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– quasi-static, rate independent evolution law  
– scalar damage variable 
– variational approach

Damage models without or with plasticity

softening
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Justification of  “standard” laws

✓Drucker-Ilyushin Postulate
The strain work must be non negative in every strain cycle

✓In perfect plasticity
The D-I postulate is equivalent to the Hill principle of 
maximal plastic work which is equivalent to the convexity of 
the yield surface and the normality rule

✓For brittle scalar damage laws
‣ stress-strain relation

‣ yield criterion : damage grows only when the strains (or 
the stresses) reach some yield surface which is damage 
dependent
‣ Théorem (JJM, ’89)
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Damage without plasticity



General form of standard non regularized damage laws

✓constitutive relations

✓energetic interpretation
the strain work is a state function equal to the sum of the 
elastic energy and the dissipated energy
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Hardening and softening conditions

✓ Strain hardening

✓Stress softening

stress space

strain space

↵ 7! S0(↵)/w0(↵) increasing
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Construction of the gradient damage models

✓Definition of the strain work density function

⇥(�) = material characteristic length

✓ Choice of the damage parameter 

✓ Constitutive inequalities

E(↵) > 0, E0(↵) < 0

S(↵) = E(↵)�1
= compliance tensor

E(0) = E0 > 0, E(1) = 0
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✓Examples
‣Ambrosio-Tortorelli model

‣A model with finite critical stress and stress softening
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✓the global evolution problem
‣the global total energy

‣the evolution problem in its variational form
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‣the evolution problem in its local form
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✓ numerical method 
– time discretization 
– alternate minimization algorithm: 

✓ Example of a thermal shock
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b)

a)

Ceramic parameters: E0=340 GPa, Gc =42 J.m−2, σc =340 MPa, ν = .22 
(from Gc and σc one deduces  = .05 mm)
Temperature gradient T0-T1 = 380°. 

(a) Experimental crack pattern in a slab (10 mm × 50 mm × 1mm) after a 
thermal shock (from Jiang et al. [2012]). 

(b) Value of the computed damage field. 
Numerical simulation: 20 × 106 d.o.f., mesh size h = .01mm



�c =
p
w1E0Case T0 � T1 

�c
aE0

: no damage, no crack

Case T0 � T1 >
�c
aE0

� ⇠ �c
E0a(T0 � T1)

`

�



‣damage localization

‣until rupture
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Construction of a solution with damage localization in 1D
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Damage with plasticity



Damage alone Plasticity alone
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Evolution law (variational approach)

✓ Stress-strain relation 

✓ Plasticity criterion 

✓ Damage criterion

Flow rule : ⇤̇p = ṗ
⇥D

⇥Y (�)

� = E(↵)("� "p)

r
3

2
�D · �D � �Y (↵)

2 critical stress

�0
Y := �Y (0) �c :=

s
2w0(0)

S0(0)

1
2 S

0(�)⇥ · ⇥ + 2w1⇤
2�� � w0(�) + ⇥0

Y (�)p



Uniaxial local response

✓ Case where plasticity occurs before damage
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Response with damage localization

1. ⇥ decreases from ⇥0
Y to 0,

2. damage localization in (xi �D,xi +D)

3. �(x) maximal at xi
At t > 0

xi

At t = 0, ⇥ = ⇥0
Y , �(x) = 0, ⇤p(x) = p(x) = p0



xi

In the damage zone except at xi :
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xi

At xi : Nucleation of a cohesive crack at the center of the damage zone
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Example k > 1 � =
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Example
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✓ numerical method 
– time discretization 

– alternate minimization algorithm:

local problem=projection
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dissipated energies versus time, and the global force versus the imposed
displacement at the end of the bar for the boundary conditions (BC1).
Using Clayperon’s theorem (20), the global force is calculated as being the
time derivative of the total energy. The force!displacement diagram is linear
until t¼ 1, then the force drops to zero. The dashed line of Figure 8(b)
represents the homogeneous solution of Equation (46). This homogeneous

(BC1)

(BC2)
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Figure 7 Damage field distribution in a long bar (L¼ 2 !c‘) for t> 1. We report the solutions
obtained for the damage field free at the boundary (BC1) and the damage field imposed to
be zero on x¼±L/2 (BC2).
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Figure 8 Numerical results for the 2D traction of a long bar (L¼2 !c‘) with damage free at
the boundary (BC1). The dashed line in the force!displacement diagram reports the 1D
homogeneous solution in Equation (46), coinciding with the numerical response for t< 1. (a)
Energies, (b) Force!displacement diagram.
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without plasticity with plasticity

(i) elastic phase

(ii) fracture

(iii) fracture

(i) elastic phase

(ii) plastic phase





Illustration of ductile cracks:

Ductile response (slant crack 45°)  
in 2D plane strain theory for VM plasticity.

Cylinder in compression 3D 











plastic field

damage field


