Permutation groups and cartesian decompositions

Csaba Schneider with Cheryl Praeger and Robert Baddeley

UFMGG \(\underset{\substack{universidade federal
dinas
gerais}}{\substack{und}}\)

BIRS, 15 November 2016

WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

1. If $G \leq \operatorname{Sym} \Omega$ is intransitive, then $G \leq G^{\Omega_{1}} \times \cdots \times G^{\Omega_{k}}$ (the Ω_{i} are the G-orbits).
2. If $G \leq \operatorname{Sym} \Omega$ is imprimitive, then $G \leq\left(G_{\Delta}\right)^{\Delta}$ 々 S_{k} (where Δ is a block).

WhY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

1. If $G \leq \operatorname{Sym} \Omega$ is intransitive, then $G \leq G^{\Omega_{1}} \times \cdots \times G^{\Omega_{k}}$ (the Ω_{i} are the G-orbits).
2. If $G \leq \operatorname{Sym} \Omega$ is imprimitive, then $G \leq\left(G_{\Delta}\right)^{\Delta}$ 乞 S_{k} (where Δ is a block).

There may be a further reduction if $G \leq \Omega$ is primitive and $\Omega=\Gamma^{\ell}$ (product imprimitive).

WREATH PRODUCT IN PRODUCT ACTION

Suppose that Ω is a set and $\Omega=\Gamma^{\ell}$ (cartesian product).

U F $m \mathrm{G}$

WREATH PRODUCT IN PRODUCT ACTION

Suppose that Ω is a set and $\Omega=\Gamma^{\ell}$ (cartesian product).
$W=\operatorname{Sym} \Gamma$ 乙 S_{ℓ} has a faithful action (the product action) on Ω :

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right)\left(g_{1}, \ldots, g_{\ell} ; \pi\right)=\left(\gamma_{1 \pi^{-1}} g_{1 \pi^{-1}}, \ldots, \gamma_{\ell \pi^{-1}} g_{\ell \pi^{-1}}\right)
$$

WREATH PRODUCT IN PRODUCT ACTION

Suppose that Ω is a set and $\Omega=\Gamma^{\ell}$ (cartesian product).
$W=\operatorname{Sym} \Gamma$ 乙 S_{ℓ} has a faithful action (the product action) on Ω :

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right)\left(g_{1}, \ldots, g_{\ell} ; \pi\right)=\left(\gamma_{1 \pi^{-1}} g_{1 \pi^{-1}}, \ldots, \gamma_{\ell \pi^{-1}} g_{\ell \pi^{-1}}\right)
$$

Thus $W \leq \operatorname{Sym} \Omega$ (maximal subgroup if Ω is finite and $|\Gamma| \geq 5$).

WREATH PRODUCT IN PRODUCT ACTION

Suppose that Ω is a set and $\Omega=\Gamma^{\ell}$ (cartesian product).
$W=\operatorname{Sym} \Gamma$ < S_{ℓ} has a faithful action (the product action) on Ω :

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right)\left(g_{1}, \ldots, g_{\ell} ; \pi\right)=\left(\gamma_{1 \pi^{-1}} g_{1 \pi^{-1}}, \ldots, \gamma_{\ell \pi^{-1}} g_{\ell \pi^{-1}}\right)
$$

Thus $W \leq \operatorname{Sym} \Omega$ (maximal subgroup if Ω is finite and $|\Gamma| \geq 5$).
The inclusion problem: Given a group $G \leq \operatorname{Sym} \Omega$, decide if $G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$ (if $\operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$ is an overgroup of G).

WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.

WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.
Recall $\Omega=\Gamma^{\ell}$. For $\gamma \in \Gamma$, define

$$
\delta_{i, \gamma}=\left\{\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \in \Omega \mid \gamma_{i}=\gamma\right\}
$$

Define

$$
\Gamma_{i}=\left\{\delta_{i, \gamma} \mid \gamma \in \Gamma\right\}
$$

WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.
Recall $\Omega=\Gamma^{\ell}$. For $\gamma \in \Gamma$, define

$$
\delta_{i, \gamma}=\left\{\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \in \Omega \mid \gamma_{i}=\gamma\right\}
$$

Define

$$
\Gamma_{i}=\left\{\delta_{i, \gamma} \mid \gamma \in \Gamma\right\}
$$

Then we obtain the partitions $\Gamma_{1}, \ldots, \Gamma_{\ell}$ of Ω which satisfy

1. $\left|\Gamma_{i}\right|=\left|\Gamma_{j}\right|$ (homogeneous);
2. $\left|\delta_{1} \cap \cdots \cap \delta_{\ell}\right|=1$ for all $\delta_{1} \in \Gamma_{1}, \ldots, \delta_{\ell} \in \Gamma_{\ell}$ (intersection property).

THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Ω is a set and $\mathcal{E}=\left\{\Gamma_{1}, \ldots, \Gamma_{\ell}\right\}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω.
If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.

THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Ω is a set and $\mathcal{E}=\left\{\Gamma_{1}, \ldots, \Gamma_{\ell}\right\}$ is a set of partitions of Ω such that 2 . holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω.
If \mathcal{E} satisfies 1 ., then \mathcal{E} is said to be homogeneous.
The map $\vartheta: \Gamma_{1} \times \cdots \times \Gamma_{\ell} \rightarrow \Omega$

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \mapsto \omega \quad \text { where } \quad\{\omega\}=\gamma_{1} \cap \cdots \cap \gamma_{\ell}
$$

is a bijection. Thus we may identify Ω with $\Gamma_{1} \times \cdots \times \Gamma_{\ell}$.

THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Ω is a set and $\mathcal{E}=\left\{\Gamma_{1}, \ldots, \Gamma_{\ell}\right\}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω.
If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.
The map $\vartheta: \Gamma_{1} \times \cdots \times \Gamma_{\ell} \rightarrow \Omega$

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \mapsto \omega \quad \text { where } \quad\{\omega\}=\gamma_{1} \cap \cdots \cap \gamma_{\ell}
$$

is a bijection. Thus we may identify Ω with $\Gamma_{1} \times \cdots \times \Gamma_{\ell}$.

Theorem

Wreath products $W=$ Sym Γ 亿 S_{ℓ} in product action are full stabilisers of homogeneous cartesian decompositions.

THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Ω is a set and $\mathcal{E}=\left\{\Gamma_{1}, \ldots, \Gamma_{\ell}\right\}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω.
If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.
The map $\vartheta: \Gamma_{1} \times \cdots \times \Gamma_{\ell} \rightarrow \Omega$

$$
\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \mapsto \omega \quad \text { where } \quad\{\omega\}=\gamma_{1} \cap \cdots \cap \gamma_{\ell}
$$

is a bijection. Thus we may identify Ω with $\Gamma_{1} \times \cdots \times \Gamma_{\ell}$.

Theorem

Wreath products $W=$ Sym Γ 亿 S_{ℓ} in product action are full stabilisers of homogeneous cartesian decompositions.

Laci Kovács ('89): system of product imprimitivity.

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

Example (Normal (natural) inclusions)

Suppose that $M=M_{1} \times \cdots \times M_{\ell}$ such that

1. $\left\{M_{1}, \ldots, M_{\ell}\right\}$ is a G_{ω}-conjugacy class;
2. $M_{\omega}=\left(M_{\omega} \cap M_{1}\right) \times \cdots \times\left(M_{\omega} \cap M_{\ell}\right)$.

Setting $\Gamma=\left[M_{1}: M_{\omega} \cap M_{1}\right]$ (right coset space) we can embed $G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$.

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

Example (Normal (natural) inclusions)

Suppose that $M=M_{1} \times \cdots \times M_{\ell}$ such that

1. $\left\{M_{1}, \ldots, M_{\ell}\right\}$ is a G_{ω}-conjugacy class;
2. $M_{\omega}=\left(M_{\omega} \cap M_{1}\right) \times \cdots \times\left(M_{\omega} \cap M_{\ell}\right)$.

