Workshop «Variational Models of Fracture»

A variational approach to gradient plasticity

G. Lancioni

Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Ancona, Italy

Joint work with R. March (Rome), G. Del Piero (Ferrara), G. Zitti (Ancona), T. Yalcinkaya (Ankara), A. Cocks (Oxford)

Banff International Research Station, Canada

Workshop «Variational Models of Fracture»

A variational approach to gradient plasticity

G. Lancioni

Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Ancona, Italy

Joint work with R. March (Rome), G. Del Piero (Ferrara), G. Zitti (Ancona), T. Yalcinkaya (Ankara), A. Cocks (Oxford)

Banff International Research Station, Canada

Workshop «Variational Models of Fracture»

A variational approach to gradient plasticity

G. Lancioni

Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Ancona, Italy

Joint work with R. March (Rome), G. Del Piero (Ferrara), G. Zitti (Ancona), T. Yalcinkaya (Ankara), A. Cocks (Oxford)

Banff International Research Station, Canada

Variational Model

- Rate-independent
- Non-convex totally dissipative plastic energy
- Non-local energy, depending on the plastic strain gradient
- Evolution of the deformation -> Incremental energy minimization

References

- Del Piero, Lancioni, March, JMMS, 2013
- Lancioni, J. Elasticity, 2015

Modeling assumptions

Energy:
$$E(u, \gamma, e) = \int_{0}^{l} \left(\frac{1}{2}E(u'-\gamma)^{2} + \theta(e) + \frac{1}{2}\alpha(e)e'^{2}\right) dx$$

Comparisons with **non-local variational approaches** in literature

Damage energy [Bourdin, Francfort, Marigo, 2000],... $E(u,\alpha) = \int_{0}^{l} (\frac{1}{2}E(\alpha)u'^{2} + \theta(\alpha) + \frac{1}{2}A\alpha'^{2})dx$

Damage and plasticity energy

[Ambrosio, Lemenant, Royer-Carfagni, 2013], [Freddi, Royer-Carfagni, 2014]

$$E(u,\alpha) = \int_{0}^{l} \left(\frac{1}{2}E(\alpha)u'^{2} + \theta(\alpha) + \frac{1}{2}A\alpha'^{2} + \frac{\sigma_{0}\alpha^{2}}{\sqrt{\alpha}}|u'|\right)dx$$

yielding stress

[Alessi, Marigo, Vidoli, 2014, 2015]

$$E(u, \alpha, \gamma, e) = \int_{0}^{l} \left(\frac{1}{2}E(\alpha)(u'-\gamma)^{2} + \theta(\alpha) + \frac{1}{2}A\alpha'^{2} + \sigma_{p}(\alpha)e\right)dx$$

Damage + von Mises plasticity

Flow rule

$$E_{t+\tau}(\dot{u}_t, \dot{\gamma}_t, \dot{e}_t) = E_t + \tau \dot{E}_t(\dot{u}_t, \dot{\gamma}_t, \dot{e}_t),$$

with $\dot{E}_t = \int_0^l (-sign(\dot{\gamma}_t)\sigma_t + \sigma_t^c) \dot{e} \, dx$

Necessary condition for a minimum

$$\delta \dot{E}_t(\dot{u}_t, \dot{\gamma}_t, \dot{e}_t; 0, 0, \delta e) \ge 0, \quad \forall \, \delta e: \dot{e}_t + \delta e \ge 0$$

 \checkmark

$$\dot{e}_{t} \ge 0, \quad -sign(\dot{\gamma}_{t})\sigma_{t} + \sigma_{t}^{c} \ge 0, \quad (-sign(\dot{\gamma}_{t})\sigma_{t} + \sigma_{t}^{c})\dot{e}_{t} = 0$$

$$\dot{\nabla}$$

$$\dot{\gamma}_{t} = \frac{\sigma_{t}}{\sigma_{t}^{c}}\dot{e}_{t}$$
Flow rule

Tensile test

Assume
$$d_t \ge 0$$

 $\sigma_t \ge 0 \implies \dot{\gamma} = \dot{e}$

$$u(l) = d_t l$$

$$\vec{x} \mid t = \dot{x} \mid$$

$$E(u,\gamma) = \int_{0}^{l} \left(\frac{1}{2}E(u'-\gamma)^{2} + \theta(\gamma) + \frac{1}{2}\alpha(\gamma)\gamma'^{2}\right)dx$$

