Generating simple groups and their subgroups

Tim Burness

Permutation Groups Workshop
Banff International Research Station November 16th 2016

Introduction

Let G be a finite group and define

$$
d(G)=\min \{|S|: G=\langle S\rangle\}
$$

Introduction

Let G be a finite group and define

$$
d(G)=\min \{|S|: G=\langle S\rangle\}
$$

Note that subgroups may need many more generators, e.g.

$$
\left(Z_{2}\right)^{n} \cong\langle(1,2),(3,4), \ldots,(2 n-1,2 n)\rangle<S_{2 n}
$$

Lemma. If $H \leqslant G$ then $d(H) \leqslant[G: H] \cdot(d(G)-1)+1$

Introduction

Let G be a finite group and define

$$
d(G)=\min \{|S|: G=\langle S\rangle\}
$$

Note that subgroups may need many more generators, e.g.

$$
\left(Z_{2}\right)^{n} \cong\langle(1,2),(3,4), \ldots,(2 n-1,2 n)\rangle<S_{2 n}
$$

Lemma. If $H \leqslant G$ then $d(H) \leqslant[G: H] \cdot(d(G)-1)+1$

Example. Let p be a prime, $n \geqslant 2$ and consider

$$
G=Z_{n} \imath Z_{p}=\left(Z_{n}\right)^{p} \rtimes Z_{p} \quad H=\left(Z_{n}\right)^{p}
$$

Then $H<G$ is maximal, $d(G)=2$ and $d(H)=p=[G: H]$.

Simple groups

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.

Example. If $n \geqslant 2$ and $q>3$ then $\operatorname{SL}_{n}(q)=\langle x, y\rangle$, where

$$
x=\left(\begin{array}{cc|c}
\mu & & \\
& \mu^{-1} & \\
\hline & & I_{n-2}
\end{array}\right), y=\left(\begin{array}{ll|l}
1 & 1 & \\
0 & 1 & \\
\hline & & I_{n-2}
\end{array}\right)\left(\begin{array}{l|l}
& 1 \\
\hline-I_{n-1} &
\end{array}\right)
$$

and $\mathbb{F}_{q}^{\times}=\langle\mu\rangle$.

Simple groups

Theorem (Steinberg, 1962)

Every finite simple group is 2-generated.

Example. If $n \geqslant 2$ and $q>3$ then $\operatorname{SL}_{n}(q)=\langle x, y\rangle$, where

$$
x=\left(\begin{array}{cc|c}
\mu & & \\
& \mu^{-1} & \\
\hline & & I_{n-2}
\end{array}\right), y=\left(\begin{array}{ll|l}
1 & 1 & \\
0 & 1 & \\
\hline & & I_{n-2}
\end{array}\right)\left(\begin{array}{l|l}
& 1 \\
\hline-I_{n-1} &
\end{array}\right)
$$

and $\mathbb{F}_{q}^{\times}=\langle\mu\rangle$.
G is almost simple if $T \leqslant G \leqslant \operatorname{Aut}(T)$ for some non-abelian simple T.

Theorem (Dalla Volta \& Lucchini, 1995)

Every almost simple group is 3-generated.

Maximal subgroups

Question. Is there a constant c such that $d(H) \leqslant c$ for all maximal subgroups H of finite simple groups?

Maximal subgroups

Question. Is there a constant c such that $d(H) \leqslant c$ for all maximal subgroups H of finite simple groups?

Theorem (B, Liebeck \& Shalev, 2013)

Every maximal subgroup of a finite simple group is 4-generated.

- This is best possible - there are infinitely many examples for which 4 generators are needed.
- Maximal subgroups of almost simple groups are 6-generated.

Maximal subgroups

Question. Is there a constant c such that $d(H) \leqslant c$ for all maximal subgroups H of finite simple groups?

Theorem (B, Liebeck \& Shalev, 2013)

Every maximal subgroup of a finite simple group is 4-generated.

- This is best possible - there are infinitely many examples for which 4 generators are needed.
- Maximal subgroups of almost simple groups are 6-generated.
- The maximal subgroups H of a given simple group are not known in general. More precisely, either H is 'known', or H is almost simple.

For H almost simple, $d(H) \leqslant 3$ by Dalla Volta \& Lucchini.

