Permutation groups and cartesian decompositions

Csaba Schneider with Cheryl Praeger and Robert Baddeley

UF MG UNIVERSIDADE FEDERAL DE MINAS GERAIS

BIRS, 15 November 2016

U F *M* G

WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

- 1. If $G \leq \text{Sym }\Omega$ is intransitive, then $G \leq G^{\Omega_1} \times \cdots \times G^{\Omega_k}$ (the Ω_i are the *G*-orbits).
- 2. If $G \leq \text{Sym }\Omega$ is imprimitive, then $G \leq (G_{\Delta})^{\Delta} \wr S_k$ (where Δ is a block).

WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

- 1. If $G \leq \text{Sym} \Omega$ is intransitive, then $G \leq G^{\Omega_1} \times \cdots \times G^{\Omega_k}$ (the Ω_i are the *G*-orbits).
- 2. If $G \leq \text{Sym }\Omega$ is imprimitive, then $G \leq (G_{\Delta})^{\Delta} \wr S_k$ (where Δ is a block).

U F *M* G

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ </p>

There may be a further reduction if $G \leq \Omega$ is primitive and $\Omega = \Gamma^{\ell}$ (product imprimitive).

Suppose that Ω is a set and $\Omega = \Gamma^{\ell}$ (cartesian product).

Suppose that Ω is a set and $\Omega = \Gamma^{\ell}$ (cartesian product). $W = \text{Sym} \Gamma \wr \text{S}_{\ell}$ has a faithful action (the product action) on Ω :

$$(\gamma_1,\ldots,\gamma_\ell)(g_1,\ldots,g_\ell;\pi)=(\gamma_{1\pi^{-1}}g_{1\pi^{-1}},\ldots,\gamma_{\ell\pi^{-1}}g_{\ell\pi^{-1}}).$$

Suppose that Ω is a set and $\Omega = \Gamma^{\ell}$ (cartesian product). $W = \text{Sym} \Gamma \wr \text{S}_{\ell}$ has a faithful action (the product action) on Ω :

$$(\gamma_1, \dots, \gamma_\ell)(g_1, \dots, g_\ell; \pi) = (\gamma_{1\pi^{-1}}g_{1\pi^{-1}}, \dots, \gamma_{\ell\pi^{-1}}g_{\ell\pi^{-1}}).$$

Thus $W \leq \text{Sym}\,\Omega$ (maximal subgroup if Ω is finite and $|\Gamma| \geq 5$).

U F *M* G

Suppose that Ω is a set and $\Omega = \Gamma^{\ell}$ (cartesian product). $W = \text{Sym} \Gamma \wr \text{S}_{\ell}$ has a faithful action (the product action) on Ω :

$$(\gamma_1,\ldots,\gamma_\ell)(g_1,\ldots,g_\ell;\pi) = (\gamma_{1\pi^{-1}}g_{1\pi^{-1}},\ldots,\gamma_{\ell\pi^{-1}}g_{\ell\pi^{-1}}).$$

Thus $W \leq \text{Sym }\Omega$ (maximal subgroup if Ω is finite and $|\Gamma| \geq 5$). The inclusion problem: Given a group $G \leq \text{Sym }\Omega$, decide if $G \leq \text{Sym }\Gamma \wr \text{S}_{\ell}$ (if $\text{Sym }\Gamma \wr \text{S}_{\ell}$ is an overgroup of *G*).

UFM

A B > A B > A B > B
 B > B
 B > A B > B > B
 B > B
 B > B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.

Recall $\Omega = \Gamma^{\ell}$. For $\gamma \in \Gamma$, define

$$\delta_{i,\gamma} = \{(\gamma_1, \dots, \gamma_\ell) \in \Omega \mid \gamma_i = \gamma\}$$

Define

$$\Gamma_i = \{ \delta_{i,\gamma} \mid \gamma \in \Gamma \}.$$

W is the full stabiliser of a combinatorial structure: a cartesian decomposition.

