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Aim of the talk

Castellano I., Th. Weigel. Rational discrete cohomology for totally
disconnected locally compact groups. Journal of Algebra, 2016.

Theorem (J.R. Stallings, 1971)

A finitely generated group G has more than one end if, and only if, the group
G splits over a finite subgroup.

Cohomological interpretation is due to W. Dicks and M.J. Dunwoody, 1989

Theorem (M.J. Dunwoody, 1977)

Let R be a commutative ring with unit. For any group G , cdR(G ) ≤ 1 if, and
only if, G is isomorphic to the fundamental group π(G,Λ) of a graph of finite
groups with no R-torsion.
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Rational discrete Q[G ]-modules

Let G be a t.d.l.c. group and Q the field of rationals.

Definition

A Q[G ]-module M is said to be discrete if the pointwise stabilizers are open
subgroups of G .

Denote by Q[G ]dis the full subcategory of Q[G ]mod whose objects are the
discrete modules.

Theorem (I.C., Th. Weigel)

Q[G ]dis is an abelian category with both enough injectives and projectives.

Proposition (I.C, Th. Weigel)

A discrete Q[G ]-module M is projective in Q[G ]dis if, and only if, M is a direct
summand of a permutation Q[G ]-module with compact open stabilizers.
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Rational discrete cohomology for t.d.l.c. groups

For M ∈ ob(Q[G ]dis) denote by

dExtkQ[G ](M, ) = RkHomQ[G ]dis(M, )

the right derived functors of HomQ[G ](M, ) in Q[G ]dis.

Thus the k th discrete cohomology group of G with coefficients in Q[G ]dis is
defined by

dHk(Q[G ], ) = dExtkQ[G ](Q, ), k ≥ 0,

where Q denotes the trivial left Q[G ]-module.

Fact

For any compact open subgroup K of a t.d.l.c. group G there is a natural
isomorphism

dH1(G ,M) ∼= DerK (G ,M)/PDerK (G ,M), M ∈ ob(Q[G ]dis).
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Rough Cayley graphs of a
compactly generated t.d.l.c. group

Definition

A t.d.l.c. group G is said to be compactly generated if there exists a compact
open subgroup O and a finite symmetric set S ⊂ G \ O such that G is
algebraically generated by S ∪ O.

Definition

Let G =< S ∪ O > be a compactly generated t.d.l.c. group. The rough
Cayley graph Γ associated to (G ,O,S) is given by the following data:

(i) V (Γ) = G/O is the set of vertices;

(ii) E (Γ) = {(gO, gsO), (gsO, gO)|g ∈ G , s ∈ S} is the set of edges.
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Definition
Let Γ be a locally finite connected graph. The number e(Γ) of ends of Γ is
defined to be the least upper bound (possibly ∞) of the number of infinite
connected components that can be obtained by removing finitely many edges.
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Cutting up graphs
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Number of ends of a compactly generated t.d.l.c. group

Group

rough Cayley graph Number of ends

Theorem (B. Krön, R.G. Möller, 2008)

Let G be a compactly generated t.d.l.c. group G . The group G has more
than one end if, and only if, G = H ∗K J (with K 6= H and K 6= J) or
G = H∗tK where the subgroups H and J are compactly generated and open,
and K is a compact open subgroup.

Theorem [I.C.]

The conditions in the latter theorem are equivalent to

dH1(G ,Bi(G )) 6= 0,

where Bi(G ) = lim−→(Q[G/U], ηUV ) ranging over all compact open subgroups.
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Idea of Proof:

(C1) Let G be a compactly generated t.d.l.c. group with e(G ) > 1.

Step 1 Construct a tree T such that
G is acting on T without edge inversions;
the G -action is edge-transitive;
the edge stabilizers are compact open subgroups of G .

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup,
i.e., G = H ∗K J or G = H∗tK .

Step 3 Prove that H and J are compactly generated, i.e., they are of type FP1

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

9/17



Idea of Proof:

(C1) Let G be a compactly generated t.d.l.c. group with e(G ) > 1.

Step 1 Construct a tree T such that
G is acting on T without edge inversions;
the G -action is edge-transitive;
the edge stabilizers are compact open subgroups of G .

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup,
i.e., G = H ∗K J or G = H∗tK .

Step 3 Prove that H and J are compactly generated, i.e., they are of type FP1

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

9/17



Idea of Proof:

(C1) Let G be a compactly generated t.d.l.c. group with e(G ) > 1.

Step 1 Construct a tree T such that
G is acting on T without edge inversions;
the G -action is edge-transitive;
the edge stabilizers are compact open subgroups of G .

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup,
i.e., G = H ∗K J or G = H∗tK .

