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WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:
1. If G ≤ Sym Ω is intransitive, then G ≤ GΩ1 × · · · × GΩk (the

Ωi are the G-orbits).
2. If G ≤ Sym Ω is imprimitive, then G ≤ (G∆)∆ o Sk (where

∆ is a block).

There may be a further reduction if G ≤ Ω is primitive and
Ω = Γ` (product imprimitive).
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WREATH PRODUCT IN PRODUCT ACTION

Suppose that Ω is a set and Ω = Γ` (cartesian product).

W = Sym Γ o S` has a faithful action (the product action) on Ω:

(γ1, . . . , γ`)(g1, . . . , g`;π) = (γ1π−1g1π−1 , . . . , γ`π−1g`π−1).

Thus W ≤ Sym Ω (maximal subgroup if Ω is finite and |Γ| ≥ 5).

The inclusion problem: Given a group G ≤ Sym Ω, decide if
G ≤ Sym Γ o S` (if Sym Γ o S` is an overgroup of G).
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WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian
decomposition.

Recall Ω = Γ`. For γ ∈ Γ, define

δi,γ = {(γ1, . . . , γ`) ∈ Ω | γi = γ}

Define
Γi = {δi,γ | γ ∈ Γ}.

Then we obtain the partitions Γ1, . . . ,Γ` of Ω which satisfy
1. |Γi| = |Γj| (homogeneous);
2. |δ1 ∩ · · · ∩ δ`| = 1 for all δ1 ∈ Γ1, . . . , δ` ∈ Γ` (intersection

property).
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THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition
Ω is a set and E = {Γ1, . . . ,Γ`} is a set of partitions of Ω such
that 2. holds. Then E is said to be a cartesian decomposition of
Ω.
If E satisfies 1., then E is said to be homogeneous.

The map ϑ : Γ1 × · · · × Γ` → Ω

(γ1, . . . , γ`) 7→ ω where {ω} = γ1 ∩ · · · ∩ γ`

is a bijection. Thus we may identify Ω with Γ1 × · · · × Γ`.

Theorem
Wreath products W = Sym Γ o S` in product action are full
stabilisers of homogeneous cartesian decompositions.

Laci Kovács (’89): system of product imprimitivity.
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EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

Example (Normal (natural) inclusions)

Suppose that M = M1 × · · · ×M` such that
1. {M1, . . . ,M`} is a Gω-conjugacy class;
2. Mω = (Mω ∩M1)× · · · × (Mω ∩M`).

Setting Γ = [M1 : Mω ∩M1] (right coset space) we can embed
G ≤ Sym Γ o S`.

Ki = M1 × · · · ×Mi−1 × (Mω ∩Mi)×Mi+1 × · · · ×M`.
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CARTESIAN FACTORISATIONS

Lemma
Suppose that M C

trmin
G ≤ Sym Γ o S`. Then M ≤ B = (Sym Γ)`,

and so M stabilises every partition Γi.

Consider the permutation representations πi : B→ Sym Γ:

g = (g1, . . . , g`) 7→ gi.

Fix ω = (γ, . . . , γ) ∈ Γ`.

Mπi is transitive on Γ, and let Ki denote the stabiliser in M of γ
under πi.

Another way to look at the Ki: choose δi,γ ∈ Γi (ω ∈ δi,γ). Then
Ki = Mδi,γ .
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CARTESIAN FACTORISATIONS

The set {K1, . . . ,K`} of subgroups of M satisfies:
1. ⋂

Ki = Mω; (1)

2.

Ki

⋂
j 6=i

Kj

 = M for all i; (2)

3. {K1, . . . ,K`} is invariant under conjugation by Gω;
4. homogeneous; that is, |M : Ki| = |Γ| for all i.



CARTESIAN FACTORISATIONS

Definition
If M is a group and K = {K1, . . . ,K`} is a family of proper
subgroups of M such that (2) holds then K is said to be a
cartesian factorisation of M.

Theorem
Assuming M C

trmin
G, the group G can embedded into a wreath

product Sym Γ o S` iff M admits a Gω-invariant homogeneous
cartesian factorisation that satisfies (1) and (2).
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GENERAL HYPOTHESIS

General hypothesis: Suppose that
1. Ω = Γ` (not necessarily finite) with ` ≥ 2;
2. W = Sym Γ o S` acting on Ω in product action;
3. π : W → S` is the natural projection;
4. G ≤W;
5. M is a transitive minimal normal subgroup of G;
6. K = {K1, . . . ,K`} is the corresponding cartesian

factorisation of M.
For instance: G is a finite primitive group of type PA, HC, TW,
CD; or quasiprimitive group of type TW, CD.



CARTESIAN FACTORISATIONS OF SIMPLE GROUPS

Theorem (Baddeley & Praeger 1998)

If M is a finite simple group and K = {K1, . . . ,K`} is a cartesian
factorisation of M, then ` ≤ 3. Further,

1. if ` = 3, then M ∈ {Sp(4a, 2),PΩ+(8, 3),Sp(6, 2)}.
2. if K is homogeneous, then ` = 2 and

M ∈ {A6,M12,Sp(4, 2d),PΩ+(8, q)}.



INCLUSIONS OF GROUPS WITH NON-SIMPLE MINIMAL

NORMAL SUBGROUPS

Theorem
Suppose that M C

trmin
G ≤ Sym Γ o S` and M is transitive,

non-abelian finite simple. Then
1. ` = 2;
2. M ∈ {A6,M12,Sp(4, 2d),PΩ+(8, q)};
3. M is the unique minimal normal subgroup of G, G ≤ Aut(M),

and the action of M is known up to permutational equivalence.



