Commensurated subgroups of finitely generated branch groups

Phillip Wesolek

Binghamton University

Permutation Groups, BIRS

Phillip Wesolek

Commensurated subgroups

11/15/2016 1 / 18

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$.

< 47 ▶

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

A D M A A A M M

- 4 ∃ →

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

Examples

Normal subgroups

A D M A A A M M

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

Examples

- Normal subgroups
- Pinite subgroups

A D M A A A M M

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

- Normal subgroups
- Pinite subgroups
- Opint stabilizers of transitive sub-degree finite permutation groups.

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

- Normal subgroups
- Pinite subgroups
- Point stabilizers of transitive sub-degree finite permutation groups.
- $SL_3(\mathbb{Z})$ in $SL_3(\mathbb{Z}[\frac{1}{p}])$

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

- Normal subgroups
- Pinite subgroups
- Point stabilizers of transitive sub-degree finite permutation groups.
- $SL_3(\mathbb{Z})$ in $SL_3(\mathbb{Z}[\frac{1}{p}])$
- Vaut in Thompson's group V

A subgroup *K* of a group *G* is **commensurated** if $|K : K \cap gKg^{-1}| < \infty$ for all $g \in G$. The pair (G, K) is sometimes called a **Hecke pair**.

- Normal subgroups
- Pinite subgroups
- Point stabilizers of transitive sub-degree finite permutation groups.
- $SL_3(\mathbb{Z})$ in $SL_3(\mathbb{Z}[\frac{1}{p}])$
- Vaut in Thompson's group V
- Any compact open subgroup of a totally disconnected locally compact (t.d.l.c.) group

Say (G, K) is a Hecke pair.

Say (G, K) is a Hecke pair. The group *G* acts on the set of left cosets G/K by left multiplication.

• • • • • • • • • • • •

Say (G, K) is a Hecke pair. The group *G* acts on the set of left cosets G/K by left multiplication. This induces a permutation representation $\sigma : G \to \text{Sym}(G/K)$.

• • • • • • • • • • • •

- **→ → →**

Definition

Suppose (G, K) is a Hecke pair.

Definition

Suppose (G, K) is a Hecke pair. The Schlichting completion of (G, K) is defined to be $G/\!\!/ K := \overline{\sigma(G)}$.

Definition

Suppose (G, K) is a Hecke pair. The Schlichting completion of (G, K) is defined to be $G/\!\!/ K := \overline{\sigma(G)}$.

Proposition (folklore)

Let (G, K) be a Hecke pair.

< □ > < □ > < □ > < □ >

Definition

Suppose (G, K) is a Hecke pair. The Schlichting completion of (G, K) is defined to be $G/\!\!/K := \overline{\sigma(G)}$.

Proposition (folklore)

Let (G, K) be a Hecke pair.

G // K is a t.d.l.c. group.

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition

Suppose (G, K) is a Hecke pair. The Schlichting completion of (G, K) is defined to be $G/\!\!/K := \overline{\sigma(G)}$.

Proposition (folklore)

Let (G, K) be a Hecke pair.

- G // K is a t.d.l.c. group.
- 2 If K is infinite with trivial normal core, then G//K is non-discrete.

イロト イヨト イヨト イヨト

Definition

Suppose (G, K) is a Hecke pair. The Schlichting completion of (G, K) is defined to be $G/\!\!/K := \overline{\sigma(G)}$.

Proposition (folklore)

Let (G, K) be a Hecke pair.

- G // K is a t.d.l.c. group.
- If K is infinite with trivial normal core, then G//K is non-discrete.
- If G is finitely generated, then $G/\!\!/ K$ is compactly generated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• $SL_n(\mathbb{Z})$ is commensurated in $SL_n(\mathbb{Z}[\frac{1}{p}])$.

▲ 伊 ▶ ▲ 三 ▶

- $SL_n(\mathbb{Z})$ is commensurated in $SL_n(\mathbb{Z}[\frac{1}{p}])$.
- **2** V_{aut} is commensurated in V.

-∢ ∃ ▶

- $SL_n(\mathbb{Z})$ is commensurated in $SL_n(\mathbb{Z}[\frac{1}{p}])$.
- **2** V_{aut} is commensurated in V.

Theorem (Shalom–Willis, 13)

For $n \ge 3$, every commensurated subgroup of $SL_n(\mathbb{Z}[\frac{1}{p}])$ is either finite, commensurate with $SL_n(\mathbb{Z})$, or of finite index.

- $SL_n(\mathbb{Z})$ is commensurated in $SL_n(\mathbb{Z}[\frac{1}{p}])$.
- **2** V_{aut} is commensurated in V.

Theorem (Shalom–Willis, 13)

For $n \ge 3$, every commensurated subgroup of $SL_n(\mathbb{Z}[\frac{1}{p}])$ is either finite, commensurate with $SL_n(\mathbb{Z})$, or of finite index.

