Conformal embeddings and realizations of certain simple *W*-algebras

Dražen Adamović University of Zagreb, Croatia Supported by CSF, grant. no. 2634

Conference: Vertex algebras and quantum groups

Banff, Canada February 7 - 12, 2016

- Vertex algebras, affine vertex algebras, affine W-algebras
- Some affine fusion rules
- Conformal embeddings of affine vertex algebras into *W*-algebras: (joint work with V. Kac, P. Moseneder-Frajria , P. Papi and O. Perše.)
- Explicit realization of certain affine and superconformal vertex algebras and their modules.
 - (D. Adamović, Transform. Groups (2015))
- Connection with W-algebras in LCFT

Notations and terminology

- \mathfrak{g} simple Lie (super)algebra over \mathbb{C}
- $V^{k}(\mathfrak{g})$ universal affine VOA of level k (k is not critical)
- $V_k(\mathfrak{g})$ simple quotient of $V^k(\mathfrak{g})$
- ω_{sug} Sugawara Virasoro vector in $V_k(\mathfrak{g})$ of central charge

$$c(\operatorname{\mathsf{sug}}) = rac{k \operatorname{\mathsf{sdim}} \mathfrak{g}}{k + h^ee}.$$

 Let V are VOA with conformal vector ω_V, U subVOA with conformal vector ω_U. U is conformally embedded into V if

$$\omega_U = \omega_V.$$

Notations, terminology and history

- Let KL^k be the subcategory of \mathcal{O}_k consisting of modules M on which \mathfrak{g} -acts locally finite.
- Modules from KL^k are $V^k(\mathfrak{g})$ -modules.
- Catagory KL_k : $V_k(\mathfrak{g})$ -modules which are in KL^k .
- Important problem: Classify irreducible modules in KL_k.
- For generic k: KL^k = KL_k (Kazhdan-Lusztig, Lepowsky-Huang-Zhang)
- Classified for *k* admissible by T. Arakawa (2015) (conjectured by D.A, A.Milas 20 years ago)
- Classified for certain non-admissible, non-generic k for special cases (D.A; O. Perše, T. Arakawa, Anne Moreau in several papers)
- Investigate fusion rules and associated fusion algebras for modules from *KL_k*. Tensor category of *KL_k* modules ?

Notations and terminology

- $V_k(\mathfrak{g})$ -module M_1 is a simple-current in the category KL_k if for every irreducible $V_k(\mathfrak{g})$ -module M_2 from the category KL_k , there is a unique irreducible $V_k(\mathfrak{g})$ -module M_3 in the category KL_k such that the vector spaces of the intertwining operators $I\binom{M_3}{M_1 M_2}$ is 1-dimensional and $I\binom{N}{M_1 M_2} = 0$ for any other irreducible $V_k(\mathfrak{g})$ -module N which is not isomorphic to M_3 .
- "Much easier definition"
- $M_1 \times M_2$ is irreducible module in KL_k for every irreducible module M_2 in KL_k .

Simple current $V_k(sl(n))$)-modules at non-admssible levels

For
$$i \in \mathbb{Z}$$
 we define $M_{k,i} = L_{sl(n)}(\lambda_{k,i})$ where

$$\lambda_{k,i} = (k-i)\Lambda_0 + i\Lambda_1 \ (i \ge 0), \ \ \lambda_{k,i} = (k+i)\Lambda_0 - i\Lambda_n \ (i < 0),$$

Theorem (D.A, O. Perše (2014))

Let k = -1 and $n \ge 3$. In the category KL_k of $V_{-1}(sl(n))$ -modules, the following fusion rules holds:

$$M_{k,i} \times M_{k,j} = M_{k,i+j}.$$

Remark.

This results implies simplicity of Feingold-Frenkel realization of $V_{-1}(sl(n))$.

"Cloning" $V_{-1}(sl(n))$

Conjecture

Let $k = -\frac{n+1}{2}$ $(n \ge 4)$. In the category KL_k of $V_k(sl(n))$ -modules, the following fusion rules holds:

$$M_{k,i} \times M_{k,j} = M_{k,i+j}.$$

There are more similar affine VOAs.