Recall $\Omega = \Gamma^{\ell}$. For $\gamma \in \Gamma$, define

$$\delta_{i,\gamma} = \{(\gamma_1, \dots, \gamma_\ell) \in \Omega \mid \gamma_i = \gamma\}$$

Define

$$\Gamma_i = \{ \delta_{i,\gamma} \mid \gamma \in \Gamma \}.$$

Then we obtain the partitions $\Gamma_1, \ldots, \Gamma_\ell$ of Ω which satisfy

- 1. $|\Gamma_i| = |\Gamma_j|$ (homogeneous);
- 2. $|\delta_1 \cap \cdots \cap \delta_\ell| = 1$ for all $\delta_1 \in \Gamma_1, \dots, \delta_\ell \in \Gamma_\ell$ (intersection property). U F \mathcal{M} G

nac

Definition

Ω is a set and $\mathcal{E} = {\Gamma_1, ..., \Gamma_\ell}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω. If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.

Definition

Ω is a set and $\mathcal{E} = {\Gamma_1, ..., \Gamma_\ell}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω. If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.

The map
$$\vartheta : \Gamma_1 \times \cdots \times \Gamma_\ell \to \Omega$$

 $(\gamma_1, \dots, \gamma_\ell) \mapsto \omega \text{ where } \{\omega\} = \gamma_1 \cap \cdots \cap \gamma_\ell$

is a bijection. Thus we may identify Ω with $\Gamma_1 \times \cdots \times \Gamma_{\ell}$.

UFMO

200

- ロト・日本・モト・モン・モ

Definition

Ω is a set and $\mathcal{E} = {\Gamma_1, ..., \Gamma_\ell}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω. If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.

The map
$$\vartheta: \Gamma_1 \times \cdots \times \Gamma_\ell \to \Omega$$

 $(\gamma_1, \ldots, \gamma_\ell) \mapsto \omega \text{ where } \{\omega\} = \gamma_1 \cap \cdots \cap \gamma_\ell$

 $\mathbf{U}\mathbf{r}\mathbf{M}\mathbf{G}$

is a bijection. Thus we may identify Ω with $\Gamma_1 \times \cdots \times \Gamma_{\ell}$.

Theorem

Wreath products $W = \text{Sym} \Gamma \wr S_{\ell}$ in product action are full stabilisers of homogeneous cartesian decompositions.

Definition

Ω is a set and $\mathcal{E} = {\Gamma_1, ..., \Gamma_\ell}$ is a set of partitions of Ω such that 2. holds. Then \mathcal{E} is said to be a cartesian decomposition of Ω. If \mathcal{E} satisfies 1., then \mathcal{E} is said to be homogeneous.

The map
$$\vartheta : \Gamma_1 \times \cdots \times \Gamma_{\ell} \to \Omega$$

 $(\gamma_1, \dots, \gamma_{\ell}) \mapsto \omega \text{ where } \{\omega\} = \gamma_1 \cap \cdots \cap \gamma_{\ell}$

is a bijection. Thus we may identify Ω with $\Gamma_1 \times \cdots \times \Gamma_{\ell}$.

Theorem

Wreath products $W = \text{Sym} \Gamma \wr S_{\ell}$ in product action are full stabilisers of homogeneous cartesian decompositions.

 $\mathbf{U} \mathbf{r} \mathbf{M} \mathbf{G}$

Laci Kovács ('89): system of product imprimitivity.

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that *M* is a transitive minimal normal subgroup of *G*.

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that *M* is a transitive minimal normal subgroup of *G*.

Example (Normal (natural) inclusions)

Suppose that $M = M_1 \times \cdots \times M_\ell$ such that

- 1. $\{M_1, \ldots, M_\ell\}$ is a G_ω -conjugacy class;
- 2. $M_{\omega} = (M_{\omega} \cap M_1) \times \cdots \times (M_{\omega} \cap M_{\ell}).$

Setting $\Gamma = [M_1 : M_\omega \cap M_1]$ (right coset space) we can embed $G \leq \text{Sym} \, \Gamma \wr \text{S}_{\ell}.$

EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that *M* is a transitive minimal normal subgroup of *G*.

