Conformal embeddings and realizations of certain simple W-algebras

Dražen Adamović
University of Zagreb, Croatia Supported by CSF, grant. no. 2634

Conference: Vertex algebras and quantum groups

Banff, Canada
February 7 -12, 2016

Plan of talk

- Vertex algebras, affine vertex algebras, affine W-algebras
- Some affine fusion rules
- Conformal embeddings of affine vertex algebras into W-algebras: (joint work with V. Kac, P. Moseneder-Frajria, P. Papi and O. Perše.)
- Explicit realization of certain affine and superconformal vertex algebras and their modules.
(D. Adamović, Transform. Groups (2015))
- Connection with W-algebras in LCFT

Notations and terminology

- \mathfrak{g} simple Lie (super)algebra over \mathbb{C}
- $V^{k}(\mathfrak{g})$ universal affine VOA of level k (k is not critical)
- $V_{k}(\mathfrak{g})$ simple quotient of $V^{k}(\mathfrak{g})$
- $\omega_{\text {sug }}$ Sugawara Virasoro vector in $V_{k}(\mathfrak{g})$ of central charge

$$
c(\text { sug })=\frac{k s d i m g}{k+h^{\vee}} .
$$

- Let V are VOA with conformal vector ω_{V}, U subVOA with conformal vector $\omega_{U} . U$ is conformally embedded into V if

$$
\omega_{U}=\omega_{V}
$$

Notations, terminology and history

- Let $K L^{k}$ be the subcategory of \mathcal{O}_{k} consisting of modules M on which \mathfrak{g}-acts locally finite.
- Modules from $K L^{k}$ are $V^{k}(\mathfrak{g})$-modules.
- Catagory $K L_{k}: V_{k}(\mathfrak{g})$-modules which are in $K L^{k}$.
- Important problem: Classify irreducible modules in $K L_{k}$.
- For generic $k: K L^{k}=K L_{k}$ (Kazhdan-Lusztig, Lepowsky-Huang-Zhang)
- Classified for k admissible by T. Arakawa (2015) (conjectured by D.A, A.Milas 20 years ago)
- Classified for certain non-admissible, non-generic k for special cases (D.A; O. Perše, T. Arakawa, Anne Moreau in several papers)
- Investigate fusion rules and associated fusion algebras for modules from $K L_{k}$. Tensor category of $K L_{k}$ modules ?

Notations and terminology

- $V_{k}(\mathfrak{g})$-module M_{1} is a simple-current in the category $K L_{k}$ if for every irreducible $V_{k}(\mathfrak{g})$-module M_{2} from the category $K L_{k}$, there is a unique irreducible $V_{k}(\mathfrak{g})$-module M_{3} in the category $K L_{k}$ such that the vector spaces of the intertwining operators $I\binom{M_{3}}{M_{1} M_{2}}$ is 1-dimensional and $I\left({ }_{M_{1}}^{N} M_{2}\right)=0$ for any other irreducible $V_{k}(\mathfrak{g})$-module N which is not isomorphic to M_{3}.
- "Much easier definition"
- $M_{1} \times M_{2}$ is irreducible module in $K L_{k}$ for every irreducible module M_{2} in $K L_{k}$.

Simple current $\left.V_{k}(s l(n))\right)$-modules at non-admssible levels

For $i \in \mathbb{Z}$ we define $M_{k, i}=L_{s /(n)}\left(\lambda_{k, i}\right)$ where

$$
\lambda_{k, i}=(k-i) \Lambda_{0}+i \Lambda_{1}(i \geq 0), \quad \lambda_{k, i}=(k+i) \Lambda_{0}-i \Lambda_{n}(i<0),
$$

Theorem (D.A, O. Perše (2014))

Let $k=-1$ and $n \geq 3$. In the category $K L_{k}$ of $V_{-1}(s l(n))$-modules, the following fusion rules holds:

$$
M_{k, i} \times M_{k, j}=M_{k, i+j} .
$$

Remark.