Application: Primitive groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite primitive permutation group with point stabiliser G_{α}, so

$$
d(G)-1 \leqslant d\left(G_{\alpha}\right) \leqslant\left[G: G_{\alpha}\right] \cdot(d(G)-1)+1
$$

Question. Is there a constant c such that $d\left(G_{\alpha}\right) \leqslant d(G)+c$?

Application: Primitive groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite primitive permutation group with point stabiliser G_{α}, so

$$
d(G)-1 \leqslant d\left(G_{\alpha}\right) \leqslant\left[G: G_{\alpha}\right] \cdot(d(G)-1)+1
$$

Question. Is there a constant c such that $d\left(G_{\alpha}\right) \leqslant d(G)+c$?

Theorem. $d\left(G_{\alpha}\right) \leqslant d(G)+4$

Application: Primitive groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite primitive permutation group with point stabiliser G_{α}, so

$$
d(G)-1 \leqslant d\left(G_{\alpha}\right) \leqslant\left[G: G_{\alpha}\right] \cdot(d(G)-1)+1
$$

Question. Is there a constant c such that $d\left(G_{\alpha}\right) \leqslant d(G)+c$?

Theorem. $d\left(G_{\alpha}\right) \leqslant d(G)+4$

Example. If G has a regular normal subgroup N then $G / N \cong G_{\alpha}$ and thus $d\left(G_{\alpha}\right)=d(G / N) \leqslant d(G)$.

Example. If G is almost simple then $d\left(G_{\alpha}\right) \leqslant 6 \leqslant d(G)+4$.

Example: Alternating groups

Let H be a maximal subgroup of S_{n} or A_{n}.
Lemma. We have

$$
d\left(S_{k} \times S_{n-k}\right)=d\left(\mathrm{AGL}_{m}(p)\right)=d\left(S_{k} \imath S_{t}\right)=2
$$

so $d(H) \leqslant 3$ if H is not a diagonal-type subgroup.

Example: Alternating groups

Let H be a maximal subgroup of S_{n} or A_{n}.
Lemma. We have

$$
d\left(S_{k} \times S_{n-k}\right)=d\left(\mathrm{AGL}_{m}(p)\right)=d\left(S_{k} \imath S_{t}\right)=2
$$

so $d(H) \leqslant 3$ if H is not a diagonal-type subgroup.

Suppose $H=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is diagonal (T simple). Then

$$
d(H)=\max \left\{2, d\left(\operatorname{Out}(T) \times S_{k}\right)\right\} \leqslant 4
$$

by a theorem of Lucchini \& Menegazzo (1997).

Example: Alternating groups

Let H be a maximal subgroup of S_{n} or A_{n}.
Lemma. We have

$$
d\left(S_{k} \times S_{n-k}\right)=d\left(\mathrm{AGL}_{m}(p)\right)=d\left(S_{k} \imath S_{t}\right)=2
$$

so $d(H) \leqslant 3$ if H is not a diagonal-type subgroup.

Suppose $H=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is diagonal (T simple). Then

$$
d(H)=\max \left\{2, d\left(\operatorname{Out}(T) \times S_{k}\right)\right\} \leqslant 4
$$

by a theorem of Lucchini \& Menegazzo (1997).

Example. If $T=\mathrm{P} \Omega_{12}^{+}\left(p^{2 f}\right), p>2$, then $H=T^{2} .\left(\operatorname{Out}(T) \times S_{2}\right)<A_{n}$ is maximal (with $n=|T|$) and

$$
d(H)=\max \left\{2, d\left(\operatorname{Out}(T) \times S_{2}\right)\right\}=d\left(D_{8} \times Z_{2 f} \times Z_{2}\right)=4
$$

Going deeper in the subgroup lattice

The depth of a subgroup $H \leqslant G$ is the maximal length of a chain of subgroups from H to G, e.g. H is maximal iff it has depth 1 .

We say H is second maximal if it has depth 2 , and so on.

Going deeper in the subgroup lattice

The depth of a subgroup $H \leqslant G$ is the maximal length of a chain of subgroups from H to G, e.g. H is maximal iff it has depth 1 .

We say H is second maximal if it has depth 2 , and so on.

Theorem (B, Liebeck \& Shalev, 2016)

There is a constant c s.t. $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups G with $\operatorname{soc}(G) \notin\left\{\mathrm{L}_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}$.

Going deeper in the subgroup lattice

The depth of a subgroup $H \leqslant G$ is the maximal length of a chain of subgroups from H to G, e.g. H is maximal iff it has depth 1 .

