Highest weights for certain algebras constructed from Yangians

Alex Weekes University of Toronto

February 11, 2016

Outline:

Outline:

① Truncated shifted Yangians $Y^{\lambda}_{\mu}(\mathbf{R})$

Outline:

- **1** Truncated shifted Yangians $Y^{\lambda}_{\mu}(\mathbf{R})$
- Motivation for these algebras

Outline:

- **1** Truncated shifted Yangians $Y^{\lambda}_{\mu}(\mathbf{R})$
- Motivation for these algebras
- Highest weight theory

Outline:

- **1** Truncated shifted Yangians $Y^{\lambda}_{\mu}(\mathbf{R})$
- Motivation for these algebras
- Highest weight theory

Joint with J. Kamnitzer, P. Tingley, B. Webster, and O. Yacobi

Notation

ullet G a simple algebraic group over ${\mathbb C}$

Notation

- ullet G a simple algebraic group over ${\mathbb C}$
- g = Lie(G)

Notation

- ullet G a simple algebraic group over ${\mathbb C}$
- g = Lie(G)
- For an affine algebraic variety X over \mathbb{C} , denote the coordinate ring by $\mathbb{C}[X]$

• Suppose K is a Poisson-Lie group, with $Lie(K) = \mathfrak{k}$.

• Suppose K is a Poisson-Lie group, with $Lie(K) = \mathfrak{k}$.

$$U_h(\mathfrak{k}) \stackrel{\mathsf{restricted dual}}{\longrightarrow} U_h(\mathfrak{k})^* \cong \mathbb{C}_h[K]$$

• Suppose K is a Poisson-Lie group, with $Lie(K) = \mathfrak{k}$.

$$U_h(\mathfrak{k}) \xrightarrow{\mathsf{restricted dual}} U_h(\mathfrak{k})^* \cong \mathbb{C}_h[K]$$

Quantum duality principle (Drinfeld, Gavarini):

$$U_h(\mathfrak{k}) \xrightarrow{\mathsf{QDP}} U_h(\mathfrak{k})' \cong \mathbb{C}_h[K^*]$$

where K^* is a Poisson-Lie group with $Lie(K^*) = \mathfrak{t}^*$.

• Suppose K is a Poisson-Lie group, with $Lie(K) = \mathfrak{k}$.

$$U_h(\mathfrak{k}) \xrightarrow{\mathsf{restricted dual}} U_h(\mathfrak{k})^* \cong \mathbb{C}_h[K]$$

Quantum duality principle (Drinfeld, Gavarini):

$$U_h(\mathfrak{k}) \xrightarrow{\mathsf{QDP}} U_h(\mathfrak{k})' \cong \mathbb{C}_h[K^*]$$

where K^* is a Poisson-Lie group with $Lie(K^*) = \mathfrak{k}^*$.

Yangian case:

$$\mathfrak{k} = \mathfrak{g}[t], \quad \mathfrak{k}^* = t^{-1}\mathfrak{g}[[t^{-1}]], \quad \mathcal{K}^* = G_1[[t^{-1}]]$$

• The Yangian $Y = Y(\mathfrak{g})$ is the associative \mathbb{C} -algebra with generators

$$E_i^{(r)}, H_i^{(r)}, F_i^{(r)}$$
 for $i \in I, r \ge 1$

and relations
$$[E_i^{(r)}, F_j^{(s)}] = \delta_{i,j}H_i^{(r+s-1)}$$
, etc.

• The Yangian $Y = Y(\mathfrak{g})$ is the associative \mathbb{C} -algebra with generators

$$E_i^{(r)}, H_i^{(r)}, F_i^{(r)}$$
 for $i \in I, r \ge 1$

and relations $[E_i^{(r)}, F_j^{(s)}] = \delta_{i,j}H_i^{(r+s-1)}$, etc.

• Y is filtered by $\deg_{NC} X^{(r)} = r - 1$, and

$$\operatorname{gr}_{NC} Y \cong U(\mathfrak{g}[t])$$

where $X^{(r)}$ corresponds to Xt^{r-1} .

• Consider a different filtration on Y, where deg $X^{(r)} = r$

• Consider a different filtration on Y, where $\deg X^{(r)} = r$ $\Longrightarrow \operatorname{gr} Y$ is commutative!