- **F** - **F**

Conformal embedding $V_k(gl(n))$ into $V_k(sl(n+1))$.

Theorem (AKMPP, 2015)

Let $k = -\frac{n+1}{2}$, $n \ge 4$. Then we have conformal embedding $V_k(gl(n)) = V_k(sl(n)) \otimes M(1)$ in $V_k(sl(n+1))$. Assume that $n \ge 4$. Then

$$V_k(sl(n+1)) = \bigoplus_{i \in \mathbb{Z}} V_k(sl(n+1))^{(i)}$$
(1)

and each $V_k(sl(n+1))^{(i)}$ - is irreducible $V_k(gl(n))$ -module.

Remark.

In the case n = 2, embedding can be described using explicit realization from D.A., Transform. Groups 2015. Connected with LCFT. The case n = 3 is open.

伺い イラト イラト

Conformal embedding $V_k(gl(n))$ into $V_k(sl(n+1))$.

Remark.

Note that $k = -\frac{n+1}{2}$ (for n even) is admissible level for $V_k(sl(n+1))$, but it is not admissible for $V_k(sl(n))$. Consequence: Characters of non-admissible representations can be described using characters of admissible representations. Connections with MMF(?)

Remark.

 $\widehat{sl(n)}$ highest weights of $V_k(sl(n+1))^{(i)}$ are

 $(k-i)\Lambda_0+i\Lambda_1$ $(i \ge 0),$ $(k+i)\Lambda_0-i\Lambda_n$ (i < 0).

Affine W algebra $W^k(\mathfrak{g}, f_\theta)$

• Choose root vectors e_{θ} and f_{θ} such that

$$[e_{\theta}, f_{\theta}] = x, \ [x, e_{\theta}] = e_{\theta}, \ [x, f_{\theta}] = -f_{\theta}.$$

• ad(x) defines minimal $\frac{1}{2}\mathbb{Z}$ -gradation:

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1/2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{1/2} \oplus \mathfrak{g}_1.$$

• Let
$$\mathfrak{g}^{\natural} = \{a \in \mathfrak{g}_0 \mid (a|x) = 0\}.$$

- $W^k(\mathfrak{g}, f_{\theta})$ is strongly generated by vectors
- $G^{\{u\}}$, $u \in \mathfrak{g}_{-1/2}$, of conformal weight 3/2;
- $J^{\{a\}}$, $u \in \mathfrak{g}^{\natural}$ of conformal weight 1;
- ω conformal vector of central charge

$$c(\mathfrak{g},k)=rac{k\mathrm{sdim}\mathfrak{g}}{k+h^{ee}}-6k+h^{ee}-4.$$

Affine vertex subalgebra of $W_k(\mathfrak{g}, f_{ heta})$

- Assume that $\mathfrak{g}^{\natural} = \bigoplus_{i \in I} \mathfrak{g}_{i}^{\natural}$; and that $\mathfrak{g}_{i}^{\natural}$ is either simple or 1-dimensional abelien
- Let $\mathcal{V}^k(\mathfrak{g}^{\natural})$ be the vertex subalgebra of $W^k(\mathfrak{g}, f_{\theta})$ generated by $\{J^{\{a\}} \mid u \in \mathfrak{g}^{\natural}\}$. Then:

$$\mathcal{V}^k(\mathfrak{g}^{\natural}) = \bigotimes_{i \in I} V^{k_i}(\mathfrak{g}^{\natural}_i).$$

- Let V_k(g^{\$\$}) be the image of V^k(g^{\$\$}) in W_k(g, f_θ).
- Let ω_{sug} be the Sugawara Virasoro vector in $\mathcal{V}_k(\mathfrak{g}^{\natural})$.
- Embedding $\mathcal{V}_k(\mathfrak{g}^{\natural})$ in $W_k(\mathfrak{g}, f_{\theta})$ is called conformal if

$$\omega_{sug} = \omega.$$

A numerical criterion for conformal embedding

Theorem (D.A, Kac, Moseneder-Frajria, Papi, Perše (2016))

Embedding $\mathcal{V}_k(\mathfrak{g}^{\natural})$ in $W_k(\mathfrak{g}, f_{\theta})$ is conformal if and only if

c(sug) = c(g, k).