We say H is second maximal if it has depth 2 , and so on.

Theorem (B, Liebeck \& Shalev, 2016)

There is a constant c s.t. $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups G with $\operatorname{soc}(G) \notin\left\{\mathrm{L}_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}$.

- We can take $c=12$, unless G is exceptional and H is maximal in a parabolic subgroup of G (here we take $c=70$).

Going deeper in the subgroup lattice

The depth of a subgroup $H \leqslant G$ is the maximal length of a chain of subgroups from H to G, e.g. H is maximal iff it has depth 1 .

We say H is second maximal if it has depth 2 , and so on.

Theorem (B, Liebeck \& Shalev, 2016)

There is a constant c s.t. $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups G with $\operatorname{soc}(G) \notin\left\{L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}$.

- We can take $c=12$, unless G is exceptional and H is maximal in a parabolic subgroup of G (here we take $c=70$).
- There is a second maximal subgroup H of a simple group G with $d(H)=74207281$.

Going deeper in the subgroup lattice

The depth of a subgroup $H \leqslant G$ is the maximal length of a chain of subgroups from H to G, e.g. H is maximal iff it has depth 1 .

We say H is second maximal if it has depth 2 , and so on.

Theorem (B, Liebeck \& Shalev, 2016)

There is a constant c s.t. $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups G with $\operatorname{soc}(G) \notin\left\{L_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}$.

- We can take $c=12$, unless G is exceptional and H is maximal in a parabolic subgroup of G (here we take $c=70$).
- There is a second maximal subgroup H of a simple group G with $d(H)=74207281$. Take $q=2^{74207281}$ and

$$
H=\left(Z_{2}\right)^{74207281}<B=\left(Z_{2}\right)^{74207281} \rtimes Z_{q-1}<G=\mathrm{L}_{2}(q)
$$

Second maximals and special primes

Question. Is there a constant c such that $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups?

Second maximals and special primes

Question. Is there a constant c such that $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups?

This turns out to be equivalent to the following formidable open problem in Number Theory:

Question. Are there only finitely many primes r for which there is a prime power q such that $\left(q^{r}-1\right) /(q-1)$ is prime?

Second maximals and special primes

Question. Is there a constant c such that $d(H) \leqslant c$ for all second maximal subgroups H of almost simple groups?

This turns out to be equivalent to the following formidable open problem in Number Theory:

Question. Are there only finitely many primes r for which there is a prime power q such that $\left(q^{r}-1\right) /(q-1)$ is prime?

The answer is believed to be no, but existing methods in Number Theory are very far from proving this.
e.g. the answer is no if there are infinitely many Mersenne primes.

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Example. Let $p \geqslant 5$ be a prime such that $p \equiv \pm 3(\bmod 8)$ and set $n=2(p+1)$.

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Example. Let $p \geqslant 5$ be a prime such that $p \equiv \pm 3(\bmod 8)$ and set $n=2(p+1)$. Then

$$
G=S_{n}>S_{2} \backslash S_{p+1}
$$

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Example. Let $p \geqslant 5$ be a prime such that $p \equiv \pm 3(\bmod 8)$ and set $n=2(p+1)$. Then

$$
G=S_{n}>S_{2} \backslash S_{p+1}>\left(S_{2}\right)^{p+1} . \mathrm{PGL}_{2}(p)
$$

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Example. Let $p \geqslant 5$ be a prime such that $p \equiv \pm 3(\bmod 8)$ and set $n=2(p+1)$. Then

$$
G=S_{n}>S_{2} \zeta S_{p+1}>\left(S_{2}\right)^{p+1} . \mathrm{PGL}_{2}(p)>\left(S_{2}\right)^{p+1} \cdot S_{4}=H
$$

Third maximals

Theorem. For each $c \in \mathbb{N}$, there exists a third maximal subgroup H of an almost simple group such that $d(H)>c$.

Example. Let $p \geqslant 5$ be a prime such that $p \equiv \pm 3(\bmod 8)$ and set $n=2(p+1)$. Then

$$
G=S_{n}>S_{2} \backslash S_{p+1}>\left(S_{2}\right)^{p+1} \cdot \mathrm{PGL}_{2}(p)>\left(S_{2}\right)^{p+1} \cdot S_{4}=H
$$

is a third maximal subgroup and

$$
d(H)>\frac{d\left(\left(S_{2}\right)^{p+1}\right)-1}{24}=\frac{p}{24}
$$

[The first inequality holds since $\left[H:\left(S_{2}\right)^{p+1}\right]=24$.]

