Yangians, quantum loop algebras and elliptic quantum groups
 (joint with Sachin Gautam)

Valerio Toledano Laredo

Northeastern University
Banff
February 10, 2016

Three infinite-dimensional quantum groups

Three infinite-dimensional quantum groups

- Yangian $Y_{\hbar}(\mathfrak{g})$.

Three infinite-dimensional quantum groups

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

Three infinite-dimensional quantum groups

■ Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

- Quantum Loop algebra $U_{q}(L \mathfrak{g})$.

Three infinite-dimensional quantum groups

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

■ Quantum Loop algebra $U_{q}(L \mathfrak{g})$. Deformation of $\mathfrak{g}\left[z, z^{-1}\right]$.

Three infinite-dimensional quantum groups

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

■ Quantum Loop algebra $U_{q}(L \mathfrak{g})$. Deformation of $\mathfrak{g}\left[z, z^{-1}\right]$.

- Elliptic Quantum Group $E_{\tau, \hbar}(\mathfrak{g})$.

Three infinite-dimensional quantum groups

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

■ Quantum Loop algebra $U_{q}(L \mathfrak{g})$. Deformation of $\mathfrak{g}\left[z, z^{-1}\right]$.

■ Elliptic Quantum Group $E_{\tau, \hbar}(\mathfrak{g})$. Deformation of $\vartheta: \mathbb{C} \rightarrow \mathfrak{g}$.

Goal

Goal

- Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_{q}(L \mathfrak{g})$ and $E_{\tau, \hbar}(\mathfrak{g})$.

Goal

- Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_{q}(L \mathfrak{g})$ and $E_{\tau, \hbar}(\mathfrak{g})$.
- All the results are valid for a symmetrisable Kac-Moody algebra \mathfrak{g}.

Goal

■ Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_{q}(L \mathfrak{g})$ and $E_{\tau, \hbar}(\mathfrak{g})$.

- All the results are valid for a symmetrisable Kac-Moody algebra \mathfrak{g}.
- For notational simplicity, restrict attention to $\mathfrak{g}=\mathfrak{s l}_{2}=\langle e, f, h\rangle$.

The Yangian $Y_{\hbar}(\mathfrak{g})$

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.
Generators $\left\{\xi_{r}, x_{r}^{+}, x_{r}^{-}\right\}_{r \geq 0}$

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.
Generators $\left\{\xi_{r}, x_{r}^{+}, x_{r}^{-}\right\}_{r \geq 0}$, with classical limit $(\hbar \rightarrow 0)$

$$
\xi_{r} \rightarrow h \otimes s^{r} \quad x_{r}^{+} \rightarrow e \otimes s^{r} \quad x_{r}^{-} \rightarrow f \otimes s^{r}
$$

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.
Generators $\left\{\xi_{r}, x_{r}^{+}, x_{r}^{-}\right\}_{r \geq 0}$, with classical limit $(\hbar \rightarrow 0)$

$$
\xi_{r} \rightarrow h \otimes s^{r} \quad x_{r}^{+} \rightarrow e \otimes s^{r} \quad x_{r}^{-} \rightarrow f \otimes s^{r}
$$

Relations

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.
Generators $\left\{\xi_{r}, x_{r}^{+}, x_{r}^{-}\right\}_{r \geq 0}$, with classical limit $(\hbar \rightarrow 0)$

$$
\xi_{r} \rightarrow h \otimes s^{r} \quad x_{r}^{+} \rightarrow e \otimes s^{r} \quad x_{r}^{-} \rightarrow f \otimes s^{r}
$$

Relations for any $r, s \in \mathbb{N}$

$$
\begin{aligned}
{\left[\xi_{r}, \xi_{s}\right] } & =0 \\
{\left[\xi_{0}, x_{r}^{ \pm}\right] } & = \pm 2 x_{r}^{ \pm} \\
{\left[x_{r}^{+}, x_{s}^{-}\right] } & =\xi_{r+s}
\end{aligned}
$$

The Yangian $Y_{\hbar}(\mathfrak{g})$

$Y_{\hbar}(\mathfrak{g})$ assoc. alg. $/ \mathbb{C}$, depending on $\hbar \in \mathbb{C},\left.Y_{\hbar}(\mathfrak{g})\right|_{\hbar=0}=U(\mathfrak{g}[s])$.
Generators $\left\{\xi_{r}, x_{r}^{+}, x_{r}^{-}\right\}_{r \geq 0}$, with classical limit $(\hbar \rightarrow 0)$

$$
\xi_{r} \rightarrow h \otimes s^{r} \quad x_{r}^{+} \rightarrow e \otimes s^{r} \quad x_{r}^{-} \rightarrow f \otimes s^{r}
$$