Setting $\Gamma=\left[M_{1}: M_{\omega} \cap M_{1}\right]$ (right coset space) we can embed $G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$.
$K_{i}=M_{1} \times \cdots \times M_{i-1} \times\left(M_{\omega} \cap M_{i}\right) \times M_{i+1} \times \cdots \times M_{\ell}$.

CARTESIAN FACTORISATIONS

Lemma

Suppose that $M \underset{\text { trmin }}{\triangleleft} G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$. Then $M \leq B=(\operatorname{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_{i}.

CARTESIAN FACTORISATIONS

Lemma

Suppose that $M \underset{\text { trmin }}{\triangleleft} G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$. Then $M \leq B=(\operatorname{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_{i}.

Consider the permutation representations $\pi_{i}: B \rightarrow \operatorname{Sym} \Gamma$:

$$
g=\left(g_{1}, \ldots, g_{\ell}\right) \mapsto g_{i} .
$$

Fix $\omega=(\gamma, \ldots, \gamma) \in \Gamma^{\ell}$.
$M \pi_{i}$ is transitive on Γ, and let K_{i} denote the stabiliser in M of γ under π_{i}.

CARTESIAN FACTORISATIONS

Lemma

Suppose that $M \underset{\text { trmin }}{\triangleleft} G \leq \operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$. Then $M \leq B=(\operatorname{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_{i}.

Consider the permutation representations $\pi_{i}: B \rightarrow \operatorname{Sym} \Gamma$:

$$
g=\left(g_{1}, \ldots, g_{\ell}\right) \mapsto g_{i} .
$$

Fix $\omega=(\gamma, \ldots, \gamma) \in \Gamma^{\ell}$.
$M \pi_{i}$ is transitive on Γ, and let K_{i} denote the stabiliser in M of γ under π_{i}.

Another way to look at the K_{i} : choose $\delta_{i, \gamma} \in \Gamma_{i}\left(\omega \in \delta_{i, \gamma}\right)$. Then $K_{i}=M_{\delta_{i, \gamma}}$.

CARTESIAN FACTORISATIONS

The set $\left\{K_{1}, \ldots, K_{\ell}\right\}$ of subgroups of M satisfies:
1.

$$
\begin{equation*}
\bigcap K_{i}=M_{\omega} ; \tag{1}
\end{equation*}
$$

2.

$$
\begin{equation*}
K_{i}\left(\bigcap_{j \neq i} K_{j}\right)=M \quad \text { for all } i ; \tag{2}
\end{equation*}
$$

3. $\left\{K_{1}, \ldots, K_{\ell}\right\}$ is invariant under conjugation by G_{ω};
4. homogeneous; that is, $\left|M: K_{i}\right|=|\Gamma|$ for all i.

CARTESIAN FACTORISATIONS

Definition

If M is a group and $\mathcal{K}=\left\{K_{1}, \ldots, K_{\ell}\right\}$ is a family of proper subgroups of M such that (2) holds then \mathcal{K} is said to be a cartesian factorisation of M.

CARTESIAN FACTORISATIONS

Definition

If M is a group and $\mathcal{K}=\left\{K_{1}, \ldots, K_{\ell}\right\}$ is a family of proper subgroups of M such that (2) holds then \mathcal{K} is said to be a cartesian factorisation of M.

Theorem

Assuming $M \underset{\text { trmin }}{\triangleleft} G$, the group G can embedded into a wreath product $\operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$ iff M admits a G_{ω}-invariant homogeneous cartesian factorisation that satisfies (1) and (2).

GENERAL HYpOTHESIS

General hypothesis: Suppose that

1. $\Omega=\Gamma^{\ell}$ (not necessarily finite) with $\ell \geq 2$;
2. $W=\operatorname{Sym} \Gamma$ < S_{ℓ} acting on Ω in product action;
3. $\pi: W \rightarrow \mathrm{~S}_{\ell}$ is the natural projection;
4. $G \leq W$;
5. M is a transitive minimal normal subgroup of G;
6. $\mathcal{K}=\left\{K_{1}, \ldots, K_{\ell}\right\}$ is the corresponding cartesian factorisation of M.

