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Introduction
Let G be a finite group and define
d(G) = min{|S| : G = (S)}
Note that subgroups may need many more generators, e.g.

(22)" =((1,2),(3,4),...,(2n—1,2n)) < Son

Lemma. If H < G then d(H) < [G : H] - (d(G) — 1) +1

Example. Let p be a prime, n > 2 and consider
G=27Z,12,=(Zy)Px2Z, H=(Z,)P

Then H < G is maximal, d(G) =2 and d(H) = p =[G : H|.
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Simple groups

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.

Example. If n > 2 and g > 3 then SL,(q) = (x,y), where

(el () ()

and Fy = (u).
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Simple groups

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.

Example. If n > 2 and g > 3 then SL,(q) = (x,y), where
" 1 1 1
x = pt ,y=1|0 _
In72 /n72 nt

and Fy = (u).

G is almost simple if T < G < Aut(T) for some non-abelian simple T

Theorem (Dalla Volta & Lucchini, 1995)

Every almost simple group is 3-generated.
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Maximal subgroups

Question. |s there a constant ¢ such that d(H) < ¢ for all maximal
subgroups H of finite simple groups?
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Maximal subgroups

Question. |s there a constant ¢ such that d(H) < ¢ for all maximal
subgroups H of finite simple groups?

Theorem (B, Liebeck & Shalev, 2013)

Every maximal subgroup of a finite simple group is 4-generated.

@ This is best possible — there are infinitely many examples for which 4
generators are needed.

@ Maximal subgroups of almost simple groups are 6-generated.
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Maximal subgroups

Question. |s there a constant ¢ such that d(H) < ¢ for all maximal
subgroups H of finite simple groups?

Theorem (B, Liebeck & Shalev, 2013)

Every maximal subgroup of a finite simple group is 4-generated.

@ This is best possible — there are infinitely many examples for which 4
generators are needed.

@ Maximal subgroups of almost simple groups are 6-generated.

@ The maximal subgroups H of a given simple group are not known in
general. More precisely, either H is ‘known’, or H is almost simple.

For H almost simple, d(H) < 3 by Dalla Volta & Lucchini.
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Application: Primitive groups
Let G < Sym(Q) be a finite primitive permutation group with point
stabiliser G, so

d(G) -1< d(Ga) < [G : Ga] : (d(G) - 1) +1

Question. Is there a constant ¢ such that d(G,) < d(G) + ¢?
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Application: Primitive groups

Let G < Sym(Q) be a finite primitive permutation group with point
stabiliser G, so

d(G) -1< d(Ga) < [G : Ga] : (d(G) - 1) +1
Question. Is there a constant ¢ such that d(G,) < d(G) + ¢?

Theorem. d(G,) < d(G) +4

Example. If G has a regular normal subgroup N then G/N = G, and
thus d(G,) = d(G/N) < d(G).

Example. If G is almost simple then d(G,) < 6 < d(G) + 4.
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Example: Alternating groups

Let H be a maximal subgroup of S, or Ap.

Lemma. We have

d(Sk X Sp—k) = d(AGLy(p)) = d(Sk 1 S:) =2
so d(H) < 3 if H is not a diagonal-type subgroup.
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Example: Alternating groups

Let H be a maximal subgroup of S, or Ap.

Lemma. We have

d(Sk X Sp—k) = d(AGLy(p)) = d(Sk 1 S:) =2
so d(H) < 3 if H is not a diagonal-type subgroup.

Suppose H = Tk.(Out(T) x Sk) is diagonal (T simple). Then
d(H) = max{2,d(Out(T) x Sx)} <4

by a theorem of Lucchini & Menegazzo (1997).
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Example: Alternating groups

Let H be a maximal subgroup of S, or Ap.

Lemma. We have

d(Sk X Sp—k) = d(AGLy(p)) = d(Sk 1 S:) =2
so d(H) < 3 if H is not a diagonal-type subgroup.

Suppose H = Tk.(Out(T) x Sk) is diagonal (T simple). Then
d(H) = max{2,d(Out(T) x Sx)} <4

by a theorem of Lucchini & Menegazzo (1997).

