Phase-field modeling of brittle

fracture in materials with anisotropic surface energy and in thin sheets

Marino Arroyo
Universitat Politècnica de Catalunya (UPC)

Bin LI, A.Torres-Sánchez, D. Millán, I.Arias

Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

Motivation

Quasi-static crack propagation in brittle materials
If and when ? Griffith's theory energy release rate reaches a critical value

$$
G=G_{c}
$$

Which direction?

- max hoop stress

- principle local symmetry
- max energy release rate (MERR)
- ...

Motivation

As discussed by Alain and Benoit，brittle materials with anisotropic surface energy challenge our understanding of fracture．

Gurtin，Podio－Guidugli（98），
Hakim，Karma（05－09）
Chambolle，Francfort，Marigo（09），
－••
Many man－made and natural materials exhibit a strongly anisotropic surface energy．

介个个个＾
elastically isotropic

$$
K_{I I}=0
$$

asotropic surface energy

Khan，et al，I 1993

Motivation

4 stress intensity factors (SIFs) (in-plane, bending, twisting)
Relation between SIFs and G? Path selection criterion?
Large geometric nonlinearity

Motivation

A wealth of controlled experiments. In some regimes, crack path is well-described by minimal models based on energetic arguments.

Hypothesis: variational phase-field models of fracture may reproduce the observed phenomenology, and hence provide a general modeling framework.

Outline

I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
2. Phase-field modeling of fracture in brittle thin shells
3. Effect of shell geometry on crack propagation:
G for a thin shell

Anisotropic surface energy

$$
\Pi_{\mathrm{tot}}[\boldsymbol{u}, v]=\int_{\Omega}\left(v^{2}+\eta_{k}\right) W(\varepsilon) d \Omega+\int_{\Omega} G_{\mathrm{c}}\left[\frac{(v-1)^{2}}{4 \ell}+\ell|\nabla v|^{2}\right] d \Omega
$$

Ambrosio-Tortorelli (90), Bourdin, Francfort, Marigo (00)
isotropic fracture energy

$$
\int_{\Omega} G_{c}\left[\frac{(v-1)^{2}}{4 \ell}+\ell \nabla v^{T} \boldsymbol{A} \nabla v\right] d \Omega
$$

Hakim, Karma $(05,09)$
anisotropic fracture energy

In phase-field modeling for crystal growth

$$
G_{c}(\boldsymbol{n}) \text { with } \boldsymbol{n}=\frac{\nabla v}{|\nabla v|}
$$

Kobayashi (93), Taylor, Cahn (98),
Torabi (09)

Anisotropic phase-field fracture model

Extended Cahn-Hilliard interface model

$$
\begin{aligned}
f\left(v, \nabla v, \nabla^{2} v\right) & =f_{0}(v)+\sum_{i j} \ell_{i j} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i j k l} \tilde{\alpha}_{i j k l} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \frac{\partial v}{\partial x_{k}} \frac{\partial v}{\partial x_{l}} \\
& +\sum_{i j k l} \tilde{\beta}_{i j k l} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \frac{\partial v}{\partial x_{k}} \frac{\partial v}{\partial x_{l}}+\sum_{i j k l} \tilde{\gamma}_{i j k l} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v}{\partial x_{k} \partial x_{l}}
\end{aligned}
$$

Cahn and Hilliard (58)
quadratic terms
Abinandanan and Haider (01)
Torabi, Lowengrub (I2)
We focus on quadratic terms and cubic symmetry in 2D

$$
\ell_{i j}=\ell \delta_{i j} \quad \gamma_{i j k l} \text { has } 3 \text { independent coefs }
$$

Anisotropic phase-field fracture model

Fourth-order phase-field model with anisotropic surface energy
$E[\boldsymbol{u}, v]=\int_{\Omega}\left(v^{2}+\eta_{k}\right) W(\varepsilon) d \Omega+\underbrace{\tilde{G}_{c} \int_{\Omega} f\left(v, \nabla v, \nabla^{2} v\right) d \Omega}_{\text {Bin Li, et.al, IJNME. } 2014}$

Fourth-order model by Borden et al (14) is a particular case.

Resulting anisotropic surface energy

cubic symmetry
surface stiffness

$$
S=G_{c}(\theta)+G_{c}^{\prime \prime}(\theta)
$$

inverse polar plot

nonconvex surface energy
$S<0$
convex surface energy

$$
S>0
$$

Simulations

4th order PDE approximated with a Galerkin method based on smooth local maximum entropy (LME) meshfree basis functions.