Proposition (Le Boudec-W., 16)

Every proper commensurated subgroup of Thompson's group T is finite.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Via the Schlichting completion, commensurated subgroups can give interesting t.d.l.c. groups.

• • • • • • • • • • • •

Via the Schlichting completion, commensurated subgroups can give interesting t.d.l.c. groups.

Proposition (Shalom–Willis, 13)

For $n \geq 2$, $SL_n(\mathbb{Z}[\frac{1}{p}])/\!\!/ SL_n(\mathbb{Z}) \simeq PSL_n(\mathbb{Q}_p)$.

< □ > < □ > < □ > < □ >

Via the Schlichting completion, commensurated subgroups can give interesting t.d.l.c. groups.

Proposition (Shalom–Willis, 13)

For $n \geq 2$, $SL_n(\mathbb{Z}[\frac{1}{p}])/\!\!/ SL_n(\mathbb{Z}) \simeq PSL_n(\mathbb{Q}_p)$.

Proposition (folklore)

 $V / V_{aut} = AAut(\mathcal{T}_{2,2}).$

• • • • • • • • • • • •

Preliminaries

Phillip Wesolek

 Image: 4 ■ F
 E
 D Q (P)

 11/15/2016
 7 / 18

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Let $\alpha := (a_i)_{i \in \mathbb{N}}$ be a sequence natural numbers with $a_i \ge 2$.

イロト イヨト イヨト イ

Let $\alpha := (a_i)_{i \in \mathbb{N}}$ be a sequence natural numbers with $a_i \ge 2$. The *rooted tree* T_{α} is defined to be the rooted tree such that a vertex on level *n* has a_n many children on level n + 1.

Let $\alpha := (a_i)_{i \in \mathbb{N}}$ be a sequence natural numbers with $a_i \ge 2$. The *rooted tree* T_{α} is defined to be the rooted tree such that a vertex on level *n* has a_n many children on level n + 1.

• For $G \leq \operatorname{Aut}(T_{\alpha})$ and $s \in T_{\alpha}$, the **rigid stabilizer** of *s* is

 $\operatorname{rist}_{G}(s) := \operatorname{Stab}_{G}(\{r \in T_{\alpha} \mid r \leq s\}).$

Let $\alpha := (a_i)_{i \in \mathbb{N}}$ be a sequence natural numbers with $a_i \ge 2$. The *rooted tree* T_{α} is defined to be the rooted tree such that a vertex on level *n* has a_n many children on level n + 1.

• For $G \leq \operatorname{Aut}(T_{\alpha})$ and $s \in T_{\alpha}$, the **rigid stabilizer** of *s* is

$$\operatorname{rist}_{G}(s) := \operatorname{Stab}_{G}(\{r \in T_{\alpha} \mid r \leq s\}).$$

• The *n*-th level rigid stabilizer of G is $\operatorname{rist}_G(n) := \langle \operatorname{rist}_G(s) | |s| = n \rangle$.

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

4 A N

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

(i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : rist_G(n)|$ is finite.

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : rist_G(n)|$ is finite.

Examples

Iterated wreath products,

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : rist_G(n)|$ is finite.

Examples

Iterated wreath products, Grigorchuk group,

A group *G* is said to be a **branch group** if there is a rooted tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : rist_G(n)|$ is finite.

Examples

Iterated wreath products, Grigorchuk group, Gupta-Sidki groups,

Commensurated subgroups in branch groups

An infinite group *G* is **just infinite** if every proper quotient is finite.

An infinite group *G* is **just infinite** if every proper quotient is finite.

Theorem (W., 15)

Let G be a finitely generated branch group. Then G is just infinite if and only if every commensurated subgroup is either finite or of finite index.

An infinite group *G* is **just infinite** if every proper quotient is finite.

Theorem (W., 15)

Let G be a finitely generated branch group. Then G is just infinite if and only if every commensurated subgroup is either finite or of finite index.

Corollary

Let G be the Grigorchuk group or a Gupta-Sidki group. Every commensurated subgroup of G is either finite or of finite index.

The reverse implication follows by work of Grigorchuk.

Phillip Wesolek

Commensurated subgroups

11/15/2016 11 / 18

4 A N

- E - N

The reverse implication follows by work of Grigorchuk. For the forward implication, we argue by contradiction.

Suppose K ≤ G is an infinite, infinite index commensurated subgroup.

- Suppose K ≤ G is an infinite, infinite index commensurated subgroup.
- Consider the Schlichting completion $G/\!\!/K$.

- Suppose K ≤ G is an infinite, infinite index commensurated subgroup.
- Consider the Schlichting completion G//K. This is a compactly generated t.d.l.c. group that is non-compact and non-discrete.

- Suppose K ≤ G is an infinite, infinite index commensurated subgroup.
- Consider the Schlichting completion G//K. This is a compactly generated t.d.l.c. group that is non-compact and non-discrete.
- Apply results for t.d.l.c. groups to derive a contradiction.