Example. If T = PQ},(p*f), p > 2, then H= T2.(Out(T) x $) < A, is
maximal (with n =|T|) and

d(H) = max{2,d(Out(T) x S2)} = d(Dg x Zor x Z) = 4.
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Going deeper in the subgroup lattice

The depth of a subgroup H < G is the maximal length of a chain of
subgroups from H to G, e.g. H is maximal iff it has depth 1.

We say H is second maximal if it has depth 2, and so on.
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Going deeper in the subgroup lattice

The depth of a subgroup H < G is the maximal length of a chain of
subgroups from H to G, e.g. H is maximal iff it has depth 1.

We say H is second maximal if it has depth 2, and so on.

Theorem (B, Liebeck & Shalev, 2016)

There is a constant ¢ s.t. d(H) < c for all second maximal subgroups H
of almost simple groups G with soc(G) ¢ {L2(q),%B2(q),%G2(q)}.
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Going deeper in the subgroup lattice

The depth of a subgroup H < G is the maximal length of a chain of
subgroups from H to G, e.g. H is maximal iff it has depth 1.

We say H is second maximal if it has depth 2, and so on.

Theorem (B, Liebeck & Shalev, 2016)

There is a constant ¢ s.t. d(H) < c for all second maximal subgroups H
of almost simple groups G with soc(G) ¢ {L2(q),%B2(q),%G2(q)}.

@ We can take ¢ = 12, unless G is exceptional and H is maximal in a
parabolic subgroup of G (here we take ¢ = 70).

@ There is a second maximal subgroup H of a simple group G with
d(H) = 74207 281. Take g = 27420781 and

H— (22)74207281 < B= (22)74207281 N qul < G = |—2(CI)
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Second maximals and special primes

Question. |s there a constant ¢ such that d(H) < ¢ for all second
maximal subgroups H of almost simple groups?
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Second maximals and special primes

Question. |s there a constant ¢ such that d(H) < ¢ for all second
maximal subgroups H of almost simple groups?

This turns out to be equivalent to the following formidable open problem
in Number Theory:

Question. Are there only finitely many primes r for which there is a prime
power g such that (¢" —1)/(qg — 1) is prime?
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Second maximals and special primes

Question. |s there a constant ¢ such that d(H) < ¢ for all second
maximal subgroups H of almost simple groups?

This turns out to be equivalent to the following formidable open problem
in Number Theory:

Question. Are there only finitely many primes r for which there is a prime
power g such that (¢" —1)/(qg — 1) is prime?

The answer is believed to be no, but existing methods in Number Theory
are very far from proving this.

e.g. the answer is no if there are infinitely many Mersenne primes.
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.

Example. Let p > 5 be a prime such that p = +3 (mod 8) and set
n=2(p+1).
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.

Example. Let p > 5 be a prime such that p = +3 (mod 8) and set
n=2(p+1). Then

G:5n>5225p+]_
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.

Example. Let p > 5 be a prime such that p = +3 (mod 8) and set
n=2(p+1). Then

G =5,>51511>(52)PL.PGLy(p)
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.

Example. Let p > 5 be a prime such that p = +3 (mod 8) and set

n=2(p+1). Then

G=S5,>5" 5p+1 > (52)p+1.PGL2(p) > (52)p+1‘54 =H
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Third maximals

Theorem. For each ¢ € N, there exists a third maximal subgroup H of an
almost simple group such that d(H) > c.

Example. Let p > 5 be a prime such that p = +3 (mod 8) and set
n=2(p+1). Then

G=S5,>5" 5p+1 > (52)p+1.PGL2(p) > (52)p+1‘54 =H

is a third maximal subgroup and

d(H) > ASH =1 p

24 24

[The first inequality holds since [H : (S2)PT] = 24.]
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Main ingredients

Let H < M < G be second maximal with G almost simple.

e If M is almost simple then d(H) < 6 by [BLS, 2013]
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Main ingredients

Let H < M < G be second maximal with G almost simple.

e If M is almost simple then d(H) < 6 by [BLS, 2013]

o If coreps(H) = (pep H™ = 1, then M acts faithfully and primitively
on the cosets M/H, so

d(H) < d(M)+4 <10

by [BLS, 2013]
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Main ingredients

Let H < M < G be second maximal with G almost simple.

o If M is almost simple then d(H) < 6 by [BLS, 2013]

o If coreps(H) = (pep H™ = 1, then M acts faithfully and primitively
on the cosets M/H, so

d(H) < d(M)+4 <10

by [BLS, 2013]

@ Remaining cases. Study the possibilities for H using work of
Aschbacher, Liebeck, O'Nan, Scott, Seitz and others.
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Example

Suppose H < M < G, where G = 5,, and M = 5,1 5; = N.5; with
N = (Sx)t and k > 5.

