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Definition
A subgroup K of a group G is commensurated if |K : K ∩ gKg−1| <∞
for all g ∈ G.

The pair (G,K ) is sometimes called a Hecke pair.

Examples
1 Normal subgroups
2 Finite subgroups
3 Point stabilizers of transitive sub-degree finite permutation groups.
4 SL3(Z) in SL3(Z[1

p ])

5 Vaut in Thompson’s group V
6 Any compact open subgroup of a totally disconnected locally

compact (t.d.l.c.) group
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Say (G,K ) is a Hecke pair.

The group G acts on the set of left cosets
G/K by left multiplication. This induces a permutation representation
σ : G→ Sym(G/K ). The group Sym(G/K ) is a topological group under
the pointwise convergence topology.

Definition
Suppose (G,K ) is a Hecke pair. The Schlichting completion of
(G,K ) is defined to be G//K := σ(G).

Proposition (folklore)
Let (G,K ) be a Hecke pair.

1 G//K is a t.d.l.c. group.
2 If K is infinite with trivial normal core, then G//K is non-discrete.
3 If G is finitely generated, then G//K is compactly generated.
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Motivation 1

When a group has few normal subgroups, commensurated subgroups
seem rather special.

1 SLn(Z) is commensurated in SLn(Z[1
p ]).

2 Vaut is commensurated in V .

Theorem (Shalom–Willis, 13)

For n ≥ 3, every commensurated subgroup of SLn(Z[1
p ]) is either finite,

commensurate with SLn(Z), or of finite index.

Proposition (Le Boudec–W., 16)
Every proper commensurated subgroup of Thompson’s group T is
finite.
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Motivation 2

Via the Schlichting completion, commensurated subgroups can give
interesting t.d.l.c. groups.

Proposition (Shalom–Willis, 13)

For n ≥ 2, SLn(Z[1
p ])//SLn(Z) ' PSLn(Qp).

Proposition (folklore)
V//Vaut = AAut(T2,2).
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Preliminaries
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Let α := (ai)i∈N be a sequence natural numbers with ai ≥ 2. The
rooted tree Tα is defined to be the rooted tree such that a vertex on
level n has an many children on level n + 1.
• For G ≤ Aut(Tα) and s ∈ Tα, the rigid stabilizer of s is

ristG(s) := StabG({r ∈ Tα | r � s}).

• The n-th level rigid stabilizer of G is ristG(n) := 〈ristG(s) | |s| = n〉.
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Definition
A group G is said to be a branch group if there is a rooted tree Tα so
that the following hold:

(i) G is isomorphic to a subgroup of Aut(Tα).
(ii) G acts transitively on each level of Tα.
(iii) For each level n, the index |G : ristG(n)| is finite.

Examples
Iterated wreath products, Grigorchuk group, Gupta-Sidki groups, . . . .
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Commensurated subgroups in branch groups
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An infinite group G is just infinite if every proper quotient is finite.

Theorem (W., 15)
Let G be a finitely generated branch group. Then G is just infinite if and
only if every commensurated subgroup is either finite or of finite index.

Corollary
Let G be the Grigorchuk group or a Gupta-Sidki group. Every
commensurated subgroup of G is either finite or of finite index.
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Idea of proof
The reverse implication follows by work of Grigorchuk.

For the forward
implication, we argue by contradiction.
• Suppose K ≤ G is an infinite, infinite index commensurated

subgroup.
• Consider the Schlichting completion G//K . This is a compactly

generated t.d.l.c. group that is non-compact and non-discrete.
• Apply results for t.d.l.c. groups to derive a contradiction.
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Result 1

Theorem (Caprace–Monod, 10)
For G a compactly generated t.d.l.c. group, one of the following holds:

1 G has an infinite discrete quotient.
2 G is compact.
3 G has a cocompact normal subgroup that admits exactly

0 < n <∞ non-discrete topologically simple quotients.
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Result 2

For a closed normal factor K/L of a topological group G, the
centralizer is

CG(K/L) := {g ∈ G | [g,K ] ⊆ L}.

Definition
For a topological group G, closed normal factors K1/L1 and K2/L2 are
associated if CG(K1/L1) = CG(K2/L2).

Definition
An equivalence class of non-abelian chief factors under the
association relation is called a chief block. The set of chief blocks is
denoted by BG.
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A topological group G is Polish if the topology is separable and admits
a complete, compatible metric.

Theorem (Reid–W., 15)
Let G be a Polish group, a ∈ BG, and

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

be a series of closed normal subgroups in G. Then there is exactly one
i ∈ {0, . . . ,n − 1} such that there exist closed normal subgroups
Gi ≤ B < A ≤ Gi+1 of G for which A/B ∈ a.
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A question
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A locally compact group is amenable if it admits a finitely additive left
invariant Borel probability measure.

Definition
Let A E be the smallest class of locally compact groups so that

1 A E contains all compact groups and all amenable discrete
groups.

2 A E is closed under group extension.
3 A E is closed under taking closed subgroups.
4 A E is closed under taking Hausdorff quotients.
5 A E is closed under directed unions of open subgroups.

Question
Is every amenable locally compact group a member of A E ?
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One may be able to attack this question via the Schlichting completion.

Observation
Suppose (G,K ) is a Hecke pair. If G is amenable, then G//K is
amenable.

Problem
Find finitely generated amenable groups with interesting
commensurated subgroups.

Question
Does the Basilica group have an infinite, infinite index commensurated
subgroup with trivial normal core?
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Thank you
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