Rational discrete first degree cohomology for totally disconnected locally compact groups

Ilaria Castellano

University of Southampton

Banff 2016

1/17

Castellano I., Th. Weigel. *Rational discrete cohomology for totally disconnected locally compact groups*. Journal of Algebra, 2016.

Castellano I., Th. Weigel. *Rational discrete cohomology for totally disconnected locally compact groups.* Journal of Algebra, 2016.

Theorem (J.R. Stallings, 1971)

A finitely generated group G has more than one end if, and only if, the group G splits over a finite subgroup.

Cohomological interpretation is due to W. Dicks and M.J. Dunwoody, 1989

Castellano I., Th. Weigel. *Rational discrete cohomology for totally disconnected locally compact groups.* Journal of Algebra, 2016.

Theorem (J.R. Stallings, 1971)

A finitely generated group G has more than one end if, and only if, the group G splits over a finite subgroup.

Cohomological interpretation is due to W. Dicks and M.J. Dunwoody, 1989

Theorem (M.J. Dunwoody, 1977)

Let R be a commutative ring with unit. For any group G, $cd_R(G) \leq 1$ if, and only if, G is isomorphic to the fundamental group $\pi(\mathcal{G}, \Lambda)$ of a graph of finite groups with no R-torsion.

Rational discrete $\mathbb{Q}[G]$ -modules

Let ${\it G}$ be a t.d.l.c. group and ${\mathbb Q}$ the field of rationals.

Definition

A $\mathbb{Q}[G]$ -module M is said to be *discrete* if the pointwise stabilizers are open subgroups of G.

Denote by ${}_{\mathbb{Q}[G]}\text{dis}$ the full subcategory of ${}_{\mathbb{Q}[G]}\text{mod}$ whose objects are the discrete modules.

Rational discrete $\mathbb{Q}[G]$ -modules

Let ${\it G}$ be a t.d.l.c. group and ${\mathbb Q}$ the field of rationals.

Definition

A $\mathbb{Q}[G]$ -module M is said to be *discrete* if the pointwise stabilizers are open subgroups of G.

Denote by $\mathbb{Q}[G]$ **dis** the full subcategory of $\mathbb{Q}[G]$ **mod** whose objects are the discrete modules.

Theorem (I.C., Th. Weigel)

 $\mathcal{Q}[G]$ dis is an abelian category with both enough injectives and projectives.

Rational discrete $\mathbb{Q}[G]$ -modules

Let ${\it G}$ be a t.d.l.c. group and ${\mathbb Q}$ the field of rationals.

Definition

A $\mathbb{Q}[G]$ -module M is said to be *discrete* if the pointwise stabilizers are open subgroups of G.

Denote by ${}_{\mathbb{Q}[G]}\text{dis}$ the full subcategory of ${}_{\mathbb{Q}[G]}\text{mod}$ whose objects are the discrete modules.

Theorem (I.C., Th. Weigel)

 $\mathbb{Q}[G]$ dis is an abelian category with both enough injectives and projectives.

Proposition (I.C, Th. Weigel)

A discrete $\mathbb{Q}[G]$ -module M is projective in $\mathbb{Q}[G]$ **dis** if, and only if, M is a direct summand of a permutation $\mathbb{Q}[G]$ -module with compact open stabilizers.

・ロット (語) (の) (の) (の) (の)

Rational discrete cohomology for t.d.l.c. groups

For $M \in \operatorname{ob}(_{\mathbb{Q}[G]}\mathsf{dis})$ denote by

$$\operatorname{dExt}_{\mathbb{Q}[G]}^{k}(M, _) = \mathcal{R}^{k} \operatorname{Hom}_{_{\mathbb{Q}[G]}\mathsf{dis}}(M, _)$$

the right derived functors of $\operatorname{Hom}_{\mathbb{Q}[G]}(M, _)$ in $_{\mathbb{Q}[G]}$ dis.

Rational discrete cohomology for t.d.l.c. groups

For $M \in \operatorname{ob}(_{\mathbb{Q}[G]}\mathbf{dis})$ denote by

$$\operatorname{dExt}_{\mathbb{Q}[G]}^{k}(M,\underline{}) = \mathcal{R}^{k}\operatorname{Hom}_{\mathbb{Q}[G]}\mathsf{dis}(M,\underline{})$$

the right derived functors of $\operatorname{Hom}_{\mathbb{Q}[G]}(M, _)$ in $_{\mathbb{Q}[G]}$ dis.