For instance: G is a finite primitive group of type PA, HC, TW, CD; or quasiprimitive group of type Tw, CD.

CARTESIAN FACTORISATIONS OF SIMPLE GROUPS

Theorem (Baddeley \& Praeger 1998)

If M is a finite simple group and $\mathcal{K}=\left\{K_{1}, \ldots, K_{\ell}\right\}$ is a cartesian factorisation of M, then $\ell \leq 3$. Further,

1. if $\ell=3$, then $M \in\left\{S p(4 a, 2), P \Omega^{+}(8,3), S p(6,2)\right\}$.
2. if \mathcal{K} is homogeneous, then $\ell=2$ and $M \in\left\{A_{6}, M_{12}, S p\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.

INCLUSIONS OF GROUPS WITH NON-SIMPLE MINIMAL NORMAL SUBGROUPS

Theorem

Suppose that $M \underset{\text { trein }}{\triangleleft} G \leq \operatorname{Sym} \Gamma$ 亿 S_{ℓ} and M is transitive, non-abelian finite simple. Then

1. $\ell=2$;
2. $M \in\left\{A_{6}, M_{12}, S p\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$;
3. M is the unique minimal normal subgroup of $G, G \leq A u t(M)$, and the action of M is known up to permutational equivalence.

INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W$ and that G is finite.

1. $G \pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
2. If $G \pi$ has two orbits then $T \in\left\{A_{6}, M_{12}, \operatorname{Sp}\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.

INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W$ and that G is finite.

1. $G \pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
2. If $G \pi$ has two orbits then $T \in\left\{A_{6}, M_{12}, \operatorname{Sp}\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.

Suppose from now that $G \pi \leq \mathrm{S}_{\ell}$ is transitive.

INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W$ and that G is finite.

1. $G \pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
2. If $G \pi$ has two orbits then $T \in\left\{A_{6}, M_{12}, \operatorname{Sp}\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.

Suppose from now that $G \pi \leq S_{\ell}$ is transitive.
Suppose the general hypothesis and that

$$
M=T_{1} \times \cdots \times T_{k}=T^{k}
$$

where T is a simple group;

INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W$ and that G is finite.

1. $G \pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
2. If $G \pi$ has two orbits then $T \in\left\{A_{6}, M_{12}, \operatorname{Sp}\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.

Suppose from now that $G \pi \leq S_{\ell}$ is transitive.
Suppose the general hypothesis and that

$$
M=T_{1} \times \cdots \times T_{k}=T^{k}
$$

where T is a simple group;
Then the cartesian factorisation $\mathcal{K}=\left\{K_{1}, \ldots, K_{\ell}\right\}$ is a single conjugacy class.

TRANSITIVE INCLUSIONS

Let $\sigma_{i}: M \rightarrow T_{i}$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_{j} \sigma_{i}=T_{i}$ then $K_{j}=X \times \mathrm{C}_{K_{j}}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_{i}.

TRANSITIVE INCLUSIONS

Let $\sigma_{i}: M \rightarrow T_{i}$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_{j} \sigma_{i}=T_{i}$ then $K_{j}=X \times \mathrm{C}_{K_{j}}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_{i}.

For instance $M=T^{6}$ and

$$
\begin{aligned}
& K_{1}=A_{1} \times B_{2} \times\left\{\left(t, t \alpha_{3}\right) \mid t \in T_{3}\right\} \times T_{5} \times T_{6} ; \\
& K_{1}=T_{1} \times T_{2} \times A_{3} \times B_{4} \times\left\{\left(t, t \alpha_{5}\right) \mid t \in T_{5}\right\} \\
& K_{3}=\left\{\left(t, t \alpha_{1}\right) \mid T \in T_{1}\right\} \times T_{3} \times T_{4} \times A_{5} \times B_{6}
\end{aligned}
$$

where $A_{i}, B_{i}<T_{i}$ and $\alpha_{i}: T_{i} \rightarrow T_{i+1}$ are isomorphisms.