This results implies simplicity of Feingold-Frenkel realization of $V_{-1}(s /(n))$.

"Cloning" $V_{-1}(s /(n))$

Conjecture

Let $k=-\frac{n+1}{2}(n \geq 4)$. In the category $K L_{k}$ of $V_{k}(s l(n))$-modules, the following fusion rules holds:

$$
M_{k, i} \times M_{k, j}=M_{k, i+j} .
$$

There are more similar affine VOAs.

Conformal embedding $V_{k}(g /(n))$ into $V_{k}(s /(n+1))$.

Theorem (AKMPP, 2015)

Let $k=-\frac{n+1}{2}, n \geq 4$. Then we have conformal embedding $V_{k}(g l(n))=V_{k}(s l(n)) \otimes M(1)$ in $V_{k}(s l(n+1))$.
Assume that $n \geq 4$. Then

$$
\begin{equation*}
V_{k}(s l(n+1))=\bigoplus_{i \in \mathbb{Z}} V_{k}(s l(n+1))^{(i)} \tag{1}
\end{equation*}
$$

and each $V_{k}(s /(n+1))^{(i)}$ - is irreducible $V_{k}(g l(n))$-module.

Remark.

In the case $n=2$, embedding can be described using explicit realization from D.A., Transform. Groups 2015. Connected with LCFT.
The case $n=3$ is open.

Conformal embedding $V_{k}(g /(n))$ into $V_{k}(s /(n+1))$.

Remark.

Note that $k=-\frac{n+1}{2}$ (for n even) is admissible level for $V_{k}(s /(n+1))$, but it is not admissible for $V_{k}(s l(n))$.
Consequence: Characters of non-admissible representations can be described using characters of admissible representations. Connections with MMF(?)

Remark.

$\widehat{s /(n)}$ highest weights of $V_{k}(s /(n+1))^{(i)}$ are

$$
(k-i) \Lambda_{0}+i \Lambda_{1} \quad(i \geq 0), \quad(k+i) \Lambda_{0}-i \Lambda_{n} \quad(i<0) .
$$

Affine W algebra $W^{k}\left(\mathfrak{g}, f_{\theta}\right)$

- Choose root vectors e_{θ} and f_{θ} such that

$$
\left[e_{\theta}, f_{\theta}\right]=x,\left[x, e_{\theta}\right]=e_{\theta},\left[x, f_{\theta}\right]=-f_{\theta} .
$$

- $\operatorname{ad}(x)$ defines minimal $\frac{1}{2} \mathbb{Z}$-gradation:

$$
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1 / 2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1 / 2} \oplus \mathfrak{g}_{1} .
$$

- Let $\mathfrak{g}^{\natural}=\left\{a \in \mathfrak{g}_{0} \mid(a \mid x)=0\right\}$.
- $W^{k}\left(\mathfrak{g}, f_{\theta}\right)$ is strongly generated by vectors
- $G^{\{u\}}, u \in \mathfrak{g}_{-1 / 2}$, of conformal weight $3 / 2$;
- $J^{\{a\}}, u \in \mathfrak{g}^{\natural}$ of conformal weight 1 ;
- ω conformal vector of central charge

$$
c(\mathfrak{g}, k)=\frac{k s \operatorname{dimg}}{k+h^{\vee}}-6 k+h^{\vee}-4
$$

Affine vertex subalgebra of $W_{k}\left(\mathfrak{g}, f_{\theta}\right)$

- Assume that $\mathfrak{g}^{\natural}=\bigoplus_{i \in I} \mathfrak{g}_{i}^{\natural}$; and that $\mathfrak{g}_{i}^{\natural}$ is either simple or 1-dimensional abelien
- Let $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)$ be the vertex subalgebra of $W^{k}\left(\mathfrak{g}, f_{\theta}\right)$ generated by $\left\{J^{\{a\}} \mid u \in \mathfrak{g}^{\natural}\right\}$. Then:

$$
\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)=\bigotimes_{i \in I} V^{k_{i}}\left(\mathfrak{g}_{i}^{\natural}\right) .
$$