Thus the k^{th} discrete cohomology group of G with coefficients in $\mathbb{Q}[G]$ **dis** is defined by

$$\mathrm{dH}^k(\mathbb{Q}[G],_) = \mathrm{dExt}^k_{\mathbb{Q}[G]}(\mathbb{Q},_), \qquad k \ge 0,$$

where \mathbb{Q} denotes the trivial left $\mathbb{Q}[G]$ -module.

Rational discrete cohomology for t.d.l.c. groups

For $M \in \operatorname{ob}(_{\mathbb{Q}[G]}\mathsf{dis})$ denote by

$$\operatorname{dExt}_{\mathbb{Q}[G]}^{k}(M,\underline{})=\mathcal{R}^{k}\operatorname{Hom}_{_{\mathbb{Q}[G]}\operatorname{dis}}(M,\underline{})$$

the right derived functors of $\operatorname{Hom}_{\mathbb{Q}[G]}(M, _)$ in $_{\mathbb{Q}[G]}$ dis.

Thus the k^{th} discrete cohomology group of G with coefficients in $\mathbb{Q}[G]$ **dis** is defined by

$$\mathrm{dH}^k(\mathbb{Q}[G],_) = \mathrm{dExt}^k_{\mathbb{Q}[G]}(\mathbb{Q},_), \qquad k \ge 0,$$

where \mathbb{Q} denotes the trivial left $\mathbb{Q}[G]$ -module.

Fact

For any compact open subgroup K of a t.d.l.c. group G there is a natural isomorphism

 $\mathrm{dH}^1(G, M) \cong \mathrm{Der}_{\mathcal{K}}(G, M)/\mathrm{PDer}_{\mathcal{K}}(G, M), \quad M \in \mathrm{ob}(_{\mathbb{Q}[G]}\mathsf{dis}).$

Definition

A t.d.l.c. group G is said to be *compactly generated* if there exists a compact open subgroup \mathcal{O} and a finite symmetric set $S \subset G \setminus \mathcal{O}$ such that G is algebraically generated by $S \cup \mathcal{O}$.

Definition

A t.d.l.c. group G is said to be *compactly generated* if there exists a compact open subgroup \mathcal{O} and a finite symmetric set $S \subset G \setminus \mathcal{O}$ such that G is algebraically generated by $S \cup \mathcal{O}$.

Definition

Let $G = \langle S \cup O \rangle$ be a compactly generated t.d.l.c. group. The *rough Cayley graph* Γ associated to (G, O, S) is given by the following data:

Definition

A t.d.l.c. group G is said to be *compactly generated* if there exists a compact open subgroup \mathcal{O} and a finite symmetric set $S \subset G \setminus \mathcal{O}$ such that G is algebraically generated by $S \cup \mathcal{O}$.

Definition

Let $G = \langle S \cup \mathcal{O} \rangle$ be a compactly generated t.d.l.c. group. The *rough Cayley graph* Γ associated to (G, \mathcal{O}, S) is given by the following data: (i) $V(\Gamma) = G/\mathcal{O}$ is the set of vertices;

Definition

A t.d.l.c. group G is said to be *compactly generated* if there exists a compact open subgroup \mathcal{O} and a finite symmetric set $S \subset G \setminus \mathcal{O}$ such that G is algebraically generated by $S \cup \mathcal{O}$.

Definition

Let G =< S ∪ O > be a compactly generated t.d.l.c. group. The rough Cayley graph Γ associated to (G, O, S) is given by the following data:
(i) V(Γ) = G/O is the set of vertices;
(ii) E(Γ) = {(gO, gsO), (gsO, gO)|g ∈ G, s ∈ S} is the set of edges.

Definition

Let Γ be a locally finite connected graph. The number $e(\Gamma)$ of ends of Γ is defined to be the least upper bound (possibly ∞) of the number of infinite connected components that can be obtained by removing finitely many edges.

Group

Group

rough Cayley graph

Group		rough Cayley graph	<u> </u>	Number of ends
-------	--	--------------------	----------	----------------

Definition

The number of ends e(G) of a compactly generated t.d.l.c. group G is the number of ends of a rough Cayley graph associated to G.

Definition

The number of ends e(G) of a compactly generated t.d.l.c. group G is the number of ends of a rough Cayley graph associated to G.