- Consider a different filtration on Y, where $\deg X^{(r)} = r$ $\Longrightarrow \operatorname{gr} Y$ is commutative!
- ullet Let $G_1[[t^{-1}]]:=\operatorname{\mathsf{Ker}}\left(G(\mathbb{C}[[t^{-1}]]) \xrightarrow{t o \infty} G
 ight)$

- Consider a different filtration on Y, where $\deg X^{(r)} = r$ $\Longrightarrow \operatorname{gr} Y$ is commutative!
- ullet Let $G_1[[t^{-1}]]:=\operatorname{\mathsf{Ker}}\left(G(\mathbb{C}[[t^{-1}]]) \xrightarrow{t o \infty} G
 ight)$

$\mathsf{Theorem}\;(\mathsf{Kamitzer-Webster-W-Yacobi})$

• $G_1[[t^{-1}]]$ is a Poisson-Lie group (via Yang's Manin triple)

- Consider a different filtration on Y, where $\deg X^{(r)} = r$ $\Longrightarrow \operatorname{gr} Y$ is commutative!
- ullet Let $G_1[[t^{-1}]]:=\operatorname{\mathsf{Ker}}\left(G(\mathbb{C}[[t^{-1}]]) \xrightarrow{t o\infty} G
 ight)$

$\mathsf{Theorem}\;(\mathsf{Kamitzer\text{-}Webster\text{-}W\text{-}Yacobi})$

- $G_1[[t^{-1}]]$ is a Poisson-Lie group (via Yang's Manin triple)
- 2 There is an (explicit!) isomorphism of graded Poisson algebras

$$\operatorname{\mathsf{gr}} Y \cong \mathbb{C}\left[\mathit{G}_1[[t^{-1}]] \right]$$

• For $G = SL_2$,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) : M(\infty) = I, \ \det M(t) = 1 \right\}$$

• For $G = SL_2$,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) \ : \ M(\infty) = I, \ \det M(t) = 1
ight\}$$

• Consider $H(u) = 1 + \sum_{r>0} H^{(r)} u^{-r}$.

• For $G = SL_2$,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) \ : \ M(\infty) = I, \ \det M(t) = 1 \right\}$$

• Consider $H(u) = 1 + \sum_{r>0} H^{(r)} u^{-r}$. There exist unique $A^{(s)} \in Y$ such that

$$H(u) = \frac{1}{A(u)A(u-1)}, \quad A(u) = 1 + \sum_{r>0} A^{(r)}u^{-r}$$

• For $G = SL_2$,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) \ : \ M(\infty) = I, \ \det M(t) = 1
ight\}$$

• Consider $H(u) = 1 + \sum_{r>0} H^{(r)} u^{-r}$. There exist unique $A^{(s)} \in Y$ such that

$$H(u) = \frac{1}{A(u)A(u-1)}, \quad A(u) = 1 + \sum_{r>0} A^{(r)}u^{-r}$$

• Write $M(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$.

• For $G = SL_2$,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) \ : \ M(\infty) = I, \ \det M(t) = 1
ight\}$$

• Consider $H(u) = 1 + \sum_{r>0} H^{(r)} u^{-r}$. There exist unique $A^{(s)} \in Y$ such that

$$H(u) = \frac{1}{A(u)A(u-1)}, \quad A(u) = 1 + \sum_{r>0} A^{(r)}u^{-r}$$

• Write $M(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$. Lifts in $Y(\mathfrak{sl}_2)$ are

$$A(u)$$
, $B(u) := A(u)E(u)$, $C(u) := F(u)A(u)$, $A(u)D(u-1) - B(u)C(u-1) = 1$

 \bullet Fix a dominant coweight μ (i.e. a non-negative integer)