- Let $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$ be the image of $\mathcal{V}^{k}\left(\mathfrak{g}^{\natural}\right)$ in $W_{k}\left(\mathfrak{g}, f_{\theta}\right)$.
- Let $\omega_{\text {sug }}$ be the Sugawara Virasoro vector in $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$.
- Embedding $\mathcal{V}_{k}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$ in $W_{k}\left(\mathfrak{g}, f_{\theta}\right)$ is called conformal if

$$
\omega_{\text {sug }}=\omega
$$

A numerical criterion for conformal embedding

Theorem (D.A, Kac, Moseneder-Frajria, Papi, Perše (2016))

Embedding $\mathcal{V}_{k}\left(\mathfrak{g}^{\natural}\right)$ in $W_{k}\left(\mathfrak{g}, f_{\theta}\right)$ is conformal if and only if

$$
c(\text { sug })=c(\mathfrak{g}, k) .
$$

Theorem (D.A, Kac, Moseneder-Frajria, Papi, Perše (2016))

Assume that k is conformal level and that $W_{k}\left(\mathfrak{g}, f_{\theta}\right)$ does not collapse on its affine part. Then

$$
k=-\frac{2}{3} h^{\vee} \quad \text { or } \quad k=-\frac{h^{\vee}-1}{2} .
$$

Example: $\mathfrak{g}=s l(m \mid n)$

- Assume: $m \geq n ; m \neq n+2$.
- Set of conformal levels

$$
\left\{-1,-\frac{h^{\vee}}{2},-\frac{h^{\vee}-1}{2},-\frac{2}{3} h^{\vee}\right\} .
$$

- $W_{k}\left(\mathfrak{g}, f_{\theta}\right)=M(1)$ if and only if $k=-1$.
- $W_{k}(\mathfrak{g}, \theta)=\mathcal{V}_{k}(s /(n-2 \mid m))$ if and only if $k=-\frac{h^{\vee}}{2}$.

Application to the extension theory of affine VOA

- When V is a regular VOA, theory of SCE was developed by H. Li (several papers) Dong-Li-Mason (1997), Huang-Lepowsky-Kirilov,
- When V is not rational, not C_{2} cofinite, and M is a SC V-module satisfying certain condition, it is non-trivial to show that $V \oplus M$ is again a VOA (recent work of Creutzig, Kanade, Linshaw).
- "Elegant solution". Realize:

$$
W_{k}\left(\mathfrak{g}, f_{\theta}\right)=V \bigoplus M
$$

- In [AKMPP(2016)] for every simple Lie superalgebra \mathfrak{g} such that \mathfrak{g}^{\natural} is a semi-simple Lie algebra, we take suitable conformal k and show that

$$
W_{k}\left(\mathfrak{g}, f_{\theta}\right)=\mathcal{V}_{k}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \bigoplus M
$$

where M is a simple $V_{k}\left(\mathfrak{g}^{\natural}\right)$-module.

Conformal embedding $V_{k+1}(g /(n))$ in $\left.W_{k}(s)(n+2), f_{\theta}\right)$:

Theorem (AKMPP, 2016)

Let $k=-\frac{2}{3}(n+2)$. Then we have conformal embedding $V_{k+1}(g /(n))$ in $W_{k}=W_{k}\left(s l(n+2), f_{\theta}\right)$.
Assume that $n \geq 3$. Then

$$
\begin{equation*}
W_{k}=\bigoplus_{i \in \mathbb{Z}} W_{k}^{(i)} \tag{2}
\end{equation*}
$$

and each $W_{k}^{(i)}$ - is irreducible $V_{k+1}(g /(n))$-module.

Remark.

In all cases, $n \geq 3 W_{k}^{(i)}$ are not admissible $V_{k+1}(g l(n))$-modules. We believe that they are simple currents in the category $K L_{k+1}$.