Theorem (B. Krön, R.G. Möller, 2008)

Let G be a compactly generated t.d.l.c. group G. The group G has more than one end if, and only if, $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

Definition

The number of ends e(G) of a compactly generated t.d.l.c. group G is the number of ends of a rough Cayley graph associated to G.

Theorem (B. Krön, R.G. Möller, 2008)

Let G be a compactly generated t.d.l.c. group G. The group G has more than one end if, and only if, $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

Theorem [I.C.]

The conditions in the latter theorem are equivalent to

 $\mathrm{dH}^1(G,\mathrm{Bi}(G))\neq 0,$

where $\operatorname{Bi}(G) = \lim_{U \to U} (\mathbb{Q}[G/U], \eta_{UV})$ ranging over all compact open subgroups.

(C1) Let G be a compactly generated t.d.l.c. group with e(G) > 1.

(C1) Let G be a compactly generated t.d.l.c. group with e(G) > 1.

(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C1) Let G be a compactly generated t.d.l.c. group with e(G) > 1.

- Step 1 Construct a tree \mathcal{T} such that
 - G is acting on \mathcal{T} without edge inversions;
 - the *G*-action is edge-transitive;
 - the edge stabilizers are compact open subgroups of G.

(C2)
$$G = H *_K J$$
 (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C1) Let G be a compactly generated t.d.l.c. group with e(G) > 1.

- Step 1 Construct a tree \mathcal{T} such that
 - G is acting on \mathcal{T} without edge inversions;
 - the G-action is edge-transitive;
 - the edge stabilizers are compact open subgroups of G.

Step 2 Bass-Serre theory implies that G splits over a compact open subgroup, i.e., $G = H *_K J$ or $G = H *_K^t$.

(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C1) Let G be a compactly generated t.d.l.c. group with e(G) > 1.

- Step 1 Construct a tree \mathcal{T} such that
 - G is acting on \mathcal{T} without edge inversions;
 - the G-action is edge-transitive;
 - the edge stabilizers are compact open subgroups of G.
- Step 2 Bass-Serre theory implies that G splits over a compact open subgroup, i.e., $G = H *_K J$ or $G = H *_K^t$.
- Step 3 Prove that H and J are compactly generated, i.e., they are of type FP₁
 - (C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

(C3) $dH^1(G, Bi(G)) \neq 0$.
(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

Step 1 Let \mathcal{T} be the universal covering tree associated to G;

(C3) $dH^1(G, Bi(G)) \neq 0$.

(C2) $G = H *_K J$ (with $K \neq H$ and $K \neq J$) or $G = H *_K^t$ where the subgroups H and J are compactly generated and open, and K is a compact open subgroup.

Step 1 Let \mathcal{T} be the universal covering tree associated to G;

Step 2 Use the cellular complex

$$0 \to E(\mathcal{T}) \to V(\mathcal{T}) \to \mathbb{Q} \to 0$$

to compute the first degree cohomology with coefficients in Bi(G).

(C3) $dH^1(G, Bi(G)) \neq 0$.

(C3) $dH^1(G, Bi(G)) \neq 0$.

(C3) $dH^1(G, Bi(G)) \neq 0.$

(C1) e(G) > 1.

 (C3) $dH^1(G, Bi(G)) \neq 0.$

Step 1 Introduce the notion of almost invariant functions,

(C1) e(G) > 1.

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ ・ 目 ・ の へ や
11/17

(C3) $dH^1(G, Bi(G)) \neq 0.$

Step 1 Introduce the notion of *almost invariant functions*, Spet 2 $dH^1(G, Bi(G))$ admits a representation via almost invariant functions,

(C1) e(G) > 1.

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ う へ で
11/17

(C3) $dH^1(G, Bi(G)) \neq 0.$

Step 1 Introduce the notion of almost invariant functions,

Spet 2 $dH^1(G, Bi(G))$ admits a representation via almost invariant functions, Step 3 Since $dH^1(G, Bi(G)) \neq 0$, there exists a suitable almost invariant functions.

(C1) e(G) > 1.

Let G be a compactly generated t.d.l.c. group with more than one end.

Definition

The group G is *accessible* if it is isomorphic to the fundamental group of a finite graph of groups, with compact edge groups and (at most 1)-ended vertex groups.

Rational discrete cohomological dimension

Theorem [I.C.]