Main ingredients

Let $H<M<G$ be second maximal with G almost simple.

- If M is almost simple then $d(H) \leqslant 6$ by [BLS, 2013]

Main ingredients

Let $H<M<G$ be second maximal with G almost simple.

- If M is almost simple then $d(H) \leqslant 6$ by [BLS, 2013]
- If core ${ }_{M}(H)=\bigcap_{m \in M} H^{m}=1$, then M acts faithfully and primitively on the cosets M / H, so

$$
d(H) \leqslant d(M)+4 \leqslant 10
$$

by [BLS, 2013]

Main ingredients

Let $H<M<G$ be second maximal with G almost simple.

- If M is almost simple then $d(H) \leqslant 6$ by [BLS, 2013]
- If core ${ }_{M}(H)=\bigcap_{m \in M} H^{m}=1$, then M acts faithfully and primitively on the cosets M / H, so

$$
d(H) \leqslant d(M)+4 \leqslant 10
$$

by [BLS, 2013]

- Remaining cases. Study the possibilities for H using work of Aschbacher, Liebeck, O'Nan, Scott, Seitz and others.

Example

Suppose $H<M<G$, where $G=S_{n}$ and $M=S_{k} \imath S_{t}=N . S_{t}$ with $N=\left(S_{k}\right)^{t}$ and $k \geqslant 5$.

1. $N \leqslant H$: Here $H=N$. J with $J<S_{t}$ maximal.

Now $d(J) \leqslant 4$ and J has $\ell \leqslant 2$ orbits on $\{1, \ldots, t\}$, so

$$
d(H) \leqslant d\left(\left(S_{k}\right)^{\ell}\right)+d(J) \leqslant 6
$$

Example

Suppose $H<M<G$, where $G=S_{n}$ and $M=S_{k} \imath S_{t}=N . S_{t}$ with $N=\left(S_{k}\right)^{t}$ and $k \geqslant 5$.

1. $N \leqslant H$: Here $H=N . J$ with $J<S_{t}$ maximal.

Now $d(J) \leqslant 4$ and J has $\ell \leqslant 2$ orbits on $\{1, \ldots, t\}$, so

$$
d(H) \leqslant d\left(\left(S_{k}\right)^{\ell}\right)+d(J) \leqslant 6
$$

2. $N \notin H$: Here $H=(H \cap N) . S_{t}$.

We may assume H contains $A=\left(A_{k}\right)^{t}$, so $H / A<M / A=S_{2} \imath S_{t}$ is maximal. One checks that $d(H / A) \leqslant 6$, so

$$
d(H) \leqslant d\left(A_{k}\right)+6=8
$$

Application: Subgroup growth

Let G be a finite group, $k, n \in \mathbb{N}$.

$$
\mathcal{M}_{1}(G)=\{H: H<G \text { is maximal }\}
$$

Application: Subgroup growth

Let G be a finite group, $k, n \in \mathbb{N}$.

$$
\begin{aligned}
\mathcal{M}_{1}(G) & =\{H: H<G \text { is maximal }\} \\
\mathcal{M}_{k}(G) & =\{H: H<G \text { has depth } k\} \\
m_{k, n}(G) & =\#\left\{H \in \mathcal{M}_{k}(G):[G: H]=n\right\}
\end{aligned}
$$

Application: Subgroup growth

Let G be a finite group, $k, n \in \mathbb{N}$.

$$
\begin{aligned}
\mathcal{M}_{1}(G) & =\{H: H<G \text { is maximal }\} \\
\mathcal{M}_{k}(G) & =\{H: H<G \text { has depth } k\} \\
m_{k, n}(G) & =\#\left\{H \in \mathcal{M}_{k}(G):[G: H]=n\right\}
\end{aligned}
$$

Theorem (Lubotzky 2002; Jaikin-Zapirain \& Pyber, 2011)

There exists a constant $\alpha \in \mathbb{N}$ such that

$$
m_{1, n}(G) \leqslant n^{\alpha d(G)+\delta(G)}
$$

for all finite groups G and all $n \in \mathbb{N}$, where $\delta(G) \geqslant 0$ is a parameter defined in terms of the non-abelian chief factors of G.

