Highest weights for certain algebras constructed from Yangians

Alex Weekes University of Toronto

February 11, 2016

Introduction	Yangians	Motivation	Highest weights
Introduction			

Outline:

- Truncated shifted Yangians $Y^{\lambda}_{\mu}(\mathbf{R})$
- 2 Motivation for these algebras
- I Highest weight theory

Joint with J. Kamnitzer, P. Tingley, B. Webster, and O. Yacobi

Introduction	Yangians	Motivation	Highest weights
Notation			

- G a simple algebraic group over $\mathbb C$
- g = Lie(G)
- For an affine algebraic variety X over C, denote the coordinate ring by C[X]

Quantum duality principle

• Suppose K is a Poisson-Lie group, with $Lie(K) = \mathfrak{k}$.

$$U_h(\mathfrak{k}) \xrightarrow{\text{restricted dual}} U_h(\mathfrak{k})^* \cong \mathbb{C}_h[K]$$

• Quantum duality principle (Drinfeld, Gavarini):

$$U_h(\mathfrak{k}) \xrightarrow{\mathsf{QDP}} U_h(\mathfrak{k})' \cong \mathbb{C}_h[K^*]$$

where K^* is a Poisson-Lie group with $\text{Lie}(K^*) = \mathfrak{k}^*$.

• Yangian case:

$$\mathfrak{k} = \mathfrak{g}[t], \quad \mathfrak{k}^* = t^{-1}\mathfrak{g}[[t^{-1}]], \quad \mathcal{K}^* = \mathcal{G}_1[[t^{-1}]]$$

Introduction	Yangians	Motivation	Highest weights
Yangians			

• The Yangian $Y = Y(\mathfrak{g})$ is the associative \mathbb{C} -algebra with generators

$$E_i^{(r)}, H_i^{(r)}, F_i^{(r)} \quad \text{for } i \in I, \ r \ge 1$$

and relations $[E_i^{(r)}, F_j^{(s)}] = \delta_{i,j} H_i^{(r+s-1)}$, etc.

• Y is filtered by
$$\deg_{NC} X^{(r)} = r - 1$$
, and

$$\operatorname{gr}_{NC}Y\cong U(\mathfrak{g}[t])$$

where $X^{(r)}$ corresponds to Xt^{r-1} .

Introduction	Yangians	Motivation	Highest weights
Yangians			

 Consider a different filtration on Y, where deg X^(r) = r ⇒ gr Y is commutative!

• Let
$$G_1[[t^{-1}]] := {\sf Ker}\left(G({\mathbb C}[[t^{-1}]]) \xrightarrow{t o \infty} G
ight)$$

Theorem (Kamitzer-Webster-W-Yacobi)

- $G_1[[t^{-1}]]$ is a Poisson-Lie group (via Yang's Manin triple)
- **2** There is an (explicit!) isomorphism of graded Poisson algebras

 $\operatorname{\mathsf{gr}} Y \cong \mathbb{C}\left[\operatorname{\mathsf{G}}_1[[t^{-1}]] \right]$

• For
$$G = SL_2$$
,

$$G_1[[t^{-1}]] = \left\{ M(t) \in M_2(\mathbb{C}[[t^{-1}]]) : M(\infty) = I, \det M(t) = 1
ight\}$$

• Consider $H(u) = 1 + \sum_{r>0} H^{(r)} u^{-r}$. There exist unique $A^{(s)} \in Y$ such that

$$H(u) = \frac{1}{A(u)A(u-1)}, \quad A(u) = 1 + \sum_{r>0} A^{(r)}u^{-r}$$

• Write $M(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$. Lifts in $Y(\mathfrak{sl}_2)$ are
 $A(u), \quad B(u) := A(u)E(u), \quad C(u) := F(u)A(u),$
 $A(u)D(u-1) - B(u)C(u-1) = 1$

Shifted Yangians (case $\mathfrak{g} = \mathfrak{sl}_2$)

- Fix a dominant coweight μ (i.e. a non-negative integer)
- The shifted Yangian $Y_\mu \subset Y$ is the subalgebra generated by

$$egin{aligned} \mathsf{E}^{(r)}, \mathsf{H}^{(r)} ext{ for } r > 0, \ & \mathsf{F}^{(s)}, ext{ for } s > \mu \end{aligned}$$

- Y_{μ} quantizes a certain homogeneous space for $G_1[[t^{-1}]]$
- Y_{μ} is a left coideal subalgebra

Truncated shifted Yangians (case $\mathfrak{g} = \mathfrak{sl}_2$)

- Fix a dominant coweight λ , with $\lambda \mu = 2m \ge 0$
- Fix a monic polynomial $R(u) \in \mathbb{C}[u]$ of degree λ
- There are unique elements $A^{(s)} \in Y_{\mu}$ such that

$$H(u) = \frac{R(u)}{u^{\lambda}(1 - u^{-1})^m} \frac{1}{A(u)A(u - 1)}$$

Definition (KWWY)

The truncated shifted Yangian is the quotient

$$Y^\lambda_\mu(R):=Y_\mu/\langle A^{(s)}:s>m
angle$$

Motivation: The affine Grassmannian

- $\operatorname{Gr}_{G} := G(\mathbb{C}((t)))/G(\mathbb{C}[[t]])$
- Consider ${\operatorname{Gr}}_{\mu}^{\lambda}:=\overline{G[[t]]t^{\lambda}}\cap G_1[t^{-1}]t^{\mu}$
- $\operatorname{Gr}_{\mu}^{\lambda}$ is a finite-dim affine Poisson variety

Theorem (KWWY)

There is a map of graded Poisson algebras

gr
$$Y^\lambda_\mu({f R}) \longrightarrow \mathbb{C}[{f Gr}^\lambda_\mu]$$

which is an isomorphism modulo the nilradical of the LHS.