A t.d.l.c. group G is isomorphic to the fundamental group of a finite graph of profinite groups if, and only if, G is compactly presented and $cd_{\mathbb{Q}}(G) \leq 1$.

Rational discrete cohomological dimension

Theorem [I.C.]

A t.d.l.c. group G is isomorphic to the fundamental group of a finite graph of profinite groups if, and only if, G is compactly presented and $cd_{\mathbb{Q}}(G) \leq 1$.

Definition

For a t.d.l.c. group G the rational discrete cohomological dimension, $\operatorname{cd}_{\mathbb{Q}}(G)$, is the minimum $n \in \mathbb{N} \cup \{\infty\}$ such that there exists a projective resolution

$$0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to \mathbb{Q} \to 0,$$

of \mathbb{Q} of length n.

Rational discrete cohomological dimension

Theorem [I.C.]

A t.d.l.c. group G is isomorphic to the fundamental group of a finite graph of profinite groups if, and only if, G is compactly presented and $cd_{\mathbb{Q}}(G) \leq 1$.

Definition

For a t.d.l.c. group G the rational discrete cohomological dimension, $\operatorname{cd}_{\mathbb{Q}}(G)$, is the minimum $n \in \mathbb{N} \cup \{\infty\}$ such that there exists a projective resolution

$$0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to \mathbb{Q} \to 0,$$

of \mathbb{Q} of length n.

• G is compact if, and only if, $cd_{\mathbb{Q}}(G) = 0$.

• $G \cong$ fundamental group of a finite graph of profinite groups

• $G \cong$ fundamental group of a finite graph of profinite groups

• G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.

• $G \cong$ fundamental group of a finite graph of profinite groups

Step 1 Notice that G ic compactly presented.

• G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.

• $G \cong$ fundamental group of a finite graph of profinite groups

Step 1 Notice that G ic compactly presented.

Step 2 If G is compact, then $cd_{\mathbb{Q}}(G) = 0$. Suppose G non-compact.

• G is compactly presented with $\operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.

- $G \cong$ fundamental group of a finite graph of profinite groups
- Step 1 Notice that G ic compactly presented.
- Step 2 If G is compact, then $cd_{\mathbb{Q}}(G) = 0$. Suppose G non-compact.
- Step 3 Let \mathcal{T} be the universal covering tree associated to G.

• G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.

- $G \cong$ fundamental group of a finite graph of profinite groups
- Step 1 Notice that G ic compactly presented.
- Step 2 If G is compact, then $cd_{\mathbb{Q}}(G) = 0$. Suppose G non-compact.
- Step 3 Let \mathcal{T} be the universal covering tree associated to G.
- Step 4 The cellular complex

$$0 \to E(\mathcal{T}) \to V(\mathcal{T}) \to \mathbb{Q} \to 0$$

is a projective resolution in $\mathbb{Q}[G]$ dis of \mathbb{Q} of length 1.

• G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.

• G is compactly presented with $\operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.

- G is compactly presented with $\operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $cd_{\mathbb{Q}}(G_{\nu}) = 0$.

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $cd_{\mathbb{Q}}(G_v) = 0$. Step 3 Since $G_v \subseteq G$, then $cd_{\mathbb{Q}}(G_v) \leq cd_{\mathbb{Q}}(G) \leq 1$.

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) = 0$. Step 3 Since $G_{\nu} \subseteq G$, then $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) \leq \operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.
- Step 4 Since G_v is of type FP, either G_v is compact or $dH^1(G_v, Bi(G)) \neq 0$.

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) = 0$.
- Step 3 Since $G_{\nu} \subseteq G$, then $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) \leq \operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.
- Step 4 Since G_v is of type FP, either G_v is compact or $dH^1(G_v, Bi(G)) \neq 0$. Step 5 Suppose G_v to be non-compact.