1. N < H: Here H = N.J with J < 5; maximal.
Now d(J) < 4 and J has ¢ < 2 orbits on {1,...,t}, so

d(H) < d((Sk)") +d(J) <6
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Example

Suppose H < M < G, where G = 5,, and M = 5,1 5; = N.5; with
N = (Sx)t and k > 5.

1. N < H: Here H = N.J with J < 5; maximal.
Now d(J) < 4 and J has ¢ < 2 orbits on {1,...,t}, so

d(H) < d((Sk)") +d(J) <6

2. N & H: Here H=(HN N).S;.

We may assume H contains A = (Ax)t, so H/A< M/A =515 is
maximal. One checks that d(H/A) < 6, so

d(H) < d(A) +6 =8
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Application: Subgroup growth

Let G be a finite group, k,n € N.

M;(G) ={H : H < G is maximal}

12 /14



Application: Subgroup growth

Let G be a finite group, k, n € N.
My(G) = {H : H< G is maximal}
Mi(G) ={H : H < G has depth k}
min(G) = #{H € My(G) : [G : H] = n}
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Application: Subgroup growth

Let G be a finite group, k, n € N.
My(G) = {H : H< G is maximal}
Mi(G) ={H : H < G has depth k}
min(G) = #{H € My(G) : [G : H] = n}

)

Theorem (Lubotzky 2002; Jaikin-Zapirain & Pyber, 2011)

There exists a constant o € N such that

my n(G) < nad(G)+5(G)

for all finite groups G and all n € N, where 5(G) > 0 is a parameter
defined in terms of the non-abelian chief factors of G.
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ml.n(G) < nad(G)+6(G)

Corollary. Almost simple groups have polynomial maximal and second
maximal subgroup growth.

i.e. for k = 1,2 there is a constant ¢ such that my ,(G) < n€ for all
almost simple groups G and all n.
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ml.n(G) < nad(G)+6(G)

Corollary. Almost simple groups have polynomial maximal and second
maximal subgroup growth.

i.e. for k = 1,2 there is a constant ¢ such that my ,(G) < n€ for all
almost simple groups G and all n.

Fact. For G almost simple, 6(G) < 1 and 6(M) < 1 for all M € M;(G).

Setting ¢ = 6 + 1 we get
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ml.n(G) < nad(G)+6(G)

Corollary. Almost simple groups have polynomial maximal and second
maximal subgroup growth.

i.e. for k = 1,2 there is a constant ¢ such that my ,(G) < n€ for all
almost simple groups G and all n.

Fact. For G almost simple, 6(G) < 1 and (M) < 1 for all M € M1(G).

Setting ¢ = 6 + 1 we get

m2.n(G) <Y mya(G)max{my ,/5(M) : M € My(G), [G : M] = a}
aln
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ml.n(G) < nad(G)+6(G)

Corollary. Almost simple groups have polynomial maximal and second
maximal subgroup growth.

i.e. for k = 1,2 there is a constant ¢ such that my ,(G) < n€ for all
almost simple groups G and all n.
Fact. For G almost simple, 6(G) < 1 and (M) < 1 for all M € M1(G).
Setting ¢ = 6 + 1 we get
m2.n(G) <Y mya(G)max{my ,/5(M) : M € My(G), [G : M] = a}
aln
<3 a(n/a)"

aln

c+1
<t
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Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup
growth.

14 /14



Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup
growth.

For example, §(M) < 1 for all M € M3(G), so if we assume

soc(G) € {L2(q),%B2(q),2G2(q)}

then
m3 n(G) < ntl

with ¢ = 70« + 1.
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Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup
growth.

For example, §(M) < 1 for all M € M3(G), so if we assume

soc(G) € {L2(q),%B2(q),2G2(q)}

then
m3 n(G) < ntl

with ¢ = 70« + 1.

Question. For each t € N, do almost simple groups have polynomial
t-maximal subgroup growth?
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