Example (Normal (natural) inclusions)

Suppose that $M = M_1 \times \cdots \times M_\ell$ such that

1. $\{M_1, \ldots, M_\ell\}$ is a G_ω -conjugacy class;

2. $M_{\omega} = (M_{\omega} \cap M_1) \times \cdots \times (M_{\omega} \cap M_{\ell}).$

Setting $\Gamma = [M_1 : M_\omega \cap M_1]$ (right coset space) we can embed $G \leq \text{Sym} \Gamma \wr \text{S}_{\ell}$.

U F *M* G

 $K_i = M_1 \times \cdots \times M_{i-1} \times (M_\omega \cap M_i) \times M_{i+1} \times \cdots \times M_\ell.$

Lemma

Suppose that $M \triangleleft_{\text{trmin}} G \leq \text{Sym} \Gamma \wr S_{\ell}$. Then $M \leq B = (\text{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_i .

Lemma

Suppose that $M \triangleleft_{\text{trmin}} G \leq \text{Sym} \Gamma \wr S_{\ell}$. Then $M \leq B = (\text{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_i .

Consider the permutation representations $\pi_i : B \to \operatorname{Sym} \Gamma$:

$$g=(g_1,\ldots,g_\ell)\mapsto g_i.$$

Fix $\omega = (\gamma, \ldots, \gamma) \in \Gamma^{\ell}$.

 $M\pi_i$ is transitive on Γ , and let K_i denote the stabiliser in M of γ under π_i .

U F *M* G

nac

Lemma

Suppose that $M \triangleleft_{\text{trmin}} G \leq \text{Sym} \Gamma \wr S_{\ell}$. Then $M \leq B = (\text{Sym} \Gamma)^{\ell}$, and so M stabilises every partition Γ_i .

Consider the permutation representations $\pi_i : B \to \operatorname{Sym} \Gamma$:

$$g=(g_1,\ldots,g_\ell)\mapsto g_i.$$

Fix $\omega = (\gamma, \ldots, \gamma) \in \Gamma^{\ell}$.

 $M\pi_i$ is transitive on Γ , and let K_i denote the stabiliser in M of γ under π_i .

Another way to look at the K_i : choose $\delta_{i,\gamma} \in \Gamma_i$ ($\omega \in \delta_{i,\gamma}$). Then $K_i = M_{\delta_{i,\gamma}}$. U F \mathcal{M} G

500

The set $\{K_1, \ldots, K_\ell\}$ of subgroups of M satisfies: 1. $\bigcap K_i = M_\omega;$

2.

$$K_i\left(\bigcap_{j\neq i}K_j\right) = M$$
 for all i ; (2)

(1)

U F *M* G

くしゃ (中) (中) (日) (H) (

3. { K_1, \ldots, K_ℓ } is invariant under conjugation by G_ω ;

4. homogeneous; that is, $|M : K_i| = |\Gamma|$ for all *i*.

Definition

If *M* is a group and $\mathcal{K} = \{K_1, \dots, K_\ell\}$ is a family of proper subgroups of *M* such that (2) holds then \mathcal{K} is said to be a cartesian factorisation of *M*.

Definition

If *M* is a group and $\mathcal{K} = \{K_1, \ldots, K_\ell\}$ is a family of proper subgroups of *M* such that (2) holds then \mathcal{K} is said to be a cartesian factorisation of *M*.

Theorem

Assuming $M \triangleleft G$, the group G can embedded into a wreath product $\operatorname{Sym} \Gamma \wr S_{\ell}$ iff M admits a G_{ω} -invariant homogeneous cartesian factorisation that satisfies (1) and (2).