TRANSITIVE INCLUSIONS

Let $\sigma_{i}: M \rightarrow T_{i}$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_{j} \sigma_{i}=T_{i}$ then $K_{j}=X \times \mathrm{C}_{K_{j}}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_{i}.

For instance $M=T^{6}$ and

$$
\begin{aligned}
& K_{1}=A_{1} \times B_{2} \times\left\{\left(t, t \alpha_{3}\right) \mid t \in T_{3}\right\} \times T_{5} \times T_{6} ; \\
& K_{1}=T_{1} \times T_{2} \times A_{3} \times B_{4} \times\left\{\left(t, t \alpha_{5}\right) \mid t \in T_{5}\right\} \\
& K_{3}=\left\{\left(t, t \alpha_{1}\right) \mid T \in T_{1}\right\} \times T_{3} \times T_{4} \times A_{5} \times B_{6}
\end{aligned}
$$

where $A_{i}, B_{i}<T_{i}$ and $\alpha_{i}: T_{i} \rightarrow T_{i+1}$ are isomorphisms.
The diagonal subgroup X in the lemma is called a strip involved in $K_{j} . X$ is a non-trivial strip if $X \neq T_{i}$.

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g \alpha)$ is surjective.

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g \alpha)$ is surjective.

Lemma

Let Y be a group and let $\alpha \in$ Aut Y. Then

$$
\begin{equation*}
Y \times Y=\{(y, y) \mid y \in Y\} \cdot\{(y, y \alpha) \mid y \in Y\} \tag{3}
\end{equation*}
$$

if and only if α is uniform.

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g \alpha)$ is surjective.

Lemma

Let Y be a group and let $\alpha \in$ Aut Y. Then

$$
\begin{equation*}
Y \times Y=\{(y, y) \mid y \in Y\} \cdot\{(y, y \alpha) \mid y \in Y\} \tag{3}
\end{equation*}
$$

if and only if α is uniform.

Lemma (CFSG)

Finite non-solvable groups do not admit uniform (fixed-point-free) automorphisms.

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^{k}. Then $T^{k} \neq X Y$.

The theorem applies if T is finite simple (Baddeley \& Praeger 2003).

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^{k}. Then $T^{k} \neq X Y$.

The theorem applies if T is finite simple (Baddeley \& Praeger 2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial strips X_{1} and X_{2} involved in $K_{j_{1}}$ and $K_{j_{2}}$ are disjoint.

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^{k}. Then $T^{k} \neq X Y$.

The theorem applies if T is finite simple (Baddeley \& Praeger 2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial strips X_{1} and X_{2} involved in $K_{j_{1}}$ and $K_{j_{2}}$ are disjoint.

There are infinite simple groups that admit uniform automorphisms, for instance $T=\operatorname{PSL}(d, \mathbb{F})$ where $\mathbb{F}=\overline{\mathbb{F}_{p}}$.

THE PROJECTIONS OF THE CARTESIAN FACTORISATIONS

Under the general hypothesis, let $\sigma_{i}: M \rightarrow T_{i}$ denote the i-th coordinate projection. Then

$$
\mathcal{F}_{i}=\left\{K_{j} \sigma_{i} \mid j=1, \ldots, \ell, K_{j} \sigma_{i} \neq T_{i}\right\}
$$

is a cartesian factorisation for the simple group T_{i}.

The projections of the cartesian FACTORISATIONS

Under the general hypothesis, let $\sigma_{i}: M \rightarrow T_{i}$ denote the i-th coordinate projection. Then

$$
\mathcal{F}_{i}=\left\{K_{j} \sigma_{i} \mid j=1, \ldots, \ell, K_{j} \sigma_{i} \neq T_{i}\right\}
$$

is a cartesian factorisation for the simple group T_{i}.
\mathcal{F}_{i} is independent of i.
If G is finite, then $\left|\mathcal{F}_{i}\right| \leq 3$.