Arroyo, Ortiz, IJNME, 2006
Alternate minimization algorithm

geometry and BCs

(b)
inverse polar plot of surface energy

Phase field

.

Systematic dependence of crack propagation on material orientation

Guided crack propagation

fully constrained displacement field at top and bottom bands
Takei,et.al, PRL, 2013

Guided crack propagation

Average surface energy close to that of the blue point.

summary

I. Variational anisotropic phase-field formulation that can model the strongly anisotropic surface energy.
2. The numerical results exhibit the features of strongly anisotropic fracture.

many questions

I. What kind of angle dependence of $G(\theta)$ that can be described with the model, including all the 4th order tensors.
2. Understand the energetic penalty for crack kinking implicit in the phase-field model.
3. Model other symmetries, 3D...

Outline

I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
2. Phase-field modeling of fracture in brittle thin shells
3. Effect of shell geometry on crack propagation:
G for a thin shell

phase-field model for (adhesive) thin sheets
 $$
\left.\Pi[u, v]=\Pi_{\text {ela }}[u, v]\right]+\Pi_{\text {adh }}[u]+\Pi_{\text {fra }}[v,],
$$

Elastic energy

$$
\begin{aligned}
\Pi_{\text {ela }}[\boldsymbol{u}, v]= & \int_{S_{0}} v^{2} W(\boldsymbol{\varepsilon}, \boldsymbol{\rho}) d S_{0}, \quad \begin{array}{l}
\varepsilon \text { change of metric } \\
\boldsymbol{\rho} \text { change of curvature }
\end{array} \\
& \text { nonlinear Koiter thin shell }
\end{aligned}
$$

Fracture energy approximation

$$
\Pi_{\mathrm{fra}}[v]=\int_{S_{0}} G_{\mathrm{c}}\left[\frac{(v-1)^{2}}{4 \ell}+\frac{\ell}{2}\left|\underline{\nabla_{\mathrm{s}} v}\right|^{2}+\frac{\ell^{3}}{4}\left(\underline{\left.\Delta_{\mathrm{s}} v\right)^{2}}\right] d S_{0}\right.
$$ gradient and Laplacian on surface

phase-field model for (adhesive) thin sheets

$$
\Pi[\boldsymbol{u}, v]=\Pi_{\mathrm{ela}}[\boldsymbol{u}, v]+\Pi_{\mathrm{adh}}[\boldsymbol{u}]+\Pi_{\mathrm{fra}}[v]
$$

Adhesion energy: cohesive zone model

$$
\Pi_{\mathrm{adh}}[\boldsymbol{u}]=\int_{S_{0}} \Phi_{\mathrm{n}}\left[1-\left(1+\frac{\Delta_{\mathrm{n}}}{\delta_{\mathrm{n}}}\right) \exp \left(-\frac{\Delta_{\mathrm{n}}}{\delta_{\mathrm{n}}}-\frac{\Delta_{\mathrm{t}}^{2}}{\delta_{\mathrm{t}}^{2}}\right)\right] d S_{0}
$$

Δ_{n} and Δ_{t} are projected normal/tangential displacements

Model for fracture in thin adhesive shells:

$$
\min _{\boldsymbol{u}, v} \Pi[\boldsymbol{u}, v] \quad \text { subject to } \quad \dot{v} \leq 0 \quad \text { (irreversibility) }
$$

Numerical implementation

4th-order PDE (shell and phase-field), C^{1} approximation is required
Subdivision surface finite elements

smooth approximation for \boldsymbol{u} and v

Irreversibility $\dot{v} \leq 0$ is implemented by strain-history function Miehe,et.al,CMAME,20IO
Displacement of shell is solved by Newton's method.
Alternate minimization algorithm.

buckling vs fracture

buckling vs fracture

$G_{c} /(t E)$

fracture without significant deformation
fracture with slight fracture and prominent buckling

buckling vs fracture

Spiraling tearing of thin sheets

Romero, et.al, Soft Matter, 2013

Spiraling tearing of thin sheets

logarithmic spiral crack path

One-flap tearing of thin sheets

Bayart,et.al, PRL, 20II

One-flap tearing of thin sheets

One-flap tearing of thin sheets

(b)
zoom in
stretching ridges

Tearing with Adhesion

Sheet adhered to flat substrate

strong adhesion

$$
\Phi_{n} w \gg G_{c} t
$$

PhaseField

straight convergent cracks

Sheet adhered to flat substrate

According to simple energetic model

$$
\sin (\theta)=\frac{\sqrt{2 B \Phi_{n}}}{G_{c} t}\left[\frac{1-\cos (\phi / 2)}{\sin (\phi / 2)}\right]
$$

