Phase-field modeling of brittle fracture in materials with anisotropic surface energy and in thin sheets

Marino Arroyo Universitat Politècnica de Catalunya (UPC)

Bin LI, A. Torres-Sánchez, D. Millán, I. Arias

Universitat Politècnica de Catalunya (UPC) Barcelona, Spain

Quasi-static crack propagation in brittle materials

If and when ? Griffith's theory

energy release rate reaches a critical value

$$G = G_c$$

Which direction ?

- max hoop stress
- principle local symmetry
- max energy release rate (MERR)

 σ_1

As discussed by Alain and Benoit, brittle materials with anisotropic surface energy challenge our understanding of fracture.

> Gurtin, Podio-Guidugli (98), Hakim, Karma (05-09) Chambolle, Francfort, Marigo (09),

Many man-made and natural materials exhibit a strongly anisotropic surface energy.

 $(a) \qquad (b) \qquad (c) \qquad (c)$

†††††

apple flesh

4 stress intensity factors (SIFs) (in-plane, bending, twisting)

Relation between SIFs and G? Path selection criterion?

Large geometric nonlinearity

A wealth of controlled experiments. In some regimes, crack path is well-described by minimal models based on <u>energetic</u> <u>arguments</u>.

Hypothesis: variational phase-field models of fracture may reproduce the observed phenomenology, and hence provide a general modeling framework.

Outline

- I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
- 2. Phase-field modeling of fracture in brittle thin shells
- 3. Effect of shell geometry on crack propagation: G for a thin shell

Anisotropic surface energy

$$\Pi_{\text{tot}}[\boldsymbol{u},\upsilon] = \int_{\Omega} (\upsilon^2 + \eta_k) W(\boldsymbol{\varepsilon}) \ d\Omega + \int_{\Omega} G_{\text{c}} \left[\frac{(\upsilon-1)^2}{4\ell} + \ell |\nabla \upsilon|^2 \right] \ d\Omega,$$

Ambrosio-Tortorelli (90), Bourdin, Francfort, Marigo (00)

isotropic fracture energy

Anisotropic phase-field fracture model

Extended Cahn-Hilliard interface model

$$f(v, \nabla v, \nabla^2 v) = f_0(v) + \sum_{ij} \ell_{ij} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} + \sum_{ijkl} \tilde{\alpha}_{ijkl} \frac{\partial v}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial v}{\partial x_k} \frac{\partial v}{\partial x_l} + \sum_{ijkl} \tilde{\beta}_{ijkl} \frac{\partial^2 v}{\partial x_i \partial x_j} \frac{\partial v}{\partial x_k} \frac{\partial v}{\partial x_l} + \sum_{ijkl} \tilde{\gamma}_{ijkl} \frac{\partial^2 v}{\partial x_i \partial x_j} \frac{\partial^2 v}{\partial x_k \partial x_l}$$
Calculated Hilliard (58)

Cahn and Hilliard (58) Abinandanan and Haider (01) Torabi, Lowengrub (12)

We focus on quadratic terms and cubic symmetry in 2D

Anisotropic phase-field fracture model

Fourth-order phase-field model with anisotropic surface energy

$$E[\boldsymbol{u}, v] = \int_{\Omega} (v^2 + \eta_k) W(\boldsymbol{\varepsilon}) \, d\Omega + \underbrace{\tilde{G}_c \int_{\Omega} f(v, \nabla v, \nabla^2 v) \, d\Omega}_{\Omega}$$

Bin Li, et.al, IJNME.2014

Fourth-order model by Borden et al (14) is a particular case.

Resulting anisotropic surface energy

cubic symmetry

surface stiffness $S = G_c(\theta) + G_c^{''}(\theta)$

nonconvex surface energy

S < 0

convex surface energy

S > 0

10

Simulations

4th order PDE approximated with a Galerkin method based on smooth local maximum entropy (LME) meshfree basis functions.

Arroyo, Ortiz, IJNME, 2006

Alternate minimization algorithm

Systematic dependence of crack propagation on material orientation

Guided crack propagation

Average surface energy close to that of the blue point.

summary

- I. Variational anisotropic phase-field formulation that can model the strongly anisotropic surface energy.
- 2. The numerical results exhibit the features of strongly anisotropic fracture.

many questions

- I. What kind of angle dependence of $G(\theta)$ that can be described with the model, including all the 4th order tensors.
- 2. Understand the energetic penalty for crack kinking implicit in the phase-field model.
- 3. Model other symmetries, 3D...