Conjecture

The map is an isomorphism, and $Y^{\lambda}_{\mu}(\mathbf{R})$ provides the universal deformation quantization of $\mathrm{Gr}^{\lambda}_{\mu}$.

• Case
$$G = SL_2$$
,

$$\operatorname{Gr}_0^{2m} = \left\{ M(t) \in G_1[[t^{-1}]] : ext{poles of order } \leq m ext{ at } t = 0
ight\}$$

 Isomorphic to Slodowy slice intesect nilpotent orbit closure (Mirkovíc-Vybornov)

$$\mathsf{Gr}^{\lambda}_{\mu} \cong \overline{\mathbb{O}_{\lambda}} \cap \mathcal{S}_{\mu} \quad \subset \mathfrak{gl}_{\mathcal{N}}$$

On the quantum level:

1 $Y_{\mu}^{N\varpi_1^{\vee}}$ is a finite *W*-algebra of type *A* (Brundan-Kleshchev) 2 Y_{μ}^{λ} is a "parabolic" *W*-algebra of type *A* (Webster-W-Yacobi)

Introduction	Yangians	Motivation	Highest weights
Motivation			

• <u>BLPW</u>: Can do "Lie theory" for general Poisson varieties

 \implies rep theory of $Y^\lambda_\mu({f R})$ should reflect geometry of ${\sf Gr}^\lambda_\mu$

2 <u>Geometric Satake</u>: $IH_*(Gr^{\lambda}_{\mu}) \cong V(\lambda)_{\mu}$, both G^{\vee} weight spaces

 \implies rep theory of $Y^\lambda_\mu({f R})$ should be related to $V(\lambda)_\mu$

Symplectic duality: Gr^{λ}_{μ} should be "symplectic dual" to a Nakajima quiver variety $\mathcal{M}(\lambda, \mu)$

 \implies rep theory of $Y^{\lambda}_{\mu}(\mathbf{R})$ should be related to geometry of $\mathcal{M}(\lambda,\mu)$

Highest weights: case $\mathfrak{g} = \mathfrak{sl}_2$

Theorem (BK, KTWWY)

There is a bijection

$$\left\{ egin{array}{c} \textit{highest weights} \\ \textit{for } Y^\lambda_\mu(R) \end{array}
ight\} \longleftrightarrow \left\{ egin{array}{c} \textit{monic } S(u) \in \mathbb{C}[u], \\ \deg S(u) = m, \\ S(u) \textit{ divides } R(u) \end{array}
ight\}$$

• Write
$$R(u) = (u - r_1)^{\ell_1} \cdots (u - r_n)^{\ell_n}$$

 \bullet Both sets above in bijection with basis for \mathfrak{sl}_2 weight space

$$\Big(V(\ell_1)\otimes\cdots V(\ell_n)\Big)_{\mu}$$

Digression: B-algebras

- Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded \mathbb{C} -algebra
- The *B*-algebra is $B(A) := A_0 / \sum_{n>0} A_{-n}A_n$
- B(A) controls highest weights, i.e. generalized eigenspaces for A₀ where A_{>0} acts by zero:

$$M \in A - \mathsf{Mod} \implies M^{\mathsf{high}} \in B(A) - \mathsf{Mod}$$

$$N \in B(A) - \mathsf{Mod} \implies A \otimes_{A > 0} N \in A - \mathsf{Mod}$$

Highest weights: general case

Theorem (KTWWY)

Suppose $\mathfrak{g} = \mathfrak{sl}_n$ (only a conjecture, otherwise). For each (integral) **R**, there exists a \mathbb{C}^{\times} action on $\mathcal{M}(\lambda, \mu)$, and

$$\begin{cases} \text{highest weights} \\ \text{for } Y^{\lambda}_{\mu}(\mathbf{R}) \end{cases} \longleftrightarrow \pi_0 \Big(\mathcal{M}(\lambda, \mu)^{\mathbb{C}^{\times}} \Big)$$

 Nakajima described components combinatorially via the "monomial crystal"

Conjecture

With data as above, there is an isomorphism

$$B(Y^{\lambda}_{\mu}({f R}))\cong H^{*}\left({\cal M}(\lambda,\mu)^{{\Bbb C}^{ imes}}
ight)$$

Highest weight theory: Expectations

There is a notion of category \mathcal{O} for $Y^{\lambda}_{\mu}(\mathbf{R})$

Expectations/Goals:

 $\textcircled{0} \hspace{0.1in} \mathfrak{g}^{\vee} \text{-crystal structure on}$

$$\mathcal{B}(\lambda, \mathbf{R}) := igcup_{\mu} \left\{ ext{highest weights for } Y^{\lambda}_{\mu}(\mathbf{R})
ight\}$$

2 \mathfrak{g}^{\vee} -action on

$$V(\lambda, \mathbf{R}) := igoplus_{\mu} \mathcal{K}_0\left(\mathcal{O}(Y^\lambda_\mu(\mathbf{R}))
ight)$$

Solution Categorical \mathfrak{g}^{\vee} -action on $\bigoplus_{\mu} \mathcal{O}(Y_{\mu}^{\lambda}(\mathbf{R}))$

Introduction	Yangians	Motivation	Highest weights

Thank you for listening!

I refuse to answer that question on the grounds that I don't know the answer.

- Douglas Adams