O'NAN-SCOTT TYPE THEOREM

Theorem (6-Class Theorem)

If G is finite there are 6 different possibilities for the structure of K_{i}.
$\mathrm{CD}_{S}\left|\mathcal{F}_{i}\right|=0$, the K_{i} are subdirect subgroups of $M=T^{k}$ (direct products of strips)
$\mathrm{CD}_{1}\left|\mathcal{F}_{i}\right|=1$, the K_{i} do not involve strips;
$\mathrm{CD}_{1 S}\left|\mathcal{F}_{i}\right|=1$, the K_{i} involve strips;
$\mathrm{CD}_{2 \sim}\left|\mathcal{F}_{i}\right|=2, \mathcal{F}_{i}$ contain isomorphic subgroups, the K_{i} do not involve strips;
$\mathrm{CD}_{2 \nsim}\left|\mathcal{F}_{i}\right|=2, \mathcal{F}_{i}$ contain non-isomorphic subgroups, the K_{i} do not involve strips;
$\mathrm{CD}_{3}\left|\mathcal{F}_{i}\right|=3$, the K_{i} do not involve strips.

TRANSITIVE INCLUSIONS

Theorem

Assume that $T^{k}=M \unlhd G \leq W$ are as above and that $G \pi$ is transitive:

1. The inclusions of type CD_{1} and $\mathrm{CD}_{\text {s }}$ are normal.
2. Case $\mathrm{CD}_{\text {s }}$ holds iff G is quasiprimitive of type CD .
3. In the cases of $\mathrm{CD}_{1 S}$ and $\mathrm{CD}_{2 \sim}$, T admits a factorisation $T=A B$ with isomorphic subgroups. If G is finite, then $T \in\left\{A_{6}, M_{12}, S p\left(4,2^{d}\right), P \Omega^{+}(8, q)\right\}$.
4. In case of CD_{3}, T admits a cartesian factorisation with 3 subgroups. In particular, $T \in\left\{\operatorname{Sp}(4 a, 2), P \Omega^{+}(8,3), S p(6,2)\right\}$.
5. G is not quasiprimitive of type $S D$.

Special cases: $\operatorname{PSL}(2, q)$

Knowing the factorisations of T, we may obtain more detailed information.

Theorem

Suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W=\operatorname{Sym} \Gamma \imath \mathrm{S}_{\ell}$ and $T \cong \operatorname{PSL}(2, q)$.

1. If $q \neq 9$, then the inclusion $G \leq W$ is of type $\mathrm{CD}_{1}, \mathrm{CD}_{S}$ or $\mathrm{CD}_{2 \chi}$.
2. If $q \equiv 1(\bmod 4)$ and $q \notin\{5,9,29\}$, then the inclusion $G \leq W$ is of type CD_{S} or CD_{1}.
3. If $q \equiv 3(\bmod 4)$ and $q \notin\{7,11,19\}$ and the inclusion $G \leq W$ is of type $\mathrm{CD}_{2 \chi}$, then G admits an inclusion $G \leq W_{1}$ of type CD_{1}.

AN APPLICATION IN GRAPH THEORY

Theorem (Li, Praeger, Sch, 2016)

Suppose that $T \underset{\min }{\triangleleft} M \underset{\text { trmin }}{\triangleleft} G \leq W=\operatorname{Sym} \Gamma$ < S_{ℓ}. If \mathfrak{G} is a finite ($G, 2$)-arc-transitive graph on the vertex set Γ^{ℓ}, then one of the following must hold:

1. $\Gamma^{\ell}=6^{2}, M=A_{6}$, and \mathfrak{G} is Sylvester's Double Six Graph;
2. $\Gamma^{\ell}=120^{2}, M=\operatorname{Sp}(4,4)$, and \mathfrak{G} is a graph of valency 17 ;
3. the inclusion $G \leq W$ is of type $\mathrm{CD}_{2 \nsim}$.