Outline

- I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
- 2. Phase-field modeling of fracture in brittle thin shells

3. Effect of shell geometry on crack propagation: G for a thin shell phase-field model for (adhesive) thin sheets

$$\Pi[\boldsymbol{u}, \upsilon] = \Pi_{\text{ela}}[\boldsymbol{u}, \upsilon] + \Pi_{\text{adh}}[\boldsymbol{u}] + \Pi_{\text{fra}}[\upsilon],$$

Elastic energy

$$\Pi_{\text{ela}}[\boldsymbol{u}, \boldsymbol{v}] = \int_{S_0} \upsilon^2 \left[W(\boldsymbol{\varepsilon}, \boldsymbol{\rho}) \right] dS_0,$$

 ${m {m {\cal E}}}$ change of metric

ho change of curvature

nonlinear Koiter thin shell

Fracture energy approximation

$$\Pi_{\rm fra}[\upsilon] = \int_{S_0} G_{\rm c} \left[\frac{(\upsilon - 1)^2}{4\ell} + \frac{\ell}{2} |\nabla_{\rm s} \upsilon|^2 + \frac{\ell^3}{4} (\Delta_{\rm s} \upsilon)^2 \right] \ dS_0,$$

Borden, et.al, CMAME, 2014

gradient and Laplacian on surface

phase-field model for (adhesive) thin sheets

$$\Pi[\boldsymbol{u}, \upsilon] = \Pi_{\text{ela}}[\boldsymbol{u}, \upsilon] + \Pi_{\text{adh}}[\boldsymbol{u}] + \Pi_{\text{fra}}[\upsilon],$$

Adhesion energy: cohesive zone model

$$\Pi_{\text{adh}}[\boldsymbol{u}] = \int_{S_0} \Phi_n \left[1 - \left(1 + \frac{\Delta_n}{\delta_n} \right) \exp \left(-\frac{\Delta_n}{\delta_n} - \frac{\Delta_t^2}{\delta_t^2} \right) \right] \, dS_0,$$

$$\Delta_n \text{ and } \Delta_t \text{ are projected normal/tangential displacements}$$

Xu, et.al, JMPS, 1994

Model for fracture in thin adhesive shells:

 $\min_{\boldsymbol{u},v} \Pi[\boldsymbol{u},v] \quad \text{subject to} \quad \dot{v} \leq 0 \quad \text{(irreversibility)}$

Numerical implementation

4th-order PDE (shell and phase-field), C^1 approximation is required

Subdivision surface finite elements

smooth approximation for ${\boldsymbol u}$ and $\boldsymbol v$

Cirak, et.al, *IJNME*, 2000, 2011

Irreversibility $\dot{v} \leq 0$ is implemented by strain-history function

20

Miehe,et.al,*CMAME*,2010

Displacement of shell is solved by Newton's method.

Alternate minimization algorithm.

Bourdin, Interface Free Bound, 2007

buckling vs fracture

buckling vs fracture

Spiraling tearing of thin sheets

Romero, et.al, Soft Matter, 2013

Spiraling tearing of thin sheets

logarithmic spiral crack path

One-flap tearing of thin sheets

One-flap tearing of thin sheets

One-flap tearing of thin sheets

Tearing with Adhesion

According to simple energetic model

$$\sin(\theta) = \frac{\sqrt{2B\Phi_n}}{G_c t} \left[\frac{1 - \cos(\phi/2)}{\sin(\phi/2)} \right]$$
$$\Phi_n w \gg G_c t$$

change fracture energy

W

According to simple energetic model

$$\sin(\theta) = \frac{\sqrt{2B\Phi_n}}{G_c t} \left[\frac{1 - \cos(\phi/2)}{\sin(\phi/2)} \right]$$

 $\Phi_n w \gg G_c t$

change peeling angle

Sheet adhered on cylinder substrate

adhered on curved substrate

opening or closing tears depending on sign of curvature

Kruglova, et.al, PRL, 2011

PhaseField 0.0 0.3 0.5

EnergyDensity

0.0 0.1 0.2

Sheet adhered on cylinder substrate

adhered on curved substrate

opening or closing tears depending on sign of curvature

Kruglova, et.al, PRL, 2011

۸Y

EnergyDensity

0.06 0.1

Conclusions

- I. Simple modeling and computational strategy for brittle fracture in thin elastic sheets accounting for geometric nonlinearity and adhesion.
- 2. Our simulations reproduce crack patterns observed in tearing experiments remarkably well.
- Variational models of fracture naturally extend to thin shells.
 Good starting point to understand fracture in thin shells.