UFM

GENERAL HYPOTHESIS

General hypothesis: Suppose that

- 1. $\Omega = \Gamma^{\ell}$ (not necessarily finite) with $\ell \geq 2$;
- 2. $W = \operatorname{Sym} \Gamma \wr \operatorname{S}_{\ell}$ acting on Ω in product action;
- 3. $\pi: W \to S_{\ell}$ is the natural projection;
- 4. $G \leq W$;
- 5. *M* is a transitive minimal normal subgroup of *G*;
- 6. $\mathcal{K} = \{K_1, \dots, K_\ell\}$ is the corresponding cartesian factorisation of *M*.

For instance: *G* is a finite primitive group of type PA, HC, TW, CD; or quasiprimitive group of type TW, CD.

U F *M* G

nac

CARTESIAN FACTORISATIONS OF SIMPLE GROUPS

Theorem (Baddeley & Praeger 1998)

If *M* is a finite simple group and $\mathcal{K} = \{K_1, \ldots, K_\ell\}$ is a cartesian factorisation of *M*, then $\ell \leq 3$. Further,

U F *M*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. *if* $\ell = 3$, *then* $M \in \{Sp(4a, 2), P\Omega^+(8, 3), Sp(6, 2)\}$.
- 2. *if* K *is homogeneous, then* $\ell = 2$ *and* $M \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}.$

INCLUSIONS OF GROUPS WITH NON-SIMPLE MINIMAL NORMAL SUBGROUPS

Theorem

Suppose that $M \triangleleft G \leq \text{Sym} \Gamma \wr S_{\ell}$ and M is transitive, non-abelian finite simple. Then

1. $\ell = 2;$

- 2. $M \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\};$
- 3. *M* is the unique minimal normal subgroup of $G, G \le Aut(M)$, and the action of M is known up to permutational equivalence.

U F *M*

A B > A B > A B >

Theorem

Under the general hypothesis, suppose that $T \triangleleft M_{\text{trmin}} M \triangleleft G \leq W$ *and that G is finite.*

- 1. $G\pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
- 2. If $G\pi$ has two orbits then $T \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}$.

U F *M* G

• □ > < @ > < E > < E >

Theorem

Under the general hypothesis, suppose that $T \triangleleft M_{\text{trmin}} M \triangleleft G \leq W$ *and that G is finite.*

- 1. $G\pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
- 2. If $G\pi$ has two orbits then $T \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}$.

Suppose from now that $G\pi \leq S_{\ell}$ is transitive.

Theorem

Under the general hypothesis, suppose that $T \triangleleft M_{\text{trmin}} M \triangleleft G \leq W$ *and that G is finite.*

- 1. $G\pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
- 2. If $G\pi$ has two orbits then $T \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}$.

Suppose from now that $G\pi \leq S_{\ell}$ is transitive.

Suppose the general hypothesis and that

$$M = T_1 \times \cdots \times T_k = T^k$$

where *T* is a simple group;

Theorem

Under the general hypothesis, suppose that $T \triangleleft M_{\text{trmin}} M \triangleleft G \leq W$ *and that G is finite.*

- 1. $G\pi$ can have at most two orbits in $\{1, \ldots, \ell\}$.
- 2. If $G\pi$ has two orbits then $T \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}$.

Suppose from now that $G\pi \leq S_{\ell}$ is transitive.

Suppose the general hypothesis and that

$$M = T_1 \times \cdots \times T_k = T^k$$

where *T* is a simple group; Then the cartesian factorisation $\mathcal{K} = \{K_1, \dots, K_\ell\}$ is a single U F \mathcal{M} G conjugacy class.

Let $\sigma_i : M \to T_i$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_j \sigma_i = T_i$ then $K_j = X \times C_{K_j}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_i .

Let $\sigma_i : M \to T_i$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_j \sigma_i = T_i$ then $K_j = X \times C_{K_j}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_i .