Theorem (D.A, Kac, Moseneder-Frajria, Papi, Perše (2016))

Assume that k is conformal level and that $W_k(\mathfrak{g}, f_\theta)$ does not collapse on its affine part. Then

$$k=-rac{2}{3}h^ee$$
 or $k=-rac{h^ee-1}{2}.$

Example: $\mathfrak{g} = sl(m|n)$

- Assume: $m \ge n$; $m \ne n+2$.
- Set of conformal levels

$$\{-1, -\frac{h^{\vee}}{2}, -\frac{h^{\vee}-1}{2}, -\frac{2}{3}h^{\vee}\}.$$

- $W_k(\mathfrak{g}, f_\theta) = M(1)$ if and only if k = -1.
- $W_k(\mathfrak{g},\theta) = \mathcal{V}_k(sl(n-2|m))$ if and only if $k = -\frac{h^{\vee}}{2}$.

Application to the extension theory of affine VOA

- When V is a regular VOA, theory of SCE was developed by H. Li (several papers) Dong-Li-Mason (1997), Huang-Lepowsky-Kirilov,
- When V is not rational, not C_2 cofinite, and M is a SC V-module satisfying certain condition, it is non-trivial to show that $V \oplus M$ is again a VOA (recent work of Creutzig, Kanade, Linshaw).
- " Elegant solution". Realize:

$$W_k(\mathfrak{g}, f_{ heta}) = V \bigoplus M$$

In [AKMPP(2016)] for every simple Lie superalgebra g such that g^t is a semi-simple Lie algebra, we take suitable conformal k and show that

$$W_k(\mathfrak{g}, f_{ heta}) = \mathcal{V}_k(\mathfrak{g}^{\natural}) \bigoplus M$$

where *M* is a simple $V_k(\mathfrak{g}^{\natural})$ -module.

Conformal embedding $V_{k+1}(gl(n))$ in $W_k(sl(n+2), f_{\theta})$:

Theorem (AKMPP, 2016)

Let $k = -\frac{2}{3}(n+2)$. Then we have conformal embedding $V_{k+1}(gl(n))$ in $W_k = W_k(sl(n+2), f_{\theta})$. Assume that $n \ge 3$. Then

$$W_k = \bigoplus_{i \in \mathbb{Z}} W_k^{(i)}$$
 (2)

and each $W_k^{(i)}$ - is irreducible $V_{k+1}(gl(n))$ -module.

Remark.

In all cases, $n \ge 3 W_k^{(i)}$ are not admissible $V_{k+1}(gl(n))$ -modules. We believe that they are simple currents in the category KL_{k+1} .

Conformal emneddings with infinite decomposition property

- Conformal embeddings with infinite decomposition property are
- $V_{-3/2}(gl(2))$ in $V_{-3/2}(sl(3))$,
- $V_{-5/3}(gl(2))$ in $W_{-8/3}$.
- Each $V_{-3/2}(sl(3))^{(i)}$ and $W_{-8/3}^{(i)}$ are direct sum of infinitely many irreducible \widehat{gl}_2 -modules.
- Analysis of these embedding uses explicit realization of certain vertex algebras from D.A, Transform. Groups (2015).

Wakimoto modules

- Let p ∈ Z_{≥0}, p ≥ 2. Assume now that k + 2 = ¹/_p. Let L^(p) be the following lattice L^(p) = Zα + Zβ + Zδ + Zφ
- with the Q-valued bilinear form $\langle \cdot, \cdot \rangle$ and non-trival products that $\langle \alpha, \alpha \rangle = 1$, $\langle \beta, \beta \rangle = -1$, $\langle \delta, \delta \rangle = -\langle \varphi, \varphi \rangle = \frac{2}{p}$.
- Let $V_{L^{(p)}}$ be the associated generalized vertex algebra. If p = 2 then $V_{L^{(2)}}$ is a vertex superalgebra.
- There is a injective homomorphism of vertex algebras $V^k(sl_2) \rightarrow V_{L^{(p)}}$ given by

$$e = e^{\alpha + \beta}, \quad h = -2\beta(-1) + \delta(-1),$$

$$f = ((k+1)(\alpha(-1)^2 - \alpha(-2)) - \alpha(-1)\delta(-1) + (k+2)\alpha(-1)\beta(-1))e^{-\alpha - \beta}.$$