- ullet Fix a dominant coweight μ (i.e. a non-negative integer)
- ullet The *shifted Yangian* $Y_{\mu}\subset Y$ is the subalgebra generated by

$$E^{(r)}, H^{(r)}$$
 for $r > 0$,
 $F^{(s)}$, for $s > \mu$

- ullet Fix a dominant coweight μ (i.e. a non-negative integer)
- ullet The *shifted Yangian* $Y_{\mu}\subset Y$ is the subalgebra generated by

$$E^{(r)}, H^{(r)}$$
 for $r > 0$,
 $F^{(s)}$, for $s > \mu$

ullet Y_{μ} quantizes a certain homogeneous space for $G_1[[t^{-1}]]$

- ullet Fix a dominant coweight μ (i.e. a non-negative integer)
- ullet The shifted Yangian $Y_{\mu}\subset Y$ is the subalgebra generated by

$$E^{(r)}$$
, $H^{(r)}$ for $r > 0$,
 $F^{(s)}$, for $s > \mu$

- Y_{μ} quantizes a certain homogeneous space for $G_1[[t^{-1}]]$
- \bullet Y_{μ} is a left coideal subalgebra

Truncated shifted Yangians (case $\mathfrak{g} = \mathfrak{sl}_2$)

• Fix a dominant coweight λ , with $\lambda - \mu = 2m \ge 0$

- Fix a dominant coweight λ , with $\lambda \mu = 2m \ge 0$
- ullet Fix a monic polynomial $R(u) \in \mathbb{C}[u]$ of degree λ

- Fix a dominant coweight λ , with $\lambda \mu = 2m \ge 0$
- ullet Fix a monic polynomial $R(u)\in\mathbb{C}[u]$ of degree λ
- ullet There are unique elements $A^{(s)} \in Y_{\mu}$ such that

$$H(u) = \frac{R(u)}{u^{\lambda}(1-u^{-1})^m} \frac{1}{A(u)A(u-1)}$$

- Fix a dominant coweight λ , with $\lambda \mu = 2m \ge 0$
- ullet Fix a monic polynomial $R(u)\in\mathbb{C}[u]$ of degree λ
- ullet There are unique elements $A^{(s)} \in Y_{\mu}$ such that

$$H(u) = \frac{R(u)}{u^{\lambda}(1-u^{-1})^m} \frac{1}{A(u)A(u-1)}$$

Definition (KWWY)

The truncated shifted Yangian is the quotient

$$Y^{\lambda}_{\mu}(R) := Y_{\mu}/\langle A^{(s)} : s > m \rangle$$

• $\operatorname{Gr}_G := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$

- $\operatorname{Gr}_G := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$
- ullet Consider $\mathsf{Gr}^\lambda_\mu := \overline{G[[t]]t^\lambda} \cap G_1[t^{-1}]t^\mu$

- $\operatorname{Gr}_G := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$
- ullet Consider $\mathsf{Gr}^\lambda_\mu := \overline{G[[t]]t^\lambda} \cap G_1[t^{-1}]t^\mu$
- \bullet $\operatorname{Gr}_{\mu}^{\lambda}$ is a finite-dim affine Poisson variety

- $\operatorname{Gr}_G := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$
- ullet Consider $\mathsf{Gr}^\lambda_\mu := \overline{G[[t]]t^\lambda} \cap G_1[t^{-1}]t^\mu$
- \bullet $\operatorname{Gr}_{\mu}^{\lambda}$ is a finite-dim affine Poisson variety

Theorem (KWWY)

There is a map of graded Poisson algebras

$$\operatorname{\mathsf{gr}} Y_\mu^\lambda(\mathbf{R}) \longrightarrow \mathbb{C}[\operatorname{\mathsf{Gr}}_\mu^\lambda]$$

which is an isomorphism modulo the nilradical of the LHS.

- $\operatorname{\mathsf{Gr}}_G := G\bigl(\mathbb{C}((t))\bigr)/G\bigl(\mathbb{C}[[t]]\bigr)$
- ullet Consider $\mathsf{Gr}^\lambda_\mu := \overline{G[[t]]t^\lambda} \cap G_1[t^{-1}]t^\mu$
- Gr_{μ}^{λ} is a finite-dim affine Poisson variety

Theorem (KWWY)

There is a map of graded Poisson algebras

$$\operatorname{\mathsf{gr}} Y_\mu^\lambda(\mathbf{R}) \longrightarrow \mathbb{C}[\operatorname{\mathsf{Gr}}_\mu^\lambda]$$

which is an isomorphism modulo the nilradical of the LHS.