strong adhesion

$$
\Phi_{n} w \gg G_{c} t
$$

Sheet adhered to flat substrate

Sheet adhered to flat substrate

According to simple energetic model

$$
\begin{array}{r}
\sin (\theta)=\frac{\sqrt{2 B \Phi_{n}}}{G_{c} t}\left[\frac{1-\cos (\phi / 2)}{\sin (\phi / 2)}\right] \\
\Phi_{n} w \gg G_{c} t
\end{array}
$$

change fracture energy

PhaseField

Sheet adhered to flat substrate

According to simple energetic model

$$
\begin{array}{r}
\sin (\theta)=\frac{\sqrt{2 B \Phi_{n}}}{G_{c} t}\left[\frac{1-\cos (\phi / 2)}{\sin (\phi / 2)}\right] \\
\Phi_{n} w \gg G_{c} t
\end{array}
$$

change peeling angle

PhaseField

Sheet adhered on cylinder substrate

adhered on curved substrate

opening or closing tears depending on sign of curvature Kruglova,et.al, PRL, 20| |

PhaseField

Sheet adhered on cylinder substrate

adhered on curved substrate

opening or closing tears depending on sign of curvature

Kruglova,et.al, PRL, 201 ।

Conclusions

I. Simple modeling and computational strategy for brittle fracture in thin elastic sheets accounting for geometric nonlinearity and adhesion.
2. Our simulations reproduce crack patterns observed in tearing experiments remarkably well.
3. Variational models of fracture naturally extend to thin shells. Good starting point to understand fracture in thin shells.

Outline

I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
2. Phase-field modeling of fracture in brittle thin shells
3. Effect of shell geometry on crack propagation:
G for a thin shell

slightly more compliant much tougher

Calculation of G

$$
\boldsymbol{V}=\left.\frac{d \Psi_{\epsilon}}{d \epsilon}\right|_{\epsilon=0}
$$

$$
\Pi[\boldsymbol{u}]=\int_{\Omega_{0}} W(\underset{\text { heterogeneity }}{ }
$$

$$
\begin{aligned}
G & =-\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \Pi_{\epsilon}\left[\boldsymbol{u}_{\epsilon}\right] \\
& =\int_{\Omega_{0}} \boldsymbol{J} \cdot \boldsymbol{V} d \Omega_{0}
\end{aligned}
$$

Consider a material rearrangement"moving" $\Psi_{\epsilon}(X)$ rearrangement moving $\Psi_{0}=I d$.
the crack

$$
\Pi_{\epsilon}[\boldsymbol{u}]=\int_{\Omega_{0}} W\left(\Psi_{\epsilon}^{-1}(X), \boldsymbol{u}\right) d \Omega_{0}
$$

$$
\boldsymbol{J}=\operatorname{div} \boldsymbol{B}
$$

Configurational Eshelby tensor force field

Calculation of G for a shell

Intrinsic formulation for a geometrically linear Koiter shell

$$
\begin{gathered}
W(\boldsymbol{\varepsilon}, \boldsymbol{\rho}) \quad n^{\alpha \beta}=\frac{\partial W}{\partial \varepsilon_{\alpha \beta}}, \quad m^{\alpha \beta}=\frac{\partial W}{\partial \rho_{\alpha \beta}} \\
\varepsilon_{\alpha \beta}=\frac{1}{2}\left(u_{\alpha \mid \beta}+u_{\beta \mid \alpha}-2 b_{\alpha \beta} w\right), \\
\rho_{\alpha \beta}=w_{\mid \alpha \beta}-c_{\alpha \beta} w+b_{\alpha}^{\lambda} u_{\lambda \mid \beta}+b_{\beta}^{\lambda} u_{\lambda \mid \alpha}+b_{\alpha \mid \beta}^{\lambda} u_{\lambda} \\
c_{\alpha \beta}=b_{\alpha}^{\lambda} b_{\lambda \beta} \\
\Pi[\boldsymbol{u}, w]=\int_{\bar{\Omega}} \tilde{W} \underbrace{\left.\xi, \boldsymbol{b}, \nabla \boldsymbol{b}, \boldsymbol{u}, \nabla \boldsymbol{u}, w, \nabla^{2} w\right) \sqrt{a} d \bar{\Omega}}_{\text {heterogeneity }}
\end{gathered}
$$