• Screening operators are

$$Q = \operatorname{Res}_{z} Y(e^{\alpha+\beta-p\delta}, z), \quad \widetilde{Q} = \operatorname{Res}_{z} Y(e^{-\frac{\alpha+\beta-p\delta}{p}}, z).$$

• The Weyl vertex algebra *M* is isomorphic to a subalgebra of *V*_{*L*(*p*)} generated by

$$a = e^{\alpha + \beta}, a^* = -\alpha(-1)e^{-\alpha - \beta}$$

• Let $M_{\delta}(1)$ be the Heisenberg vertex algebra generated by δ .

$$\mathcal{F}_{p/2} = M_{\delta}(1) \otimes \mathbb{C}[\mathbb{Z}rac{p}{2}\delta] \hspace{0.3cm} ext{and} \hspace{0.3cm} M \otimes \mathcal{F}_{p/2}]$$

We have the following (generalized) vertex algebra

$$\mathcal{V}^{(p)} = \operatorname{Ker}_{M\otimes F_{p/2}} \widetilde{Q}.$$

N=4 superconformal vertex algebra $V_c^{N=4}$

 $V_c^{N=4} = W^k(psl(2,2), f_{\theta}), c = -6(k+1)$; is generated by the Virasoro field *L*, three primary fields of conformal weight 1, J^0 , J^+ and J^- (even part) and four primary fields of conformal weight $\frac{3}{2}$, G^{\pm} and \overline{G}^{\pm} (odd part).

The remaining (non-vanishing) λ -brackets are

$$\begin{split} [J^0_{\lambda}, J^{\pm}] &= \pm 2J^{\pm} \qquad [J^0_{\lambda}J^0] = \frac{c}{3}I\\ [J^+_{\lambda}J^-] &= J^0 + \frac{c}{6}\lambda \qquad [J^0_{\lambda}G^{\pm}] = \pm G^{\pm}\\ [J^0_{\lambda}\overline{G}^{\pm}] &= \pm \overline{G}^{\pm} \qquad [J^+_{\lambda}G^-] = G^+\\ [J^-_{\lambda}G^+] &= G^- \qquad [J^+_{\lambda}\overline{G}^-] = -\overline{G}^+\\ [J^-_{\lambda}\overline{G}^+] &= -\overline{G}^- \qquad [G^\pm_{\lambda}\overline{G}^{\pm}] = (T+2\lambda)J^{\pm}\\ [G^\pm_{\lambda}\overline{G}^{\pm}] &= L \pm \frac{1}{2}TJ^0 \pm \lambda J^0 + \frac{c}{6}\lambda^2 \end{split}$$

Let $L_c^{N=4} = W_k(psl(2,2), f_{\theta}).$

N=4 superconformal vertex algebra $L_c^{N=4}$ with c = -9

We shall present some results from D.Adamović, Transformation Groups (2015)

Theorem

(i) $V_k(sl_2)$ with k = -3/2 is conformally embedded into $L_c^{N=4}$ with c = -9. (ii) $L_c^{N=4} \cong \mathcal{V}^{(2)} = (M \otimes F)^{int}$

where $M \otimes F$ is a maximal sl_2 -integrable submodule of the Weyl-Clifford vertex algebra $M \otimes F$.

$L_c^{N=4}$ with c=-9 as an $\widehat{sl_2}$ -module

 $L_c^{N=4}$ with c = -9 is completely reducible $\widehat{sl_2}$ -module and the following decomposition holds:

Banff 2016

$$L_c^{N=4} \cong \bigoplus_{m=0}^{\infty} (m+1)L_{A_1}(-(\frac{3}{2}+m)\Lambda_0+m\Lambda_1).$$

 $L_c^{N=4}$ is a completely reducible $sl_2 \times \widehat{sl_2}$ -modules. sl_2 action is obtained using screening operators for Wakimoto realization of $\widehat{sl_2}$ -modules at level -3/2.

The affine vertex algebra $V_k(sl_3)$ with k = -3/2.