Conjecture

The map is an isomorphism, and $Y^{\lambda}_{\mu}(\mathbf{R})$ provides the universal deformation quantization of $\operatorname{Gr}^{\lambda}_{\mu}$.

• Case $G = SL_2$,

• Case $G = SL_2$,

$$\mathsf{Gr}_0^{2m} = \left\{ \mathit{M}(t) \in \mathit{G}_1[[t^{-1}]] : \mathsf{poles} \ \mathsf{of} \ \mathsf{order} \ \leq m \ \mathsf{at} \ t = 0
ight\}$$

• Case $G = SL_2$,

$$\mathsf{Gr}_0^{2m} = \left\{ \mathit{M}(t) \in \mathit{G}_1[[t^{-1}]] : \mathsf{poles} \ \mathsf{of} \ \mathsf{order} \ \leq m \ \mathsf{at} \ t = 0
ight\}$$

 Isomorphic to Slodowy slice intesect nilpotent orbit closure (Mirkovíc-Vybornov)

$$\mathsf{Gr}^\lambda_\mu\cong\overline{\mathbb{O}_\lambda}\cap\mathcal{S}_\mu$$
 $\subset\mathfrak{gl}_\mathcal{N}$

• Case $G = SL_2$,

$$\mathsf{Gr}_0^{2m} = \left\{ \mathit{M}(t) \in \mathit{G}_1[[t^{-1}]] : \mathsf{poles} \ \mathsf{of} \ \mathsf{order} \ \leq m \ \mathsf{at} \ t = 0
ight\}$$

 Isomorphic to Slodowy slice intesect nilpotent orbit closure (Mirkovíc-Vybornov)

$$\mathsf{Gr}^\lambda_\mu\cong\overline{\mathbb{O}_\lambda}\cap\mathcal{S}_\mu$$
 $\subset\mathfrak{gl}_\mathcal{N}$

On the quantum level:

• Case $G = SL_2$,

$$\mathsf{Gr}_0^{2m} = \left\{ \mathit{M}(t) \in \mathit{G}_1[[t^{-1}]] : \mathsf{poles} \ \mathsf{of} \ \mathsf{order} \ \leq m \ \mathsf{at} \ t = 0
ight\}$$

 Isomorphic to Slodowy slice intesect nilpotent orbit closure (Mirkovíc-Vybornov)

$$\mathsf{Gr}^\lambda_\mu\cong\overline{\mathbb{O}_\lambda}\cap\mathcal{S}_\mu$$
 $\subset\mathfrak{gl}_\mathcal{N}$

On the quantum level:

- $oldsymbol{Q} Y_{\mu}^{\lambda}$ is a "parabolic" W-algebra of type A (Webster-W-Yacobi)

• BLPW: Can do "Lie theory" for general Poisson varieties

BLPW: Can do "Lie theory" for general Poisson varieties

 \Longrightarrow rep theory of $Y^\lambda_\mu(\mathbf{R})$ should reflect geometry of Gr^λ_μ

- BLPW: Can do "Lie theory" for general Poisson varieties
- \Longrightarrow rep theory of $Y_\mu^\lambda(\mathbf{R})$ should reflect geometry of $\operatorname{Gr}_\mu^\lambda$
- **②** Geometric Satake: $IH_*(Gr^{\lambda}_{\mu}) \cong V(\lambda)_{\mu}$, both G^{\vee} weight spaces

- BLPW: Can do "Lie theory" for general Poisson varieties
 - \Longrightarrow rep theory of $Y_\mu^\lambda(\mathbf{R})$ should reflect geometry of Gr_μ^λ
- **Q** Geometric Satake: $IH_*(Gr^{\lambda}_{\mu}) \cong V(\lambda)_{\mu}$, both G^{\vee} weight spaces
 - \Longrightarrow rep theory of $Y^{\lambda}_{\mu}(\mathbf{R})$ should be related to $V(\lambda)_{\mu}$