Conformal emneddings with infinite decomposition property

- Conformal embeddings with infinite decomposition property are
- $V_{-3 / 2}(g /(2))$ in $V_{-3 / 2}(s /(3))$,
- $V_{-5 / 3}(g /(2))$ in $W_{-8 / 3}$.
- Each $V_{-3 / 2}(s /(3))^{(i)}$ and $W_{-8 / 3}^{(i)}$ are direct sum of infinitely many irreducible $\widehat{g l}_{2}$-modules.
- Analysis of these embedding uses explicit realization of certain vertex algebras from D.A, Transform. Groups (2015).

Wakimoto modules

- Let $p \in \mathbb{Z}_{\geq 0}, p \geq 2$. Assume now that $k+2=\frac{1}{p}$. Let $L^{(p)}$ be the following lattice $L^{(p)}=\mathbb{Z} \alpha+\mathbb{Z} \beta+\mathbb{Z} \delta+\mathbb{Z} \varphi$
- with the \mathbb{Q}-valued bilinear form $\langle\cdot, \cdot\rangle$ and non-trival products that $\langle\alpha, \alpha\rangle=1, \quad\langle\beta, \beta\rangle=-1, \quad\langle\delta, \delta\rangle=-\langle\varphi, \varphi\rangle=\frac{2}{p}$.
- Let $V_{L^{(p)}}$ be the associated generalized vertex algebra. If $p=2$ then $V_{L^{(2)}}$ is a vertex superalgebra.
- There is a injective homomorphism of vertex algebras $V^{k}\left(s /_{2}\right) \rightarrow V_{L^{(p)}}$ given by

$$
\begin{aligned}
e= & e^{\alpha+\beta}, \quad h=-2 \beta(-1)+\delta(-1), \\
f= & \left((k+1)\left(\alpha(-1)^{2}-\alpha(-2)\right)-\alpha(-1) \delta(-1)+\right. \\
& (k+2) \alpha(-1) \beta(-1)) e^{-\alpha-\beta} .
\end{aligned}
$$

- Screening operators are

$$
Q=\operatorname{Res}_{z} Y\left(e^{\alpha+\beta-p \delta}, z\right), \quad \widetilde{Q}=\operatorname{Res}_{z} Y\left(e^{-\frac{\alpha+\beta-p \delta}{p}}, z\right) .
$$

- The Weyl vertex algebra M is isomorphic to a subalgebra of $V_{L^{(p)}}$ generated by

$$
a=e^{\alpha+\beta}, a^{*}=-\alpha(-1) e^{-\alpha-\beta} .
$$

- Let $M_{\delta}(1)$ be the Heisenberg vertex algebra generated by δ.

$$
F_{p / 2}=M_{\delta}(1) \otimes \mathbb{C}\left[\mathbb{Z} \frac{p}{2} \delta\right] \quad \text { and } \quad M \otimes F_{p / 2}
$$

We have the following (generalized) vertex algebra

$$
\mathcal{V}^{(p)}=\operatorname{Ker}_{M \otimes F_{p / 2}} \widetilde{Q} .
$$

$N=4$ superconformal vertex algebra $V_{c}^{N=4}$

$V_{c}^{N=4}=W^{k}\left(p s l(2,2), f_{\theta}\right), c=-6(k+1)$; is generated by the Virasoro field L, three primary fields of conformal weight $1, J^{0}, J^{+}$and J^{-}(even part) and four primary fields of conformal weight $\frac{3}{2}, G^{ \pm}$and $\bar{G}^{ \pm}$(odd part).
The remaining (non-vanishing) λ-brackets are