Theorem

(i) The simple affine vertex algebra $V_k(sl_3)$ with k = -3/2 is realized as a subalgebra of $L_c^{N=4} \otimes F_{-1}$ with c = -9. In particular $V_k(sl_3)$ can be realized as subalgebra of

 $M \otimes F \otimes F_{-1}$.

(ii) $L_c^{N=4} \otimes F_{-1}$ is a completely reducible $A_2^{(1)}$ -module at level k = -3/2.

On representation theory of $L_c^{N=4}$ with c=-9

- $L_c^{N=4}$ has only one irreducible module in the category of strong modules. Every $\mathbf{Z}_{>0}$ -graded $L_c^{N=4}$ -module with finite-dimensional weight spaces (with respect to L(0)) is semisimple ("Rationality in the category of strong modules")
- $L_c^{N=4}$ has two irreducible module in the category \mathcal{O} . There are non-semisimple $L_c^{N=4}$ -modules from the category \mathcal{O} .
- $L_c^{N=4}$ has infinitely many irreducible modules in the category of weight modules.
- $L_c^{N=4}$ admits logarithmic modules on which L(0) does not act semi-simply.

Theorem (D.A, 2015)

Assume that U is an irreducible $L_c^{N=4}$ -module with c = -9 such that $U = \bigoplus_{j \in \mathbb{Z}} U^j$ is \mathbb{Z} -graded (in a suitable sense). Let F_{-1} be the vertex superalgebra associated to lattice $\mathbb{Z}\sqrt{-1}$. Then

$$U \otimes F_{-1} = \bigoplus_{s \in \mathbb{Z}} \mathcal{L}_s(U), \quad \text{where } \mathcal{L}_s(U) := \bigoplus_{i \in \mathbb{Z}} U^i \otimes F_{-1}^{-s+i}$$

and for every $s \in \mathbb{Z}$ $\mathcal{L}_s(U)$ is an irreducible $A_2^{(1)}$ -module at level -3/2.

Correspondence between W-algebras and sl(n)

Higher rang generalization gives a realization of $V_k(sl(n))$:

Theorem (AKMPP, 2016)

- (1) There is a conformal embedding of $V_k(gl(n))$ into the simple W-algebra $W_{k'} = W_{k'}(sl(2|n), f_{\theta})$ for k = -(n+1)/2, k' = (n-1)/2.
- (2) $W_{k'}$ is a semisimple $V_k(gl_n)$ -module.
- (3) The admissible affine vertex algebra $V_k(sl(n+1))$ can be embedded in vertex algebra $W_{k'} \otimes F_{-1}$.

Connection with C_2 -cofinite vertex algebras appearing in LCFT:

Vacuum space of $V_k(sl_3)$ with k = -3/2 contains the vertex algebra $\mathcal{W}_{A_2}(p)$ with p = 2 (which is conjecturally C_2 -cofinite). Affine vertex algebra $V_k(sl_2)$ for $k + 2 = \frac{1}{p}$, $p \ge 2$ can be conformally embedded into the vertex algebra $\mathcal{V}^{(p)}$ generated by $L_k(sl_2)$ and 4 primary vectors $\tau_{(p)}^{\pm}, \overline{\tau}_{(p)}^{\pm}$. $\mathcal{V}^{(p)} \cong L_c^{N=4}$ for p = 2.

Drinfeld-Sokolov reduction maps $\mathcal{V}^{(p)}$ to the doublet vertex algebra $\mathcal{A}(p)$ and even part $(\mathcal{V}^{(p)})^{even}$ to the triplet vertex algebra $\mathcal{W}(p)$. $(C_2$ -cofiniteness and RT of these vertex algebras were obtain in a work of D.A and A. Milas)

The Vertex algebra $\mathcal{W}_{A_2}(p)$: Definition

We consider the lattice

$$\sqrt{p}A_2 = \mathbb{Z}\gamma_1 + \mathbb{Z}\gamma_2, \quad \langle \gamma_1, \gamma_1 \rangle = \langle \gamma_2, \gamma_2 \rangle = 2p, \ \langle \gamma_1, \gamma_2 \rangle = -p.$$