- BLPW: Can do "Lie theory" for general Poisson varieties
 - \Longrightarrow rep theory of $Y^\lambda_\mu({f R})$ should reflect geometry of ${\sf Gr}^\lambda_\mu$
- **Q** Geometric Satake: $IH_*(Gr^{\lambda}_{\mu}) \cong V(\lambda)_{\mu}$, both G^{\vee} weight spaces
 - \Longrightarrow rep theory of $Y^{\lambda}_{\mu}(\mathbf{R})$ should be related to $V(\lambda)_{\mu}$
- § Symplectic duality: $\operatorname{Gr}_{\mu}^{\lambda}$ should be "symplectic dual" to a Nakajima quiver variety $\mathcal{M}(\lambda,\mu)$

- <u>BLPW</u>: Can do "Lie theory" for general Poisson varieties
 - \Longrightarrow rep theory of $Y_{\mu}^{\lambda}(\mathbf{R})$ should reflect geometry of $\mathsf{Gr}_{\mu}^{\lambda}$
- **Q** Geometric Satake: $IH_*(Gr^{\lambda}_{\mu}) \cong V(\lambda)_{\mu}$, both G^{\vee} weight spaces
 - \Longrightarrow rep theory of $Y^{\lambda}_{\mu}(\mathbf{R})$ should be related to $V(\lambda)_{\mu}$
- § Symplectic duality: $\operatorname{Gr}_{\mu}^{\lambda}$ should be "symplectic dual" to a Nakajima quiver variety $\mathcal{M}(\lambda,\mu)$
 - \Longrightarrow rep theory of $Y^{\lambda}_{\mu}(\mathbf{R})$ should be related to geometry of $\mathcal{M}(\lambda,\mu)$

Theorem (BK, KTWWY)

There is a bijection

$$\left\{ \begin{array}{l} \textit{highest weights} \\ \textit{for } Y_{\mu}^{\lambda}(R) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \textit{monic } S(u) \in \mathbb{C}[u], \\ \deg S(u) = m, \\ S(u) \textit{ divides } R(u) \end{array} \right\}$$

Theorem (BK, KTWWY)

There is a bijection

$$\left\{ \begin{array}{l} \textit{highest weights} \\ \textit{for } Y_{\mu}^{\lambda}(R) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \textit{monic } S(u) \in \mathbb{C}[u], \\ \deg S(u) = m, \\ S(u) \textit{ divides } R(u) \end{array} \right\}$$

• Write
$$R(u) = (u-r_1)^{\ell_1} \cdots (u-r_n)^{\ell_n}$$

Theorem (BK, KTWWY)

There is a bijection

$$\left\{ \begin{array}{l} \textit{highest weights} \\ \textit{for } Y_{\mu}^{\lambda}(R) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \textit{monic } S(u) \in \mathbb{C}[u], \\ \deg S(u) = m, \\ S(u) \textit{ divides } R(u) \end{array} \right\}$$

- Write $R(u) = (u-r_1)^{\ell_1} \cdots (u-r_n)^{\ell_n}$
- Both sets above in bijection with basis for sl₂ weight space

$$\left(V(\ell_1)\otimes\cdots V(\ell_n)\right)_{\mu}$$

• Let $A=\bigoplus_{n\in\mathbb{Z}}A_n$ be a graded \mathbb{C} -algebra

- Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded \mathbb{C} -algebra
- The *B-algebra* is $B(A) := A_0 / \sum_{n>0} A_{-n} A_n$

- Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded \mathbb{C} -algebra
- The *B-algebra* is $B(A) := A_0 / \sum_{n>0} A_{-n} A_n$
- B(A) controls highest weights, i.e. generalized eigenspaces for A_0 where $A_{>0}$ acts by zero:

- Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded \mathbb{C} -algebra
- The *B-algebra* is $B(A) := A_0 / \sum_{n>0} A_{-n} A_n$
- B(A) controls highest weights, i.e. generalized eigenspaces for A_0 where $A_{>0}$ acts by zero:

$$M \in A - \mathsf{Mod} \implies M^{\mathsf{high}} \in B(A) - \mathsf{Mod}$$

$$N \in B(A) - \mathsf{Mod} \implies A \otimes_{A_{\geq 0}} N \in A - \mathsf{Mod}$$

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise).