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) = 0$.
- Step 3 Since $G_{\nu} \subseteq G$, then $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) \leq \operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.
- Step 4 Since G_v is of type FP, either G_v is compact or $dH^1(G_v, Bi(G)) \neq 0$.
- Step 5 Suppose G_v to be non-compact. Then the decomposition theorem implies G_v has more than one end. Contraddiction

- G is compactly presented with $cd_{\mathbb{Q}}(G) \leq 1$.
- Step 1 Since G is compactly presented, then G is accessible (cf. Cornulier 2012).
- Spet 2 It suffices to prove that vertex stabilizers are compact, i.e. $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) = 0$.
- Step 3 Since $G_{\nu} \subseteq G$, then $\operatorname{cd}_{\mathbb{Q}}(G_{\nu}) \leq \operatorname{cd}_{\mathbb{Q}}(G) \leq 1$.
- Step 4 Since G_v is of type FP, either G_v is compact or $dH^1(G_v, Bi(G)) \neq 0$.
- Step 5 Suppose G_v to be non-compact. Then the decomposition theorem implies G_v has more than one end. Contraddiction
 - $G \cong$ a fundamental group of a finite graph of profinite groups

Thanks for your attention

References

- I. Castellano and T. Weigel. Rational discrete cohomology for totally disconnected locally compact groups. *ArXiv e-prints*, 2015.
- Y. Cornulier. On the quasi-isometric classification of focal hyperbolic groups. *arXiv preprint arXiv:1212.2229*, 2012.
- W. Dicks and M.J. Dunwoody. Groups acting on graphs, volume 17 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1989.
- M.J. Dunwoody. Accessibility and groups of cohomological dimension one. *Proc. London Math. Soc. (3)*, 38(2):193–215, 1979.
- B. Krön and R.G. Möller. Analogues of Cayley graphs for topological groups. *Math. Z.*, 258(3):637–675, 2008.
- J-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- J.R. Stallings. On torsion-free groups with infinitely many ends. Annals of Mathematics, pages 312–334, 1968.

Backup slides

The rational discrete standard bimodule Bi(G)

For a t.d.l.c. group G the set of compact open subgroups $\mathfrak{CO}(G)$ of G with the inclusion relation " \subseteq " is a directed set.

For $V \subset U$ one has an injective mapping

$$\eta_{U,V} \colon \mathbb{Q}[G/U] \longrightarrow \mathbb{Q}[G/V], \qquad \eta_{U,V}(x U) = \frac{1}{|U:V|} \sum_{r \in \mathcal{R}} x r V, \quad x \in G.$$

By construction, one has for $W \in \mathfrak{CO}(G)$, $W \subseteq V \subseteq U$, that $\eta_{U,W} = \eta_{V,W} \circ \eta_{U,V}$. Let

$$\operatorname{Bi}(G) = \lim_{U \in \mathfrak{CO}(G)} (\mathbb{Q}[G/U], \eta_{U,V}).$$

By definition, Bi(G) is a discrete left $\mathbb{Q}[G]$ -module. Moreover Bi(G) can be also endowed with a structure of discrete right $\mathbb{Q}[G]$ -module.

Properties of the bimodule Bi(G) in analogy to the group algebra

Proposition (I.C., T. Weigel)

Let G be a t.d.l.c. group.

- **1** One has a natural isomorphism $\theta : \operatorname{Bi}(G) \otimes_G \longrightarrow \operatorname{id}_{\operatorname{O}[G]}\operatorname{dis}$.
- 2 One has

$$\operatorname{Hom}_{G}(\mathbb{Q},\operatorname{Bi}(G))\simeq egin{cases} \mathbb{Q} & \text{if }G \text{ is compact,} \\ 0 & \text{if }G \text{ is not compact.} \end{cases}$$

3 Let $M, P \in ob(\mathbb{Q}[G]$ **dis**), and assume further that P is finitely generated and projective. Then there is a natural iso $Hom_G(P, Bi(G)) \otimes_G M \cong Hom_G(P, M)$ is an isomorphism.

4 If G is of type FP, i.e. $\operatorname{cd}_{\mathbb{Q}}(G) < \infty$ and G is of type FP_n for all n, then

 $\operatorname{cd}_{\mathbb{Q}}(G) = \max\{ n \in \mathbb{N} \mid \operatorname{dH}^{n}(G, \operatorname{Bi}(G)) \neq 0 \}.$

Graph of t.d.l.c. groups

Definition

Let Λ be a connected graph. A graph of t.d.l.c. groups (\mathcal{A}, Λ) consists of the following data:

- (i) a t.d.l.c. group A_v for every vertex v of Λ ,
- (ii) a t.d.l.c. group \mathcal{A}_e for every edge e of Λ such that $\mathcal{A}_e=\mathcal{A}_{\bar{e}},$
- (iii) an open group monomorphism $\alpha_e : \mathcal{A}_e \to \mathcal{A}_{t(e)}$ for every edge *e* of Λ .