Let $M_{\gamma_1,\gamma_2}(1)$ be the s Heisenberg vertex subalgebra of $V_{\sqrt{p}A_2}$ generated by the Heisenberg fields $\gamma_1(z)$ and $\gamma_2(z)$.

$$\mathcal{W}_{A_2}(p) = \operatorname{Ker}_{V_{\sqrt{p}A_2}} e_0^{-\gamma_1/p} \bigcap \operatorname{Ker}_{V_{\sqrt{p}A_2}} e_0^{-\gamma_2/p}.$$

We also have its subalgebra:

$$\mathcal{W}_{A_{2}}^{0}(p) = \operatorname{Ker}_{M_{\gamma_{1},\gamma_{2}}(1)} e_{0}^{-\gamma_{1}/p} \bigcap \operatorname{Ker}_{M_{\gamma_{1},\gamma_{2}}(1)} e_{0}^{-\gamma_{2}/p}$$

 $\mathcal{W}_{A_2}(p)$ and $\mathcal{W}^0_{A_2}(p)$ have vertex subalgebra isomorphic to the simple $\mathcal{W}(2,3)$ -algebra with central charge $c_p = 2 - 24 \frac{(p-1)^2}{p}$.

The Vertex algebra $\mathcal{W}_{A_2}(p)$: Conjecture

- (i) $W_{A_2}(p)$ is a C_2 -cofinite vertex algebra for $p \ge 2$ and that it is a completely reducible $W(2,3) \times sl_3$ -module.
- (ii) $\mathcal{W}_{A_2}(p)$ is strongly generated by $\mathcal{W}(2,3)$ generators and by $sl_3.e^{-\gamma_1-\gamma_2}$, so by 8 primary fields for the $\mathcal{W}(2,3)$ -algebra.

Note that $\mathcal{W}_{A_2}(p)$ is a generalization of the triplet vertex algebra $\mathcal{W}(p)$ and $\mathcal{W}^0_{A_2}(p)$ is a generalization of the singlet vertex subalgebra of $\mathcal{W}(p)$.

Relation with parafermionic vertex algebras for p = 2

(i) Let K(sl₃, k) be the parafermion vertex subalgebra of V_k(sl₃).
(iii) For k = -3/2 we have

$$K(sl_3,k) = \mathcal{W}^0_{A_2}(p).$$

Vertex algebras $\mathcal{R}^{(p)}$

Let $F_{-p/2}$ denotes the generalized lattice vertex algebra associated to the lattice $\mathbb{Z}(\frac{p}{2}\varphi)$ such that

$$\langle arphi, arphi
angle = -rac{2}{p}$$

Let $\mathcal{R}^{(p)}$ by the subalgebra of $\mathcal{V}^{(p)} \otimes \mathcal{F}_{-p/2}$ generated by $x = x(-1)\mathbf{1} \otimes 1$, $x \in \{e, f, h\}$, $1 \otimes \varphi(-1)\mathbf{1}$ and

$$e_{\alpha_1,p} := \frac{1}{\sqrt{2}} e^{\frac{p}{2}(\delta+\varphi)}$$
(3)

$$f_{\alpha_{1},p} := \frac{1}{\sqrt{2}}f(0)e_{\alpha_{1},p}$$
 (4)

$$e_{\alpha_2,p} := \frac{1}{\sqrt{2}} Q e^{\frac{p}{2}(\delta - \varphi)}$$
(5)

$$f_{\alpha_2,p} := \frac{1}{\sqrt{2}} f(0) e_{\alpha_2,p}$$
 (6)

Realization of simple *W*-algebra $W_k(sl(4), f_{\theta})$

Recall that $\mathcal{R}^{(2)} \cong L_{A_2}(-\frac{3}{2}\Lambda_0).$

Theorem

- $\mathcal{R}^{(3)} \cong W_k(sl_4, f_\theta)$ with k = -8/3.
- $W_k(sl(4), f_\theta) = \bigoplus_{i \in \mathbb{Z}} W_k(sl(4), f_\theta)^{(i)}$.
- Each $W_k(sl(4), f_{\theta})^{(i)}$ is a direct sum of infinitely many $V_{-5/3}(gl(2))$ -modules.

Thank you!

Dražen Adamović Conformal embeddings and realizations of certain simple W-algebras