$$
\begin{array}{cl}
{\left[J_{\lambda}^{0}, J^{ \pm}\right]= \pm 2 J^{ \pm}} & {\left[J_{\lambda}^{0} J^{0}\right]=\frac{c}{3} l} \\
{\left[J_{\lambda}^{+} J^{-}\right]=J^{0}+\frac{c}{6} \lambda} & {\left[J_{\lambda}^{0} G^{ \pm}\right]= \pm G^{ \pm}} \\
{\left[J_{\lambda}^{0} \bar{G}^{ \pm}\right]= \pm \bar{G}^{ \pm}} & {\left[J_{\lambda}^{+} G^{-}\right]=G^{+}} \\
{\left[J_{\lambda}^{-} G^{+}\right]=G^{-}} & {\left[J_{\lambda}^{+} \bar{G}^{-}\right]=-\bar{G}^{+}} \\
{\left[J_{\lambda}^{-} \bar{G}^{+}\right]=-\bar{G}^{-}} & {\left[G_{\lambda}^{ \pm} \bar{G}^{ \pm}\right]=(T+2 \lambda) J^{ \pm}} \\
{\left[G_{\lambda}^{ \pm} \bar{G}^{\mp}\right]=} & L \pm \frac{1}{2} T J^{0} \pm \lambda J^{0}+\frac{c}{6} \lambda^{2}
\end{array}
$$

Let $L_{c}^{N=4}=W_{k}\left(p s /(2,2), f_{\theta}\right)$.

$N=4$ superconformal vertex algebra $L_{c}^{N=4}$ with $c=-9$

We shall present some results from D.Adamović, Transformation Groups (2015)

Theorem

(i) $V_{k}\left(s I_{2}\right)$ with $k=-3 / 2$ is conformally embedded into $L_{c}^{N=4}$ with $c=-9$.
(ii)

$$
L_{c}^{N=4} \cong \mathcal{V}^{(2)}=(M \otimes F)^{i n t}
$$

where $M \otimes F$ is a maximal $s s_{2}$-integrable submodule of the Weyl-Clifford vertex algebra $M \otimes F$.

$L_{c}^{N=4}$ with $c=-9$ as an $\widehat{s l}_{2}-$ module

$L_{c}^{N=4}$ with $c=-9$ is completely reducible $\widehat{s /_{2}}-$ module and the following decomposition holds:

$$
L_{c}^{N=4} \cong \bigoplus_{m=0}^{\infty}(m+1) L_{A_{1}}\left(-\left(\frac{3}{2}+m\right) \Lambda_{0}+m \Lambda_{1}\right)
$$

$L_{c}^{N=4}$ is a completely reducible $s l_{2} \times \widehat{s l_{2}}$-modules. $s l_{2}$ action is obtained using screening operators for Wakimoto realization of $\widehat{s l_{2}}$-modules at level $-3 / 2$.

The affine vertex algebra $V_{k}(s / 3)$ with $k=-3 / 2$.

Theorem

(i) The simple affine vertex algebra $V_{k}\left(s /_{3}\right)$ with $k=-3 / 2$ is realized as a subalgebra of $L_{c}^{N=4} \otimes F_{-1}$ with $c=-9$. In particular $V_{k}(s / 3)$ can be realized as subalgebra of

$$
M \otimes F \otimes F_{-1} .
$$

(ii) $L_{c}^{N=4} \otimes F_{-1}$ is a completely reducible $A_{2}^{(1)}$-module at level $k=-3 / 2$.

On representation theory of $L_{c}^{N=4}$ with $c=-9$

- $L_{c}^{N=4}$ has only one irreducible module in the category of strong modules. Every $\mathbf{Z}_{>0}$-graded $L_{c}^{N=4}$-module with finite-dimensional weight spaces (with respect to $L(0)$) is semisimple ("Rationality in the category of strong modules")
- $L_{c}^{N=4}$ has two irreducible module in the category \mathcal{O}. There are non-semisimple $L_{c}^{N=4}$-modules from the category \mathcal{O}.
- $L_{c}^{N=4}$ has infinitely many irreducible modules in the category of weight modules.
- $L_{c}^{N=4}$ admits logarithmic modules on which $L(0)$ does not act semi-simply.