Dissipation inequality $\dot{\gamma} \ge 0$

Quasi-static evolution

Incremental minimum problem $(u_t, \gamma_t) \rightarrow (u_{t+\tau}, \gamma_{t+\tau}), \quad \mathcal{E}_{t+\tau} = u'_{t+\tau} - \gamma_{t+\tau}$ $u_{t+\tau} = u_t + \tau \dot{u}_t,$ $\gamma_{t+\tau} = \gamma_t + \tau \dot{\gamma}_t$ $E(u_{t+\tau}, \gamma_{t+\tau}) \approx E(u_t, \gamma_t) + \tau \dot{E}(u_t, \gamma_t) + \frac{1}{2}\tau^2 \ddot{E}(u_t, \gamma_t) =$ $= E(u_t, \gamma_t) + \tau F(u_t, \gamma_t; \dot{u}_t, \dot{\gamma}_t)$ quadratic functional

$$(\dot{u}_t, \dot{\gamma}_t) = \arg\min\{F(u_t, \gamma_t; \dot{u}_t, \dot{\gamma}_t), \dot{\gamma} \ge 0, \text{ b.c.}\}$$

Constrained quadratic programming pb.

Necessary condition for a minimum

```
\delta F(\dot{u}_t, \dot{\gamma}_t; \delta \dot{u}, \delta \dot{\gamma}) \ge 0\dot{\gamma}_t + \delta \gamma \ge 0
```

$\sigma = 0, \qquad \text{Kuhn-Tucker conditions (flow rule)} \\ \dot{\gamma}_{t} \ge 0, \quad \sigma_{t} + \tau \dot{\sigma}_{t} \le \sigma_{t}^{c} + \tau \dot{\sigma}_{t}^{c}, \quad [\sigma_{t} + \tau \dot{\sigma}_{t} - (\sigma_{t}^{c} + \tau \dot{\sigma}_{t}^{c})]\dot{\gamma}_{t} = 0$

consistency condition

(the yield function maintains equal to zero when γ grows)

Elastic evolution

1. *Elastic regime* $0 < d_t \le d_e = \theta'(0)/E$

2. *Elastic unloading* $\dot{d}_t < 0, \quad d_t \ge 0$

Evolution of plastic def. from homogeneous configurations

$$u_{t} = \text{const}, \quad \gamma_{t} = \text{const}, \quad \sigma_{t} = \sigma_{t}^{c}, \quad \textbf{bc:} \quad \dot{\gamma}_{t}(0) = 0 \qquad \dot{\gamma}_{t}(l) = 0$$
$$\dot{u}_{t}(0) = 0 \qquad \dot{u}_{t}(l) = \dot{d}_{t}l$$

Evolution pb.

$$\begin{aligned} \dot{\gamma}_t &\geq 0, \\ \dot{\sigma}_t &\leq \dot{\sigma}_t^c, \text{ with } \dot{\sigma}_t = E(\dot{d}_t - \frac{1}{l} \int_0^l \dot{\gamma}_t dx) \quad \Longrightarrow \quad \vec{\gamma}_t \\ [\dot{\sigma}_t - \dot{\sigma}_t^c)] \dot{\gamma}_t &= 0 \\ \hline \dot{\varepsilon}_t = \dot{d}_t - \frac{1}{l} \int_0^l \dot{\gamma}_t dx \end{aligned}$$

Instability and fracture

Sufficient condition for a minimum:

 $\delta F \ge 0$, and $\delta^2 F \ge 0$ for all perturbations for which $\delta F = 0$

If s < 0, *F* can attain unlimited negative values for perturbations concentrated on intervals of sufficiently small length. This situation variationally characterizes *fractured configurations*.