Step 3 Prove that H and J are compactly generated, i.e., they are of type FP1

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

9/17



Idea of Proof:

(C1) Let G be a compactly generated t.d.l.c. group with e(G ) > 1.

Step 1 Construct a tree T such that
G is acting on T without edge inversions;
the G -action is edge-transitive;
the edge stabilizers are compact open subgroups of G .

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup,
i.e., G = H ∗K J or G = H∗tK .

Step 3 Prove that H and J are compactly generated, i.e., they are of type FP1

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

9/17



Idea of Proof:

(C1) Let G be a compactly generated t.d.l.c. group with e(G ) > 1.

Step 1 Construct a tree T such that
G is acting on T without edge inversions;
the G -action is edge-transitive;
the edge stabilizers are compact open subgroups of G .

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup,
i.e., G = H ∗K J or G = H∗tK .

Step 3 Prove that H and J are compactly generated, i.e., they are of type FP1

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

9/17



Idea of Proof:

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

Step 1 Let T be the universal covering tree associated to G ;

Step 2 Use the cellular complex

0→ E (T )→ V (T )→ Q→ 0

to compute the first degree cohomology with coefficients in Bi(G ).

(C3) dH1(G ,Bi(G )) 6= 0.

10/17



Idea of Proof:

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

Step 1 Let T be the universal covering tree associated to G ;

Step 2 Use the cellular complex

0→ E (T )→ V (T )→ Q→ 0

to compute the first degree cohomology with coefficients in Bi(G ).

(C3) dH1(G ,Bi(G )) 6= 0.

10/17



Idea of Proof:

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

Step 1 Let T be the universal covering tree associated to G ;

Step 2 Use the cellular complex

0→ E (T )→ V (T )→ Q→ 0

to compute the first degree cohomology with coefficients in Bi(G ).

(C3) dH1(G ,Bi(G )) 6= 0.

10/17



Idea of Proof:

(C2) G = H ∗K J (with K 6= H and K 6= J) or G = H∗tK where the subgroups
H and J are compactly generated and open, and K is a compact open
subgroup.

Step 1 Let T be the universal covering tree associated to G ;

Step 2 Use the cellular complex

0→ E (T )→ V (T )→ Q→ 0

to compute the first degree cohomology with coefficients in Bi(G ).

(C3) dH1(G ,Bi(G )) 6= 0.

10/17



Idea of Proof:

(C3) dH1(G ,Bi(G )) 6= 0.

Step 1 Introduce the notion of almost invariant functions,

Spet 2 dH1(G ,Bi(G )) admits a representation via almost invariant functions,

Step 3 Since dH1(G ,Bi(G )) 6= 0, there exists a suitable almost invariant
functions.

(C1) e(G ) > 1.
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Accessibility

Let G be a compactly generated t.d.l.c. group with more than one end.
G

H1∗tK1
H1 ∗K1 J1

(H2∗tK2
) ∗K1 J1 (H2 ∗K2 J2) ∗K1 J1

((H3∗tK3
)∗tK2

) ∗K1 J1 ((H3 ∗K3 J3)∗tK2
) ∗K1 J1

Definition
The group G is accessible if it is isomorphic to the fundamental group of a
finite graph of groups, with compact edge groups and (at most 1)-ended
vertex groups.
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Rational discrete cohomological dimension

Theorem [I.C.]

A t.d.l.c. group G is isomorphic to the fundamental group of a finite graph of
profinite groups if, and only if, G is compactly presented and cdQ(G ) ≤ 1.

Definition

For a t.d.l.c. group G the rational discrete cohomological dimension, cdQ(G ),
is the minimum n ∈ N ∪ {∞} such that there exists a projective resolution

0→ Pn → Pn−1 → · · · → P0 → Q→ 0,

of Q of length n.

G is compact if, and only if, cdQ(G ) = 0.
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Idea of Proof

G ∼= fundamental group of a finite graph of profinite groups

Step 1 Notice that G ic compactly presented.

Step 2 If G is compact, then cdQ(G ) = 0. Suppose G non-compact.

Step 3 Let T be the universal covering tree associated to G .

Step 4 The cellular complex

0→ E (T )→ V (T )→ Q→ 0

is a projective resolution in Q[G ]dis of Q of length 1.

G is compactly presented with cdQ(G ) ≤ 1.
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Idea of Proof

G is compactly presented with cdQ(G ) ≤ 1.

Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier
2012).

Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. cdQ(Gv ) = 0.

Step 3 Since Gv ⊆ G , then cdQ(Gv ) ≤ cdQ(G ) ≤ 1.

Step 4 Since Gv is of type FP, either Gv is compact or dH1(Gv ,Bi(G )) 6= 0.