Theorem (D.A, 2015)

Assume that U is an irreducible $L_{c}^{N=4}$-module with $c=-9$ such that $U=\bigoplus_{j \in \mathbb{Z}} U^{j}$ is \mathbb{Z}-graded (in a suitable sense).
Let F_{-1} be the vertex superalgebra associated to lattice $\mathbb{Z} \sqrt{-1}$. Then

$$
U \otimes F_{-1}=\bigoplus_{s \in \mathbb{Z}} \mathcal{L}_{s}(U), \quad \text { where } \quad \mathcal{L}_{s}(U):=\bigoplus_{i \in \mathbb{Z}} U^{i} \otimes F_{-1}^{-s+i}
$$

and for every $s \in \mathbb{Z} \mathcal{L}_{s}(U)$ is an irreducible $A_{2}^{(1)}$-module at level -3/2.

Correspondence between W-algebras and $\overline{s /(n)}$

Higher rang generalization gives a realization of $V_{k}(s /(n))$:

Theorem (AKMPP, 2016)

(1) There is a conformal embedding of $V_{k}(g /(n))$ into the simple W-algebra $\mathcal{W}_{k^{\prime}}=\mathcal{W}_{k^{\prime}}\left(s /(2 \mid n), f_{\theta}\right)$ for $k=-(n+1) / 2$, $k^{\prime}=(n-1) / 2$.
(2) $\mathcal{W}_{k^{\prime}}$ is a semisimple $V_{k}\left(g I_{n}\right)$-module.
(3) The admissible affine vertex algebra $V_{k}(s /(n+1))$ can be embedded in vertex algebra $\mathcal{W}_{k^{\prime}} \otimes F_{-1}$.

Connection with C_{2}-cofinite vertex algebras appearing in LCFT:

Vacuum space of $V_{k}\left(s l_{3}\right)$ with $k=-3 / 2$ contains the vertex algebra $\mathcal{W}_{A_{2}}(p)$ with $p=2$ (which is conjecturally C_{2}-cofinite).
Affine vertex algebra $V_{k}\left(s l_{2}\right)$ for $k+2=\frac{1}{p}, p \geq 2$ can be conformally embedded into the vertex algebra $\mathcal{V}^{(p)}$ generated by $L_{k}\left(s l_{2}\right)$ and 4 primary vectors $\tau_{(p)}^{ \pm}, \bar{\tau}_{(p)}^{ \pm}$.
$\mathcal{V}^{(p)} \cong L_{c}^{N=4}$ for $p=2$.
Drinfeld-Sokolov reduction maps $\mathcal{V}^{(p)}$ to the doublet vertex algebra $\mathcal{A}(p)$ and even part $\left(\mathcal{V}^{(p)}\right)^{\text {even }}$ to the triplet vertex algebra $\mathcal{W}(p)$. (C_{2}-cofiniteness and RT of these vertex algebras were obtain in a work of D.A and A. Milas)

The Vertex algebra $\mathcal{W}_{A_{2}}(p)$: Definition

We consider the lattice

$$
\sqrt{p} A_{2}=\mathbb{Z} \gamma_{1}+\mathbb{Z} \gamma_{2}, \quad\left\langle\gamma_{1}, \gamma_{1}\right\rangle=\left\langle\gamma_{2}, \gamma_{2}\right\rangle=2 p,\left\langle\gamma_{1}, \gamma_{2}\right\rangle=-p .
$$

Let $M_{\gamma_{1}, \gamma_{2}}(1)$ be the s Heisenberg vertex subalgebra of $V_{\sqrt{ } A_{2}}$ generated by the Heisenberg fields $\gamma_{1}(z)$ and $\gamma_{2}(z)$.

$$
\mathcal{W}_{A_{2}}(p)=\operatorname{Ker}_{V_{\sqrt{\bar{P}} A_{2}} e_{0}^{-\gamma_{1} / p} \bigcap \operatorname{Ker}_{V_{\sqrt{\bar{P}} A_{2}}} e_{0}^{-\gamma_{2} / p} . . ~ . ~ . ~} .
$$

We also have its subalgebra:

$$
\mathcal{W}_{A_{2}}^{0}(p)=\operatorname{Ker}_{M_{\gamma_{1}, \gamma_{2}}(1)} e_{0}^{-\gamma_{1} / p} \bigcap \operatorname{Ker}_{M_{\gamma_{1}, \gamma_{2}}(1)} e_{0}^{-\gamma_{2} / p}
$$

$\mathcal{W}_{A_{2}}(p)$ and $\mathcal{W}_{A_{2}}^{0}(p)$ have vertex subalgebra isomorphic to the simple $\mathcal{W}(2,3)$-algebra with central charge $c_{p}=2-24 \frac{(p-1)^{2}}{p}$.