Which shapes to $\theta(\gamma)$ and $\alpha(\gamma)$? ... hints from the analytical solution

Plastic energy θ , piecewise cubic

Tensile response of a concrete specimen

 $A=50^{\circ}50 \text{ mm}^2$, $\theta'(0)=6.9 \text{ kN}$ (yielding force), $\alpha=3500 \text{ kN} \text{ mm}^2$

Multi-dimensional extensions

1D rate-dependent plasticity model

[Yalcinkaya, Brekelmans, Geers, JMPS, 2011] Virtual work principle, dissipation inequality; Nonconvex plastic potential; Non-local gradient energy term. Plastic deformation partially recoverable and partially dissipated through a viscous

micro-stress

See [Lancioni, Yalcinkaya, Cocks, Proc. R. Soc. A, 2015] for models comparison.

Extension to 2D single crystal plasticity

[Yalcinkaya, Brekelmans, Geers, Int. J. Solids Struct., 2012]

... joint work with Gianluca Zitti (PhD at Univpm)

Plastic single-slip domains [Saimoto, 1963]

Energy

$$E(\mathbf{u}, \gamma_{\alpha}) = \int_{\Omega} \left(\psi_{e}(\mathbf{E}^{e}) + \theta(|\gamma_{\alpha}|) + \psi_{\nabla\gamma}(\nabla\gamma_{\alpha}) \right) dx$$

Elastic Plastic Non-local
energy energy energy

Free energy density (stored)

$$\psi(\mathbf{u}, \gamma_{\alpha}) = \psi_{e}(\mathbf{E}^{e}) + \psi_{\nabla\gamma}(\nabla\gamma_{\alpha})$$

$$\psi_{e}(\mathbf{E}^{e}) = \frac{1}{2}C[\mathbf{E}^{e}] \cdot \mathbf{E}^{e}, \qquad \psi_{\nabla\gamma}(\nabla\gamma_{\alpha}) = \frac{1}{2}\sum_{\alpha} \mathbf{A}_{\alpha}[\nabla\gamma_{\alpha}] \cdot \nabla\gamma_{\alpha}$$

$$\downarrow$$
Dissipative plastic energy
$$\mathbf{A}_{\alpha} = A_{s\alpha}\mathbf{s}_{\alpha} \otimes \mathbf{s}_{\alpha} + A_{n\alpha}\mathbf{n}_{\alpha} \otimes \mathbf{n}_{\alpha}.$$

$$\frac{d}{dt}\theta(|\gamma_{\alpha}|) = \sum_{\alpha} \operatorname{sign}(\gamma_{\alpha}) \frac{d\theta(|\gamma_{\alpha}|)}{d|\gamma_{\alpha}|} \dot{\gamma}_{\alpha} \ge 0$$

Suppose that $\theta(|\gamma_{\alpha}|)$ is strictly increasing in each variable $|\gamma_{\alpha}|$,

the **dissipation condition** reduces to

$$\operatorname{sign}(\gamma_{\alpha})\dot{\gamma}_{\alpha} \geq 0.$$

Evolution Pb. \Box **Incremental energy minimization**

$$(\mathbf{u}_{t}, \gamma_{\alpha, t}) \rightarrow \begin{cases} \mathbf{u}_{t+\tau} = \mathbf{u}_{t} + \tau \dot{\mathbf{u}}_{t} \\ \gamma_{\alpha, t+\tau} = \gamma_{\alpha, t} + \tau \dot{\gamma}_{\alpha, t} \end{cases}$$
 Unknowns