$$
m_{1, n}(G) \leqslant n^{\alpha d(G)+\delta(G)}
$$

Corollary. Almost simple groups have polynomial maximal and second maximal subgroup growth.
i.e. for $k=1,2$ there is a constant c such that $m_{k, n}(G) \leqslant n^{c}$ for all almost simple groups G and all n.

$$
m_{1, n}(G) \leqslant n^{\alpha d(G)+\delta(G)}
$$

Corollary. Almost simple groups have polynomial maximal and second maximal subgroup growth.
i.e. for $k=1,2$ there is a constant c such that $m_{k, n}(G) \leqslant n^{c}$ for all almost simple groups G and all n.

Fact. For G almost simple, $\delta(G) \leqslant 1$ and $\delta(M) \leqslant 1$ for all $M \in \mathcal{M}_{1}(G)$.
Setting $c=6 \alpha+1$ we get

$$
m_{1, n}(G) \leqslant n^{\alpha d(G)+\delta(G)}
$$

Corollary. Almost simple groups have polynomial maximal and second maximal subgroup growth.
i.e. for $k=1,2$ there is a constant c such that $m_{k, n}(G) \leqslant n^{c}$ for all almost simple groups G and all n.

Fact. For G almost simple, $\delta(G) \leqslant 1$ and $\delta(M) \leqslant 1$ for all $M \in \mathcal{M}_{1}(G)$.
Setting $c=6 \alpha+1$ we get

$$
m_{2, n}(G) \leqslant \sum_{a \mid n} m_{1, a}(G) \max \left\{m_{1, n / a}(M): M \in \mathcal{M}_{1}(G),[G: M]=a\right\}
$$

$$
m_{1, n}(G) \leqslant n^{\alpha d(G)+\delta(G)}
$$

Corollary. Almost simple groups have polynomial maximal and second maximal subgroup growth.
i.e. for $k=1,2$ there is a constant c such that $m_{k, n}(G) \leqslant n^{c}$ for all almost simple groups G and all n.

Fact. For G almost simple, $\delta(G) \leqslant 1$ and $\delta(M) \leqslant 1$ for all $M \in \mathcal{M}_{1}(G)$.
Setting $c=6 \alpha+1$ we get

$$
\begin{aligned}
m_{2, n}(G) & \leqslant \sum_{a \mid n} m_{1, a}(G) \max \left\{m_{1, n / a}(M): M \in \mathcal{M}_{1}(G),[G: M]=a\right\} \\
& \leqslant \sum_{a \mid n} a^{c}(n / a)^{c} \\
& \leqslant n^{c+1}
\end{aligned}
$$

Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup growth.

Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup growth.

For example, $\delta(M) \leqslant 1$ for all $M \in \mathcal{M}_{2}(G)$, so if we assume

$$
\operatorname{soc}(G) \notin\left\{\mathrm{L}_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}
$$

then

$$
m_{3, n}(G) \leqslant n^{c+1}
$$

with $c=70 \alpha+1$.

Third maximals

The result can be extended to third maximal subgroups.

Theorem. Almost simple groups have polynomial third maximal subgroup growth.

For example, $\delta(M) \leqslant 1$ for all $M \in \mathcal{M}_{2}(G)$, so if we assume

$$
\operatorname{soc}(G) \notin\left\{\mathrm{L}_{2}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)\right\}
$$

then

$$
m_{3, n}(G) \leqslant n^{c+1}
$$

with $c=70 \alpha+1$.

Question. For each $t \in \mathbb{N}$, do almost simple groups have polynomial t-maximal subgroup growth?

3. Workshop on Permutation Groups: Methods and Applications

Michael Giudici (University of Western Australia)
Thomas Gobet (Nancy Université)
Martin Liebeck (Imperial College)
Kay Magaard (University of Birmingham)
Gunter Malle (TU Kaiserstautern)
Atilla Maroti (Renyi lastitute)
Alice Niemeyer (RWTH Aochen)
Benjamin Nill (University of Magdeburg)
Chery $/$ Praeger (University of Western Australio) Lószló Pyber (Reny instifute)
ColvaRoney-Dougal (University of St Andrews)
Aner Sholev (Hebrew University of Jerusalem)
Karrin Tent (University of Münster)
Gareth Tracey (University of Warwich)

Organisers: Barbara Baume iter Tim Bumess, Hung Tong Viet:

January 12th-14th, 2017