For G a compactly generated t.d.l.c. group, one of the following holds:

< 🗇 🕨 < 🖃 >

For G a compactly generated t.d.l.c. group, one of the following holds:

G has an infinite discrete quotient.

For G a compactly generated t.d.l.c. group, one of the following holds:

- G has an infinite discrete quotient.
- 2 G is compact.

- E - N

For G a compactly generated t.d.l.c. group, one of the following holds:

- G has an infinite discrete quotient.
- G is compact.
- G has a cocompact normal subgroup that admits exactly 0 < n < ∞ non-discrete topologically simple quotients.

Result 2

For a closed normal factor K/L of a topological group G, the **centralizer** is

$$C_G(K/L) := \{g \in G \mid [g, K] \subseteq L\}.$$

For a closed normal factor K/L of a topological group G, the centralizer is

$$C_G(K/L) := \{g \in G \mid [g,K] \subseteq L\}.$$

Definition

For a topological group *G*, closed normal factors K_1/L_1 and K_2/L_2 are **associated** if $C_G(K_1/L_1) = C_G(K_2/L_2)$.

• • • • • • • • • • • • • •

For a closed normal factor K/L of a topological group G, the centralizer is

$$C_G(K/L) := \{g \in G \mid [g,K] \subseteq L\}.$$

Definition

For a topological group *G*, closed normal factors K_1/L_1 and K_2/L_2 are **associated** if $C_G(K_1/L_1) = C_G(K_2/L_2)$.

Definition

An equivalence class of non-abelian chief factors under the association relation is called a **chief block**.

< ロ > < 同 > < 回 > < 回 >

For a closed normal factor K/L of a topological group G, the **centralizer** is

$$C_G(K/L) := \{g \in G \mid [g,K] \subseteq L\}.$$

Definition

For a topological group *G*, closed normal factors K_1/L_1 and K_2/L_2 are **associated** if $C_G(K_1/L_1) = C_G(K_2/L_2)$.

Definition

An equivalence class of non-abelian chief factors under the association relation is called a **chief block**. The set of chief blocks is denoted by \mathfrak{B}_{G} .

A topological group *G* is **Polish** if the topology is separable and admits a complete, compatible metric.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A topological group G is **Polish** if the topology is separable and admits a complete, compatible metric.

```
Theorem (Reid–W., 15)
```

Let G be a Polish group, $\mathfrak{a} \in \mathfrak{B}_G$, and

$$\{1\} = G_0 \leq G_1 \leq \cdots \leq G_n = G$$

be a series of closed normal subgroups in G. Then

A topological group G is **Polish** if the topology is separable and admits a complete, compatible metric.

```
Theorem (Reid–W., 15)
```

Let G be a Polish group, $\mathfrak{a} \in \mathfrak{B}_G$, and

$$\{1\}=G_0\leq G_1\leq\cdots\leq G_n=G$$

be a series of closed normal subgroups in G. Then there is exactly one $i \in \{0, ..., n-1\}$ such that there exist closed normal subgroups $G_i \leq B < A \leq G_{i+1}$ of G for which $A/B \in \mathfrak{a}$.

A question

-

Definition

Definition

Let \mathscr{AE} be the smallest class of locally compact groups so that

 A & contains all compact groups and all amenable discrete groups.

Definition

- 2 \mathscr{AE} is closed under group extension.

Definition

- 2 \mathscr{AE} is closed under group extension.
- **(a)** \mathscr{AE} is closed under taking closed subgroups.

Definition

- 2 \mathscr{AE} is closed under group extension.
- **(a)** \mathscr{AE} is closed under taking closed subgroups.

Definition

- 2 \mathscr{AE} is closed under group extension.
- **(a)** \mathscr{AE} is closed under taking closed subgroups.
- **4** \mathscr{AE} is closed under taking Hausdorff quotients.
- **(5)** \mathscr{AE} is closed under directed unions of open subgroups.

Definition

Let \mathscr{AE} be the smallest class of locally compact groups so that

- 2 \mathscr{AE} is closed under group extension.
- O \mathscr{AE} is closed under taking closed subgroups.
- **4** \mathscr{AE} is closed under taking Hausdorff quotients.
- **(5)** \mathscr{AE} is closed under directed unions of open subgroups.

Question

Is every amenable locally compact group a member of \mathscr{AE} ?

< □ > < □ > < □ > < □ >

Observation

Suppose (G, K) is a Hecke pair. If G is amenable, then $G/\!\!/ K$ is amenable.

A D M A A A M M

Observation

Suppose (G, K) is a Hecke pair. If G is amenable, then $G/\!\!/ K$ is amenable.

Problem

Find finitely generated amenable groups with interesting commensurated subgroups.

Observation

Suppose (G, K) is a Hecke pair. If G is amenable, then $G/\!\!/ K$ is amenable.

Problem

Find finitely generated amenable groups with interesting commensurated subgroups.

Question

Does the Basilica group have an infinite, infinite index commensurated subgroup with trivial normal core?

Thank you

・ロト ・ 日 ト ・ ヨ ト ・