 $E_{t+\tau}(\dot{\mathbf{u}},\dot{\gamma}_{\alpha}) \approx E_t + \tau \,\dot{E}_t(\dot{\mathbf{u}},\dot{\gamma}_{\alpha}) + \frac{1}{2}\tau^2 \ddot{E}_t(\dot{\mathbf{u}},\dot{\gamma}_{\alpha}) = E_t + \tau \,J_t(\dot{\mathbf{u}},\dot{\gamma}_{\alpha})$

$$(\dot{\mathbf{u}}_t, \dot{\gamma}_{\alpha,t}) = \arg\min\{J_t(\dot{\mathbf{u}}, \dot{\gamma}_{\alpha}), \operatorname{sign}(\gamma_{\alpha})\dot{\gamma}_{\alpha} \ge 0, \mathrm{b.c.}\}$$

Constrained quadratic programming pb.

Necessary condition for a minimum $\delta J_{t}(\dot{\mathbf{u}}, \dot{\gamma}_{\alpha}; \delta \ddot{\mathbf{u}}, \delta \dot{\gamma}_{\alpha}) \ge 0, \quad \dot{\gamma}_{\alpha} + \delta \dot{\gamma}_{\alpha} \ge 0$ $\vec{\mathbf{U}}$ Balance of the macroscopic stress evolution $\vec{\mathbf{U}}$ $\vec{\mathbf{U}$ $\vec{\mathbf{U}}$ $\vec{\mathbf{U}$

consistency condition

(the yield function maintains equal to zero when γ grows)

Numerical results – plane pure shear test

Periodic b.c. $u_x(l, y) = u_x(0, y); \ u_y(x, l) = u_y(x, 0);$ $\gamma(x, l) = \gamma(x, 0); \ \gamma(l, y) = \gamma(0, y);$

Single slip system

$$\mathbf{E}^{p}(x) = \gamma \, sym(\mathbf{s} \otimes \mathbf{n})$$

Orientations: $\phi = 5^{\circ}; 15^{\circ}; 30^{\circ}$ E = 210 GPa, v = 0.33, $A_s = 52.5 \text{ kN}, A_n = 10.5 \text{ kN}$

Conclusions

The proposed model represents a *variational approach to softening gradient plasticity* (Aifantis-type model). Advantages:

- i. the laws of classical plasticity are variationally deduced (and not given a priori);
- ii. clear dependence of the response on the *shape of the plastic energy* $\theta(\gamma)$: $\theta(\gamma)$ convex -> stress-hardening, diffuse plasticity $\theta(\gamma)$ concave -> stress-softening, $\theta''(\gamma)$ decreasing -> strain localization $\theta''(\gamma)$ increasing -> localization zone enlargement

 $\theta(\gamma)$ double-wells -> plastic wave propagation

Ductile failure is described as a *bulk process* of progressive strain localization, which concludes with a final *material instability*, variationally interpreting *fracture*.

Physical motivation: process zone, where strains localize, and only at the very end they coalesce in fracture surfaces.

The model presents as an *alternative to classical cohesive fracture theories*, which concentrate inelasticity on surfaces.

Perpectives

1. Extension to **multi-dimension**.

Crystal plasticity: multiple slip systems

2. Find correlations between the covexity-concavity properties of θ and its derivatives and the microstructure of real materials.

Crystal plasticity: non-convex energy proposed by Ortiz-Repetto (1999), accounting for latent hardening

Conclusions

Rate-Independent model based on incremental energy minimization;

Non-convex dissipative plastic energy ⇒

Irreversibility of plastic def.
 non-convexity leads to localization

- internal length scale (it makes possible to simulate phenomena at different scales)
- stabilizing effect (ductile failure; no brittle fracture)

Perspectives

- Simulations with multiple slip systems and plastic energy funtions of different shapes;
- Find correlations between the covexity-concavity properties of θ and its derivatives and the microstructure of real materials -> non-convex energy proposed by Ortiz-Repetto (1999), accounting for latent hardening

Numerical results

i. Slip patterning in an infinite long strip (1D Pb)

Soft boundary conditions $\gamma'(0)=0$, $\gamma'(l)=0$