For instance $M = T^6$ and

$$\begin{array}{rcl} K_1 &=& A_1 \times B_2 \times \{(t, t\alpha_3) \mid t \in T_3\} \times T_5 \times T_6; \\ K_1 &=& T_1 \times T_2 \times A_3 \times B_4 \times \{(t, t\alpha_5) \mid t \in T_5\}; \\ K_3 &=& \{(t, t\alpha_1) \mid T \in T_1\} \times T_3 \times T_4 \times A_5 \times B_6 \end{array}$$

U F *M* G

200

A B > A B > A B > B
 B > B
 B > A B > B > B
 B > B
 B > B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B
 B = B

where A_i , $B_i < T_i$ and $\alpha_i : T_i \to T_{i+1}$ are isomorphisms.

Let $\sigma_i : M \to T_i$ denote the coordinate projection.

Lemma (Generalisation of Scott)

If $K_j \sigma_i = T_i$ then $K_j = X \times C_{K_j}(X)$ where $X \cong T$ is a diagonal subgroup that "covers" T_i .

For instance $M = T^6$ and

$$\begin{array}{rcl} K_1 &=& A_1 \times B_2 \times \{(t, t\alpha_3) \mid t \in T_3\} \times T_5 \times T_6; \\ K_1 &=& T_1 \times T_2 \times A_3 \times B_4 \times \{(t, t\alpha_5) \mid t \in T_5\}; \\ K_3 &=& \{(t, t\alpha_1) \mid T \in T_1\} \times T_3 \times T_4 \times A_5 \times B_6 \end{array}$$

U F *M* G

A B > A B > A B > B
 B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

where A_i , $B_i < T_i$ and $\alpha_i : T_i \rightarrow T_{i+1}$ are isomorphisms.

The diagonal subgroup *X* in the lemma is called a strip involved in K_i . *X* is a non-trivial strip if $X \neq T_i$.

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g\alpha)$ is surjective.

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g\alpha)$ is surjective.

Lemma

Let Y be a group and let $\alpha \in Aut Y$ *. Then*

$$Y \times Y = \{(y, y) \mid y \in Y\} \cdot \{(y, y\alpha) \mid y \in Y\}$$
(3)

if and only if α *is uniform.*

UNIFORM AUTOMORPHISMS

A group automorphism α is said to be uniform if the map $g \mapsto g^{-1}(g\alpha)$ is surjective.

Lemma

Let Y be a group and let $\alpha \in Aut Y$ *. Then*

$$Y \times Y = \{(y, y) \mid y \in Y\} \cdot \{(y, y\alpha) \mid y \in Y\}$$
(3)

U F *M* G

< □ > < @ > < 글 > < 글 >

if and only if α *is uniform.*

Lemma (CFSG)

Finite non-solvable groups do not admit uniform (fixed-point-free) automorphisms.

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^k . Then $T^k \neq XY$.

The theorem applies if *T* is finite simple (Baddeley & Praeger 2003).

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^k . Then $T^k \neq XY$.

The theorem applies if *T* is finite simple (Baddeley & Praeger 2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial strips X_1 and X_2 involved in K_{j_1} and K_{j_2} are disjoint.

U F *M* G

STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are direct products of non-trivial strips in T^k . Then $T^k \neq XY$.

The theorem applies if *T* is finite simple (Baddeley & Praeger 2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial strips X_1 and X_2 involved in K_{j_1} and K_{j_2} are disjoint.

There are infinite simple groups that admit uniform automorphisms, for instance $T = \text{PSL}(d, \mathbb{F})$ where $\mathbb{F} = \overline{\mathbb{F}_p}$.

THE PROJECTIONS OF THE CARTESIAN FACTORISATIONS

Under the general hypothesis, let $\sigma_i : M \to T_i$ denote the *i*-th coordinate projection. Then

$$\mathcal{F}_i = \{K_j \sigma_i \mid j = 1, \dots, \ell, \ K_j \sigma_i \neq T_i\}$$

is a cartesian factorisation for the simple group T_i .