Fundamental group of a graph of t.d.l.c. groups

Definition

Let *F* be the free product of the A_v and the free group generated by the edges $E(\Lambda)$. Let $F(A; \Lambda)$ be the quotient of *F* by the normal subgroup generated by the elements

$$e\bar{e}, \ e\alpha_e(c)e^{-1}\alpha_{\bar{e}}^{-1}(c), \quad \forall e\in E(\Lambda), \ c\in \mathcal{A}_e.$$

Given a maximal subtree \mathcal{T} of Λ , the fundamental group of (\mathcal{A}, Λ) with respect to \mathcal{T} is defined as follows

$$\pi_1(\mathcal{A}, \Lambda, \mathcal{T}) := F(\mathcal{A}; \Lambda) / \ll e | e \in E(\mathcal{T}) \gg_{F(\mathcal{A}; \Lambda)},$$
(1)

where $\ll e | e \in E(\mathcal{T}) \gg_{F(\mathcal{A};\Lambda)}$ is the smallest normal subgroup of $F(\mathcal{A};\Lambda)$ containing $E(\mathcal{T})$. The fundamental group is independent of the choice of the maximal subtree up to isomorphism.
Compactly presented t.d.l.c. groups

Definition

A generalized presentation of a t.d.l.c. group G is a graph of profinite groups (\mathcal{A}, Λ) together with a continuous open surjective group homomorphism

 $\phi: \pi_1(\mathcal{A}, \Lambda, \mathcal{T}) \to G,$

such that $\phi_{|_{\mathcal{A}_{\mathcal{V}}}}$ is injective for all $v \in \mathcal{V}(\Lambda)$.

Definition

A t.d.l.c. group G is said to be *compactly presented* if there a generalized presentation $\phi \colon \pi(\mathcal{G}, \Lambda) \to G$ satisfying

- $\phi_{|_{\mathcal{G}_v}}$ is injective for all vertex groups \mathcal{G}_v ,
- $Ker(\phi)$ is finitely generated as normal subgroup of $\pi(\mathcal{G}, \Lambda)$.

Almost invariant functions

Let G be a t.d.l.c. group and \mathcal{O} a compact open subgroup. The set of all functions from G/\mathcal{O} to \mathbb{Q} will be denoted by $(G/\mathcal{O}, \mathbb{Q})$; this is a G-set with

 $g\alpha(x) = \alpha(g^{-1}x) \ \forall \alpha \in (G/\mathcal{O}, \mathbb{Q}), \ \forall g \in G, \ \forall x \in G/\mathcal{O}.$

Definition

We say that two maps $\alpha, \beta \in (G/\mathcal{O}, \mathbb{Q})$ are *almost equal*, $\alpha =_a \beta$, if $\alpha(x) = \beta(x)$ for all but finitely many elements $x \in G/\mathcal{O}$.

Remark

Every element of $\mathbb{Q}[G/\mathcal{O}]$ can be expressed as formal sum $m = \sum_{x \in G/\mathcal{O}} q_x x$ with $q_x \in \mathbb{Q}$ being 0 for almost all $x \in G/\mathcal{O}$. Thus $\mathbb{Q}[G/\mathcal{O}]$ represents the set of all almost zero functions in $(G/\mathcal{O}, \mathbb{Q})$.

Definition

A function $\alpha \in (G/\mathcal{O}, \mathbb{Q})$ is called *almost* (G, \mathcal{O}) -*invariant* if $g\alpha =_a \alpha$ for all $g \in G$ and $k\alpha = \alpha$ for all $k \in \mathcal{O}$.

$dH^1(G, Bi(G))$ as almost invariant functions

Proposition (I. Castellano)

For every compact open subgroup ${\mathcal O}$ of a t.d.l.c. group G one has

$$\mathrm{dH}^{1}(G,\mathbb{Q}[G/\mathcal{O}])\cong\frac{\mathcal{A}\mathit{Inv}_{\mathcal{O}}(G/\mathcal{O},\mathbb{Q})}{C(G/\mathcal{O})+\mathbb{Q}[G/\mathcal{O}]^{\mathcal{O}}},$$

where

$$C(G/\mathcal{O}) = \{ \alpha \in (G/\mathcal{O}, \mathbb{Q}) | \alpha \text{ constant} \}.$$