Calculation of G for a shell

heterogeneity

heterogeneity due to curvature due to crack
material rearrangement "moving" the crack

$$
\Pi_{\epsilon}[\boldsymbol{u}, w]=\int_{\bar{\Omega}} \tilde{W}\left(\Psi_{\epsilon}^{-1}(\xi), \boldsymbol{b}, \nabla \boldsymbol{b}, \boldsymbol{u}, \nabla \boldsymbol{u}, w, \nabla^{2} w\right) \sqrt{a} d \bar{\Omega}
$$

material rearrangement "moving" the crack and bumps
$\int_{\bar{\Omega}} \tilde{W}\left(\Psi_{\epsilon}^{-1}(\xi), \boldsymbol{b}\left(\Psi_{\epsilon}^{-1}(\xi)\right), \nabla \boldsymbol{b}\left(\Psi_{\epsilon}^{-1}(\xi)\right), \boldsymbol{u}, \nabla \boldsymbol{u}, w, \nabla^{2} w\right) \sqrt{a} d \bar{\Omega}$,

Calculation of G for a shell

$$
\begin{aligned}
G & =-\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \Pi_{\epsilon}\left[u_{\epsilon}, w_{\epsilon}\right] \\
& =-\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \int_{\bar{\Omega}} \tilde{W}\left(\Psi_{\epsilon}^{-1}(\xi), b, \nabla b, u_{\epsilon}, \nabla u_{\epsilon}, w_{\epsilon}, \nabla^{2} w_{\epsilon}\right) \sqrt{a} d \bar{\Omega} .
\end{aligned}
$$

Configurational forces field

$$
J_{\gamma}=\underbrace{\beta}_{\substack{\text { divergence } \\ \text { of Eshelby tensor }}}+\underset{\substack{\text { Gaussian } \\ \text { curvature }}}{M_{\gamma}}+\hat{J}_{\substack{\text { non uniformity } \\ \text { of curvature }}}^{\tilde{J}_{\gamma}}
$$

Infinitesimal deformations but finite geometry

Calculation of G for a shell

Configurational forces field

$$
J_{\gamma}=\underbrace{M_{\substack{\text { Gaussian } \\
\text { curvature }}}^{\beta}+\hat{J}_{\gamma}+\tilde{\mathcal{J}}_{\gamma}}_{\substack{\text { divergence } \\
\text { of Eshelby tensor }}} \underset{\begin{array}{c}
\text { non uniformity } \\
\text { of curvature }
\end{array}}{\tilde{J}_{\gamma}}
$$

$M_{\gamma}^{\beta}=\tilde{W} \delta_{\gamma}^{\beta}-l^{\alpha \beta} u_{\alpha \mid \gamma}-m^{\alpha \beta} w_{\mid \alpha \gamma}+m^{\alpha \beta}{ }_{\mid \alpha} w_{\mid \gamma}$
$\hat{J}_{\gamma}=\operatorname{tr} \boldsymbol{l} u_{\gamma}-l_{\gamma}{ }^{\beta} u_{\beta}+\operatorname{tr} \boldsymbol{m} w_{\mid \gamma}-m_{\gamma}^{\beta} w_{\mid \beta}$
$\tilde{J}_{\gamma}=\left(l^{\alpha \beta} w-2 m^{\alpha \mu} u^{\beta}{ }_{\mid \mu}\right) b_{\alpha \beta \mid \gamma}-m^{\alpha \nu} u^{\beta} b_{\alpha \beta \mid \nu \gamma}$

$$
l^{\alpha \beta}=n^{\alpha \beta}+2 b_{\lambda}^{\alpha} m^{\lambda \beta}
$$

Calculation of G for a shell

Gaussian curvature

$$
\begin{aligned}
& G=\frac{1}{\left\|\boldsymbol{a}_{1}\right\|_{\text {tip }}} G_{\text {no bump }}+G_{K}+G_{\boldsymbol{b}} \quad \begin{array}{c}
\text { non uniformity } \\
\text { of curvature }
\end{array} \\
&-\int_{\Omega} M_{\gamma}^{\beta} V^{\gamma}{ }_{\mid \beta} d \Omega+\int_{E F \cup F G} m^{\alpha \beta} w_{\mid \gamma} V^{\gamma}{ }_{\mid \alpha} \nu_{\beta} d \ell, \\
& \text { "non-uniform" } V
\end{aligned}
$$

\boldsymbol{V} velocity of the microstructure

Summary

I. Focusing on linear Koiter's thin shell theory, we have obtained expressions for the configurational force-field and for the energy release rate of a plate with a pre-crack and a finite shape disturbance.
2. We hope to get insight from these expressions, and possibly provide an understanding of how geometry affects crack propagation.

