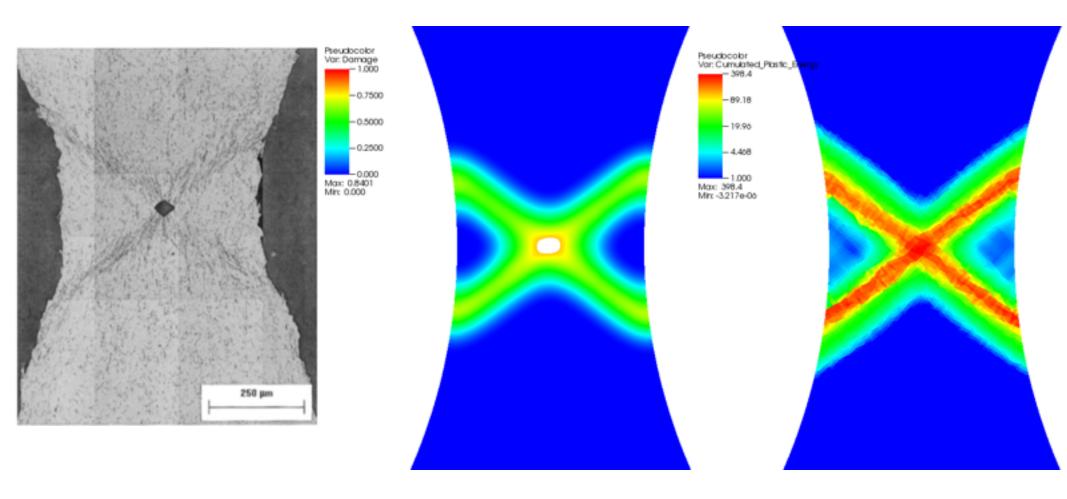




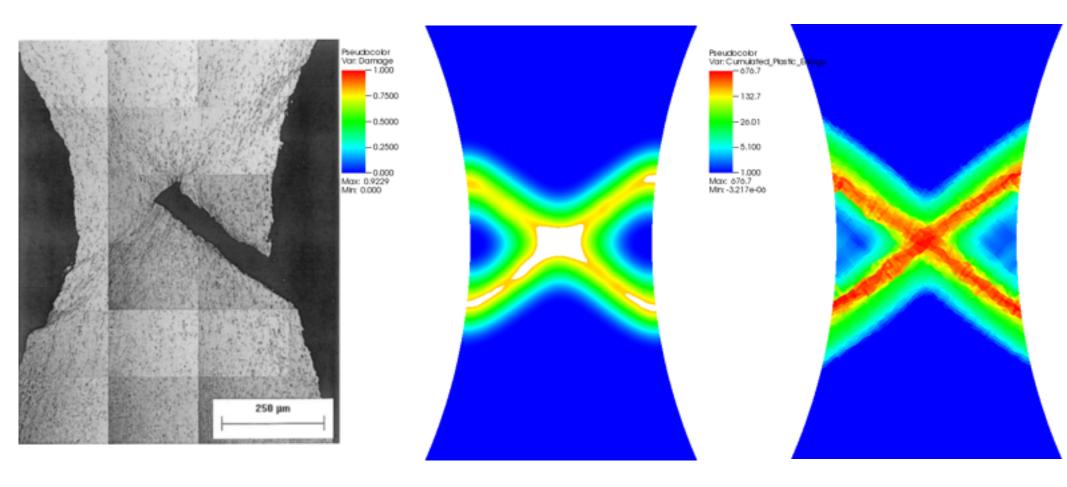
$$\mathcal{E}(\mathbf{u},\alpha,p) = \frac{1}{2}a(\alpha)\mathbb{A}(e(\mathbf{u})-p) : (e(\mathbf{u})-p) + \frac{G_c}{4c_w}\left(\frac{w(\alpha)}{\ell} + \ell|\nabla\alpha|^2\right) + b(\alpha)\int_0^t \sup_{\substack{||\sigma_D|| \le \sigma_p \\ \mathrm{tr}(p)=0}} \{\sigma:\dot{p}\}\mathrm{d}t,$$
$$a(\alpha) = b(\alpha) = (1-\alpha)^2 \qquad \sigma_c/\sigma_p = 4 \qquad \ell/D = 0.1$$