INTRANSITIVE INCLUSIONS

Theorem
Under the general hypothesis, suppose that T C

min
M C

trmin
G ≤W and

that G is finite.
1. Gπ can have at most two orbits in {1, . . . , `}.
2. If Gπ has two orbits then T ∈ {A6,M12,Sp(4, 2d),PΩ+(8, q)}.

Suppose from now that Gπ ≤ S` is transitive.

Suppose the general hypothesis and that

M = T1 × · · · × Tk = Tk

where T is a simple group;
Then the cartesian factorisation K = {K1, . . . ,K`} is a single
conjugacy class.
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TRANSITIVE INCLUSIONS

Let σi : M→ Ti denote the coordinate projection.

Lemma (Generalisation of Scott)

If Kjσi = Ti then Kj = X × CKj(X) where X ∼= T is a diagonal
subgroup that “covers” Ti.

For instance M = T6 and

K1 = A1 × B2 × {(t, tα3) | t ∈ T3} × T5 × T6;

K1 = T1 × T2 × A3 × B4 × {(t, tα5) | t ∈ T5};
K3 = {(t, tα1) | T ∈ T1} × T3 × T4 × A5 × B6

where Ai, Bi < Ti and αi : Ti → Ti+1 are isomorphisms.

The diagonal subgroup X in the lemma is called a strip
involved in Kj. X is a non-trivial strip if X 6= Ti.
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UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map
g 7→ g−1(gα) is surjective.

Lemma
Let Y be a group and let α ∈ Aut Y. Then

Y× Y = {(y, y) | y ∈ Y} · {(y, yα) | y ∈ Y} (3)

if and only if α is uniform.

Lemma (CFSG)

Finite non-solvable groups do not admit uniform (fixed-point-free)
automorphisms.
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STRIPS AND UNIFORM AUTOMORPHISMS

Theorem
Suppose that T does not admit a uniform automorphism and X, Y are
direct products of non-trivial strips in Tk. Then Tk 6= XY.

The theorem applies if T is finite simple (Baddeley & Praeger
2003).

Theorem
If T does not admit a uniform automorphism then two non-trivial
strips X1 and X2 involved in Kj1 and Kj2 are disjoint.

There are infinite simple groups that admit uniform
automorphisms, for instance T = PSL(d,F) where F = Fp.
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THE PROJECTIONS OF THE CARTESIAN

FACTORISATIONS

Under the general hypothesis, let σi : M→ Ti denote the i-th
coordinate projection. Then

Fi = {Kjσi | j = 1, . . . , `, Kjσi 6= Ti}

is a cartesian factorisation for the simple group Ti.

Fi is independent of i.
If G is finite, then |Fi| ≤ 3.
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O’NAN–SCOTT TYPE THEOREM

Theorem (6-Class Theorem)

If G is finite there are 6 different possibilities for the structure of Ki.
CDS |Fi| = 0, the Ki are subdirect subgroups of M = Tk

(direct products of strips)
CD1 |Fi| = 1, the Ki do not involve strips;

CD1S |Fi| = 1, the Ki involve strips;
CD2∼ |Fi| = 2, Fi contain isomorphic subgroups, the Ki do

not involve strips;
CD26∼ |Fi| = 2, Fi contain non-isomorphic subgroups, the Ki

do not involve strips;
CD3 |Fi| = 3, the Ki do not involve strips.



TRANSITIVE INCLUSIONS

Theorem
Assume that Tk = M E G ≤W are as above and that Gπ is
transitive:

1. The inclusions of type CD1 and CDS are normal.
2. Case CDS holds iff G is quasiprimitive of type CD.
3. In the cases of CD1S and CD2∼, T admits a factorisation

T = AB with isomorphic subgroups. If G is finite, then
T ∈ {A6,M12,Sp(4, 2d),PΩ+(8, q)}.

4. In case of CD3, T admits a cartesian factorisation with 3
subgroups. In particular, T ∈ {Sp(4a, 2),PΩ+(8, 3),Sp(6, 2)}.

5. G is not quasiprimitive of type SD.



SPECIAL CASES: PSL(2, q)

Knowing the factorisations of T, we may obtain more detailed
information.

Theorem
Suppose that T C

min
M C

trmin
G ≤W = Sym Γ oS` and T ∼= PSL(2, q).

1. If q 6= 9, then the inclusion G ≤W is of type CD1, CDS or
CD26∼.

2. If q ≡ 1 (mod 4) and q 6∈ {5, 9, 29}, then the inclusion G ≤W
is of type CDS or CD1.

3. If q ≡ 3 (mod 4) and q 6∈ {7, 11, 19} and the inclusion G ≤W
is of type CD26∼, then G admits an inclusion G ≤W1 of type
CD1.



AN APPLICATION IN GRAPH THEORY

Theorem (Li, Praeger, Sch, 2016)

Suppose that T C
min

M C
trmin

G ≤W = Sym Γ o S`. If G is a finite

(G, 2)-arc-transitive graph on the vertex set Γ`, then one of the
following must hold:

1. Γ` = 62, M = A6, and G is Sylvester’s Double Six Graph;
2. Γ` = 1202, M = Sp(4, 4), and G is a graph of valency 17;
3. the inclusion G ≤W is of type CD26∼.