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise). For each (integral) \mathbf{R} , there exists a \mathbb{C}^{\times} action on $\mathcal{M}(\lambda, \mu)$, and

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise). For each (integral) \mathbf{R} , there exists a \mathbb{C}^{\times} action on $\mathcal{M}(\lambda, \mu)$, and

$$\begin{cases} \textit{highest weights} \\ \textit{for } Y_{\mu}^{\lambda}(\mathbf{R}) \end{cases} \longleftrightarrow \pi_{0} \Big(\mathcal{M}(\lambda, \mu)^{\mathbb{C}^{\times}} \Big)$$

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise). For each (integral) \mathbf{R} , there exists a \mathbb{C}^{\times} action on $\mathcal{M}(\lambda, \mu)$, and

$$\left\{ \begin{array}{l} \text{highest weights} \\ \text{for } Y_{\mu}^{\lambda}(\mathbf{R}) \end{array} \right\} \longleftrightarrow \pi_{0} \left(\mathcal{M}(\lambda, \mu)^{\mathbb{C}^{\times}} \right)$$

 Nakajima described components combinatorially via the "monomial crystal"

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise). For each (integral) \mathbf{R} , there exists a \mathbb{C}^{\times} action on $\mathcal{M}(\lambda, \mu)$, and

$$\left\{ \begin{array}{l} \textit{highest weights} \\ \textit{for } Y_{\mu}^{\lambda}(\mathbf{R}) \end{array} \right\} \longleftrightarrow \pi_0 \Big(\mathcal{M}(\lambda, \mu)^{\mathbb{C}^{\times}} \Big)$$

 Nakajima described components combinatorially via the "monomial crystal"

Conjecture

With data as above, there is an isomorphism

$$B(Y_{\mu}^{\lambda}(\mathbf{R})) \cong H^*\left(\mathcal{M}(\lambda,\mu)^{\mathbb{C}^{\times}}\right)$$

There is a notion of category ${\mathcal O}$ for $Y_\mu^\lambda({\mathbf R})$

There is a notion of category $\mathcal O$ for $Y_\mu^\lambda(\mathbf R)$

 ${\sf Expectations/Goals:}$

There is a notion of category \mathcal{O} for $Y_{\mu}^{\lambda}(\mathbf{R})$

Expectations/Goals:

 $\bullet \hspace{0.1 cm} \mathfrak{g}^{\vee} \text{-crystal structure on}$

$$\mathcal{B}(\lambda,\mathbf{R}) := igcup_{\mu} \left\{ ext{highest weights for } Y_{\mu}^{\lambda}(\mathbf{R})
ight\}$$

There is a notion of category \mathcal{O} for $Y_{\mu}^{\lambda}(\mathbf{R})$

Expectations/Goals:

 $\bullet \ \mathfrak{g}^{\vee} \text{-crystal structure on}$

$$\mathcal{B}(\lambda,\mathbf{R}) := igcup_{\mu} \left\{ ext{highest weights for } Y_{\mu}^{\lambda}(\mathbf{R})
ight\}$$

 \circled{g}^{\vee} -action on

$$V(\lambda, \mathbf{R}) := \bigoplus_{\mu} \mathcal{K}_0 \left(\mathcal{O}(Y_{\mu}^{\lambda}(\mathbf{R})) \right)$$

There is a notion of category \mathcal{O} for $Y_{\mu}^{\lambda}(\mathbf{R})$

Expectations/Goals:

lacktriangledown g $^{\vee}$ -crystal structure on

$$\mathcal{B}(\lambda, \mathbf{R}) := igcup_{\mu} \left\{ ext{highest weights for } Y_{\mu}^{\lambda}(\mathbf{R})
ight\}$$

 \circ \mathfrak{g}^{\vee} -action on

$$V(\lambda, \mathbf{R}) := \bigoplus_{\mu} \mathcal{K}_0 \left(\mathcal{O}(Y_{\mu}^{\lambda}(\mathbf{R})) \right)$$

3 Categorical \mathfrak{g}^{\vee} -action on $\bigoplus_{\mu} \mathcal{O}(Y_{\mu}^{\lambda}(\mathbf{R}))$

Thank you for listening!

Thank you for listening!

I refuse to answer that question on the grounds that I don't know the answer.

- Douglas Adams