The Vertex algebra $\mathcal{W}_{A_{2}}(p)$: Conjecture

(i) $\mathcal{W}_{A_{2}}(p)$ is a C_{2}-cofinite vertex algebra for $p \geq 2$ and that it is a completely reducible $\mathcal{W}(2,3) \times s / 3$-module.
(ii) $\mathcal{W}_{\mathrm{A}_{2}}(p)$ is strongly generated by $\mathcal{W}(2,3)$ generators and by $s s_{3} . e^{-\gamma_{1}-\gamma_{2}}$, so by 8 primary fields for the $\mathcal{W}(2,3)$-algebra.

Note that $\mathcal{W}_{A_{2}}(p)$ is a generalization of the triplet vertex algebra $\mathcal{W}(p)$ and $\mathcal{W}_{A_{2}}^{0}(p)$ is a generalization of the singlet vertex subalgebra of $\mathcal{W}(p)$.

Relation with parafermionic vertex algebras for $p=2$

(i) Let $K\left(s /_{3}, k\right)$ be the parafermion vertex subalgebra of $V_{k}(s / 3)$.
(iii) For $k=-3 / 2$ we have

$$
K\left(s l_{3}, k\right)=\mathcal{W}_{A_{2}}^{0}(p) .
$$

Vertex algebras $\mathcal{R}^{(p)}$

Let $F_{-p / 2}$ denotes the generalized lattice vertex algebra associated to the lattice $\mathbb{Z}\left(\frac{p}{2} \varphi\right)$ such that

$$
\langle\varphi, \varphi\rangle=-\frac{2}{p} .
$$

Let $\mathcal{R}^{(p)}$ by the subalgebra of $\mathcal{V}^{(p)} \otimes F_{-p / 2}$ generated by $x=x(-1) \mathbf{1} \otimes 1, x \in\{e, f, h\}, 1 \otimes \varphi(-1) \mathbf{1}$ and

$$
\begin{align*}
e_{\alpha_{1}, p} & :=\frac{1}{\sqrt{2}} e^{\frac{p}{2}(\delta+\varphi)} \tag{3}\\
f_{\alpha_{1}, p} & :=\frac{1}{\sqrt{2}} f(0) e_{\alpha_{1}, p} \tag{4}\\
e_{\alpha_{2}, p} & :=\frac{1}{\sqrt{2}} Q e^{\frac{p}{2}(\delta-\varphi)} \tag{5}\\
f_{\alpha_{2}, p} & :=\frac{1}{\sqrt{2}} f(0) e_{\alpha_{2}, p} \tag{6}
\end{align*}
$$

Realization of simple W-algebra $W_{k}\left(s l(4), f_{\theta}\right)$

Recall that $\mathcal{R}^{(2)} \cong L_{A_{2}}\left(-\frac{3}{2} \Lambda_{0}\right)$.

Theorem

- $\mathcal{R}^{(3)} \cong W_{k}\left(s /_{4}, f_{\theta}\right)$ with $k=-8 / 3$.
- $W_{k}\left(s /(4), f_{\theta}\right)=\bigoplus_{i \in \mathbb{Z}} W_{k}\left(s /(4), f_{\theta}\right)^{(i)}$.
- Each $\left.W_{k}(s)(4), f_{\theta}\right)^{(i)}$ is a direct sum of infinitely many $V_{-5 / 3}(\mathrm{gl}(2))$-modules.

Thank you!