Step 5 Suppose Gv to be non-compact.Then the decomposition theorem implies
Gv has more than one end. Contraddiction

G ∼= a fundamental group of a finite graph of profinite groups
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The rational discrete standard bimodule Bi(G )

For a t.d.l.c. group G the set of compact open subgroups CO(G ) of G with
the inclusion relation “⊆" is a directed set.

For V ⊂ U one has an injective mapping

ηU,V : Q[G/U] −→ Q[G/V ], ηU,V (x U) =
1

|U : V |
∑
r∈R

x r V , x ∈ G .

By construction, one has for W ∈ CO(G ), W ⊆ V ⊆ U, that
ηU,W = ηV ,W ◦ ηU,V . Let

Bi(G ) = lim−→
U∈CO(G)

(Q[G/U], ηU,V ).

By definition, Bi(G ) is a discrete left Q[G ]-module. Moreover Bi(G ) can be
also endowed with a structure of discrete right Q[G ]-module.
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Properties of the bimodule Bi(G ) in analogy to the group
algebra

Proposition (I.C., T. Weigel)

Let G be a t.d.l.c. group.
1 One has a natural isomorphism θ : Bi(G )⊗G −→ idQ[G ]dis.

2 One has

HomG (Q,Bi(G )) '

{
Q if G is compact,
0 if G is not compact.

3 Let M,P ∈ ob(Q[G ]dis), and assume further that P is finitely generated
and projective. Then there is a natural iso
HomG (P,Bi(G ))⊗G M ∼= HomG (P,M) is an isomorphism.

4 If G is of type FP, i.e. cdQ(G ) <∞ and G is of type FPn for all n, then

cdQ(G ) = max{ n ∈ N | dHn(G ,Bi(G )) 6= 0 }.
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Graph of t.d.l.c. groups

Definition
Let Λ be a connected graph. A graph of t.d.l.c. groups (A,Λ) consists of the
following data:
(i) a t.d.l.c. group Av for every vertex v of Λ,
(ii) a t.d.l.c. group Ae for every edge e of Λ such that Ae = Aē ,
(iii) an open group monomorphism αe : Ae → At(e) for every edge e of Λ.
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Fundamental group of a graph of t.d.l.c. groups

Definition
Let F be the free product of the Av and the free group generated by the
edges E (Λ). Let F (A; Λ) be the quotient of F by the normal subgroup
generated by the elements

eē, eαe(c)e−1α−1
ē (c), ∀e ∈ E (Λ), c ∈ Ae .

Given a maximal subtree T of Λ, the fundamental group of (A,Λ) with
respect to T is defined as follows

π1(A,Λ, T ) := F (A; Λ)/� e|e ∈ E (T )�F (A;Λ), (1)

where � e|e ∈ E (T )�F (A;Λ) is the smallest normal subgroup of F (A; Λ)
containing E (T ). The fundamental group is independent of the choice of the
maximal subtree up to isomorphism.
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Compactly presented t.d.l.c. groups

Definition
A generalized presentation of a t.d.l.c. group G is a graph of profinite groups
(A,Λ) together with a continuous open surjective group homomorphism

φ : π1(A,Λ, T )→ G ,

such that φ|Av
is injective for all v ∈ V(Λ).

Definition
A t.d.l.c. group G is said to be compactly presented if there a generalized
presentation φ : π(G,Λ)→ G satisfying

- φ|Gv
is injective for all vertex groups Gv ,

- Ker(φ) is finitely generated as normal subgroup of π(G,Λ).
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Almost invariant functions

Let G be a t.d.l.c. group and O a compact open subgroup. The set of all
functions from G/O to Q will be denoted by (G/O,Q); this is a G -set with

gα(x) = α(g−1x) ∀α ∈ (G/O,Q), ∀g ∈ G , ∀x ∈ G/O.

Definition
We say that two maps α, β ∈ (G/O,Q) are almost equal, α =a β, if
α(x) = β(x) for all but finitely many elements x ∈ G/O.

Remark
Every element of Q[G/O] can be expressed as formal sum m =

∑
x∈G/O qxx

with qx ∈ Q being 0 for almost all x ∈ G/O. Thus Q[G/O] represents the
set of all almost zero functions in (G/O,Q).

Definition
A function α ∈ (G/O,Q) is called almost (G ,O)-invariant if gα =a α for all
g ∈ G and kα = α for all k ∈ O.
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dH1(G ,Bi(G )) as almost invariant functions

Proposition (I. Castellano)

For every compact open subgroup O of a t.d.l.c. group G one has

dH1(G ,Q[G/O]) ∼=
AInvO(G/O,Q)

C (G/O) + Q[G/O]O
,

where
C (G/O) = {α ∈ (G/O,Q)|α constant}.
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