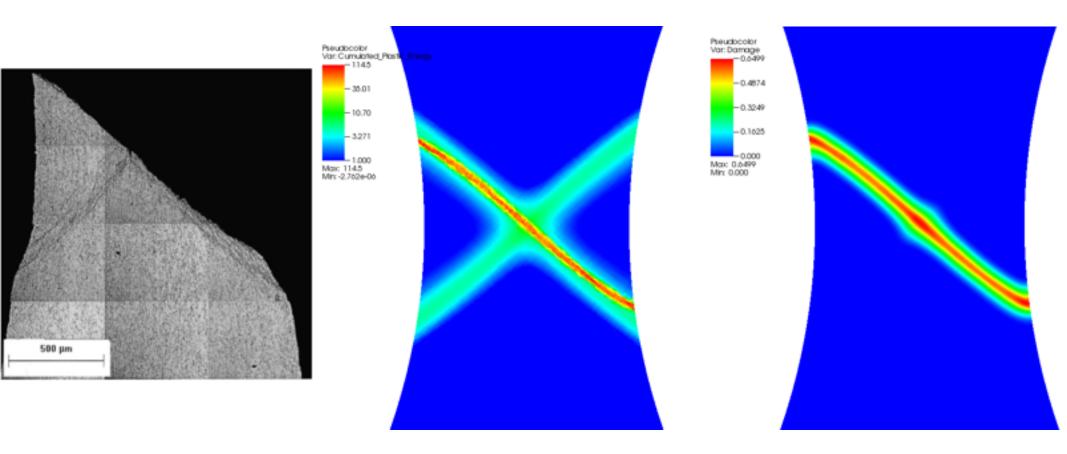
$$\mathcal{E}(\mathbf{u},\alpha,p) = \frac{1}{2}a(\alpha)\mathbb{A}(e(\mathbf{u})-p) : (e(\mathbf{u})-p) + \frac{G_c}{4c_w}\left(\frac{w(\alpha)}{\ell} + \ell|\nabla\alpha|^2\right) + b(\alpha)\int_0^t \sup_{\substack{||\sigma_D|| \le \sigma_p \\ \mathrm{tr}(p)=0}} \{\sigma:\dot{p}\}\mathrm{d}t,$$
$$a(\alpha) = b(\alpha) = (1-\alpha)^2 \qquad \sigma_c/\sigma_p = 4 \qquad \ell/D = 0.1$$

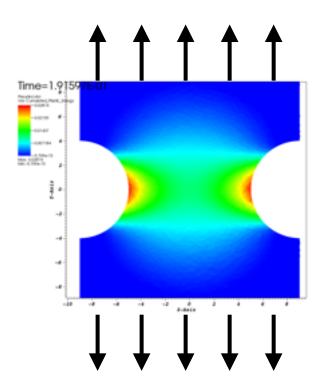


$$\mathcal{E}(\mathbf{u},\alpha,p) = \frac{1}{2}a(\alpha)\mathbb{A}(e(\mathbf{u})-p) : (e(\mathbf{u})-p) + \frac{G_c}{4c_w}\left(\frac{w(\alpha)}{\ell} + \ell|\nabla\alpha|^2\right) + b(\alpha)\int_0^t \sup_{\substack{||\sigma_D|| \le \sigma_p \\ \mathrm{tr}(p)=0}} \{\sigma:\dot{p}\}\mathrm{d}t,$$
$$a(\alpha) = b(\alpha) = (1-\alpha)^2 \qquad \sigma_c/\sigma_p = 4 \qquad \ell/D = 0.1$$



$$\mathcal{E}(\mathbf{u},\alpha,p) = \frac{1}{2}a(\alpha)\mathbb{A}(e(\mathbf{u})-p) : (e(\mathbf{u})-p) + \frac{G_c}{4c_w}\left(\frac{w(\alpha)}{\ell} + \ell|\nabla\alpha|^2\right) + b(\alpha)\int_0^t \sup_{\substack{||\sigma_D|| \le \sigma_p \\ \mathrm{tr}(p)=0}} \{\sigma:\dot{p}\}\mathrm{d}t,$$
$$a(\alpha) = b(\alpha) = (1-\alpha)^2 \qquad \sigma_c/\sigma_p = 8 \qquad \ell/D = 0.05$$





plastic field