Outline

- I. Phase-field modeling of fracture in materials with strongly anisotropic surface energy
- 2. Phase-field modeling of fracture in brittle thin shells

3. Effect of shell geometry on crack propagation: G for a thin shell

Z ¥

Calculation of G $\Pi[\mathbf{u}] = \int_{\Omega_0} W(\mathbf{X}, \mathbf{u}) \, d\Omega_0$ heterogeneity

$$\Psi_{\epsilon}(X)$$
$$\Psi_{0} = Id$$

$$\Pi_{\epsilon}[\boldsymbol{u}] = \int_{\Omega_0} W(\Psi_{\epsilon}^{-1}(X), \boldsymbol{u}) \, d\Omega_0$$

$$G = -\frac{d}{d\epsilon} \bigg|_{\epsilon=0} \Pi_{\epsilon} [\boldsymbol{u}_{\epsilon}]$$
$$= \int_{\Omega_{0}} \boldsymbol{J} \cdot \boldsymbol{V} \ d\Omega_{0} \qquad \qquad \begin{array}{c} \mathsf{Config} \\ \mathsf{fore} \end{array}$$

"crack'

material frame "X"

$$J = \operatorname{div} B$$

Configurational Eshelby tensor force field

Intrinsic formulation for a geometrically linear Koiter shell

$$W(\boldsymbol{\varepsilon},\boldsymbol{\rho}) \qquad n^{\alpha\beta} = \frac{\partial W}{\partial \varepsilon_{\alpha\beta}}, \quad m^{\alpha\beta} = \frac{\partial W}{\partial \rho_{\alpha\beta}}$$

$$\Pi[\boldsymbol{u},w] = \int_{\bar{\Omega}} \tilde{W}(\underline{\xi},\boldsymbol{b},\nabla\boldsymbol{b},\boldsymbol{u},\nabla\boldsymbol{u},w,\nabla^2w)\sqrt{a}\,d\bar{\Omega}$$

material rearrangement "moving" the crack

$$\Pi_{\epsilon}[\boldsymbol{u},w] = \int_{\bar{\Omega}} \tilde{W}(\Psi_{\epsilon}^{-1}(\xi),\boldsymbol{b},\nabla\boldsymbol{b},\boldsymbol{u},\nabla\boldsymbol{u},w,\nabla^{2}w)\sqrt{a}\,d\bar{\Omega},$$

material rearrangement "moving" the crack and bumps $\int_{\bar{\Omega}} \tilde{W}(\Psi_{\epsilon}^{-1}(\xi), \boldsymbol{b}(\Psi_{\epsilon}^{-1}(\xi)), \nabla \boldsymbol{b}(\Psi_{\epsilon}^{-1}(\xi)), \boldsymbol{u}, \nabla \boldsymbol{u}, w, \nabla^2 w) \sqrt{a} \, d\bar{\Omega},$

$$G = -\frac{d}{d\epsilon} \bigg|_{\epsilon=0} \Pi_{\epsilon}[u_{\epsilon}, w_{\epsilon}]$$

= $-\frac{d}{d\epsilon} \bigg|_{\epsilon=0} \int_{\bar{\Omega}} \tilde{W}(\Psi_{\epsilon}^{-1}(\xi), b, \nabla b, u_{\epsilon}, \nabla u_{\epsilon}, w_{\epsilon}, \nabla^{2}w_{\epsilon}) \sqrt{a} d\bar{\Omega}.$

Configurational forces field

Infinitesimal deformations but finite geometry

Configurational forces field

 $l^{\alpha\beta} = n^{\alpha\beta} + 2b^{\alpha}_{\lambda}m^{\lambda\beta}$

$$G = \frac{1}{||\boldsymbol{a}_{1}||_{\text{tip}}} G_{\text{no bump}} + G_{K} + G_{b} \quad \begin{array}{l} \text{non uniformity} \\ \text{of curvature} \end{array}$$
$$-\int_{\Omega} M_{\gamma}^{\beta} V^{\gamma}{}_{|\beta} d\Omega + \int_{EF \cup FG} m^{\alpha\beta} w_{|\gamma} V^{\gamma}{}_{|\alpha} \nu_{\beta} d\ell,$$

"non-uniform" V

V velocity of the microstructure

Summary

- I. Focusing on linear Koiter's thin shell theory, we have obtained expressions for the configurational force-field and for the energy release rate of a plate with a pre-crack and a finite shape disturbance.
- 2. We hope to get insight from these expressions, and possibly provide an understanding of how geometry affects crack propagation.