THE PROJECTIONS OF THE CARTESIAN FACTORISATIONS

Under the general hypothesis, let $\sigma_i : M \to T_i$ denote the *i*-th coordinate projection. Then

$$\mathcal{F}_i = \{K_j \sigma_i \mid j = 1, \dots, \ell, \ K_j \sigma_i \neq T_i\}$$

U F *M* G

Sac

is a cartesian factorisation for the simple group T_i .

 \mathcal{F}_i is independent of *i*. If *G* is finite, then $|\mathcal{F}_i| \leq 3$.

$O'N{\mbox{\rm Nan-Scott}}$ type theorem

Theorem (6-Class Theorem)

If G is finite there are 6 different possibilities for the structure of K_i .

- $CD_S |\mathcal{F}_i| = 0$, the K_i are subdirect subgroups of $M = T^k$ (direct products of strips)
- $CD_1 |\mathcal{F}_i| = 1$, the K_i do not involve strips;
- CD_{1S} $|\mathcal{F}_i| = 1$, the K_i involve strips;
- $CD_{2\sim}$ $|\mathcal{F}_i| = 2$, \mathcal{F}_i contain isomorphic subgroups, the K_i do not involve strips;
- $CD_{2\gamma}$ $|\mathcal{F}_i| = 2$, \mathcal{F}_i contain non-isomorphic subgroups, the K_i do not involve strips;

U F *M* G

SQC

 $CD_3 |\mathcal{F}_i| = 3$, the K_i do not involve strips.

Theorem

Assume that $T^k = M \trianglelefteq G \le W$ are as above and that $G\pi$ is transitive:

- 1. The inclusions of type CD_1 and CD_S are normal.
- 2. Case CD_S holds iff G is quasiprimitive of type CD.
- 3. In the cases of CD_{1S} and $CD_{2\sim}$, T admits a factorisation T = AB with isomorphic subgroups. If G is finite, then $T \in \{A_6, M_{12}, Sp(4, 2^d), P\Omega^+(8, q)\}.$
- 4. In case of CD₃, T admits a cartesian factorisation with 3 subgroups. In particular, $T \in \{Sp(4a, 2), P\Omega^+(8, 3), Sp(6, 2)\}$.

UFM

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

5. *G is not quasiprimitive of type* SD.

Special cases: PSL(2,q)

Knowing the factorisations of *T*, we may obtain more detailed information.

Theorem

Suppose that $T \triangleleft M_{\text{trmin}} G \leq W = \text{Sym} \Gamma \wr \text{S}_{\ell} \text{ and } T \cong PSL(2, q).$

- 1. If $q \neq 9$, then the inclusion $G \leq W$ is of type CD_1 , CD_S or $CD_{2\gamma^{\zeta_1}}$.
- 2. If $q \equiv 1 \pmod{4}$ and $q \notin \{5, 9, 29\}$, then the inclusion $G \leq W$ is of type CD_S or CD_1 .
- 3. If $q \equiv 3 \pmod{4}$ and $q \notin \{7, 11, 19\}$ and the inclusion $G \leq W$ is of type $CD_{2^{\cancel{p}}}$, then G admits an inclusion $G \leq W_1$ of type CD_1 .

U F *M* G

SQC

< □ > < @ > < E > < E > E

AN APPLICATION IN GRAPH THEORY

Theorem (Li, Praeger, Sch, 2016)

Suppose that $T \triangleleft M \triangleleft_{\text{trmin}} G \leq W = \text{Sym} \Gamma \wr S_{\ell}$. If \mathfrak{G} is a finite (G, 2)-arc-transitive graph on the vertex set Γ^{ℓ} , then one of the following must hold:

1. $\Gamma^{\ell} = 6^2$, $M = A_6$, and \mathfrak{G} is Sylvester's Double Six Graph;

2. $\Gamma^{\ell} = 120^2$, M = Sp(4, 4), and \mathfrak{G} is a graph of valency 17;

UFM

(日)

3. the inclusion $G \leq W$ is of type $CD_{2\gamma}$.