Relations for any $r, s \in \mathbb{N}$

$$
\begin{aligned}
{\left[\xi_{r}, \xi_{s}\right] } & =0 \\
{\left[\xi_{0}, x_{r}^{ \pm}\right] } & = \pm 2 x_{r}^{ \pm} \\
{\left[x_{r}^{+}, x_{s}^{-}\right] } & =\xi_{r+s} \\
{\left[\xi_{r+1}, x_{s}^{ \pm}\right]-\left[\xi_{r}, x_{s+1}^{ \pm}\right] } & = \pm \hbar\left(\xi_{r} x_{s}^{ \pm}+x_{s}^{ \pm} \xi_{r}\right) \\
{\left[x_{r+1}^{ \pm}, x_{s}^{ \pm}\right]-\left[x_{r}^{ \pm}, x_{s+1}^{ \pm}\right] } & = \pm \hbar\left(x_{r}^{ \pm} x_{s}^{ \pm}+x_{s}^{ \pm} x_{r}^{ \pm}\right)
\end{aligned}
$$

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$ $(\hbar \neq 0)$

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$ $(\hbar \neq 0)$

Thm (Drinfeld, Tarasov, Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$ $(\hbar \neq 0)$

Thm (Drinfeld, Tarasov, Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

Example

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$ $(\hbar \neq 0)$

Thm (Drinfeld, Tarasov, Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

Example If $a_{1}, \ldots, a_{m} \in \mathbb{C}$, the evaluation representation

$$
V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{m}\right)
$$

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$

 $(\hbar \neq 0)$Thm (Drinfeld, Tarasov, Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

Example If $a_{1}, \ldots, a_{m} \in \mathbb{C}$, the evaluation representation

$$
V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{m}\right)
$$

is irreducible iff $a_{i}-a_{j} \neq \hbar$ for any $i \neq j$.

Irreducible finite-dimensional representations of $Y_{\hbar}(\mathfrak{g})$ $(\hbar \neq 0)$

Thm (Drinfeld, Tarasov, Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

Example If $a_{1}, \ldots, a_{m} \in \mathbb{C}$, the evaluation representation

$$
V=\mathbb{C}^{2}\left(a_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(a_{m}\right)
$$

is irreducible iff $a_{i}-a_{j} \neq \hbar$ for any $i \neq j$. If so, it corresponds to the m-tuple $\left\{a_{1}, \ldots, a_{m}\right\}$.

$Y_{\hbar}(\mathfrak{g})$ revisited: fields

$Y_{h}(\mathfrak{g})$ revisited: fields

Generating functions

$Y_{h}(\mathfrak{g})$ revisited: fields

Generating functions

$$
\xi(u)=1+\hbar \sum_{r \geq 0} \xi_{r} u^{-r-1} \quad x^{ \pm}(u)=\hbar \sum_{r \geq 0} x_{r}^{ \pm} u^{-r-1}
$$

$Y_{h}(\mathfrak{g})$ revisited: fields

Generating functions

$$
\xi(u)=1+\hbar \sum_{r \geq 0} \xi_{r} u^{-r-1} \quad x^{ \pm}(u)=\hbar \sum_{r \geq 0} x_{r}^{ \pm} u^{-r-1}
$$

Relations

$Y_{\hbar}(\mathfrak{g})$ revisited: fields

Generating functions

$$
\xi(u)=1+\hbar \sum_{r \geq 0} \xi_{r} u^{-r-1} \quad x^{ \pm}(u)=\hbar \sum_{r \geq 0} x_{r}^{ \pm} u^{-r-1}
$$

Relations

$$
\begin{aligned}
{[\xi(u), \xi(v)] } & =0 \\
{\left[x^{+}(u), x^{-}(v)\right] } & =\frac{\hbar}{u-v}(\xi(v)-\xi(u)) \\
\xi(u) x^{ \pm}(v) \xi(u)^{-1} & =\frac{u-v \pm \hbar}{u-v \mp \hbar} x^{ \pm}(v) \mp \frac{2 \hbar}{u-v \mp \hbar} x^{ \pm}(u \mp \hbar) \\
x^{ \pm}(u) x^{ \pm}(v) & =\frac{u-v \pm \hbar}{u-v \mp \hbar} x^{ \pm}(v) x^{ \pm}(u) \mp \frac{\hbar}{u-v \mp \hbar}\left(x^{ \pm}(u)^{2}+x^{ \pm}(v)^{2}\right)
\end{aligned}
$$

$Y_{\hbar}(\mathfrak{g})$ revisited: fields

Generating functions

$$
\xi(u)=1+\hbar \sum_{r \geq 0} \xi_{r} u^{-r-1} \quad x^{ \pm}(u)=\hbar \sum_{r \geq 0} x_{r}^{ \pm} u^{-r-1}
$$

Relations

$$
\begin{aligned}
{[\xi(u), \xi(v)] } & =0 \\
{\left[x^{+}(u), x^{-}(v)\right] } & =\frac{\hbar}{u-v}(\xi(v)-\xi(u)) \\
\xi(u) x^{ \pm}(v) \xi(u)^{-1} & =\frac{u-v \pm \hbar}{u-v \mp \hbar} x^{ \pm}(v) \mp \frac{2 \hbar}{u-v \mp \hbar} x^{ \pm}(u \mp \hbar) \\
x^{ \pm}(u) x^{ \pm}(v) & =\frac{u-v \pm \hbar}{u-v \mp \hbar} x^{ \pm}(v) x^{ \pm}(u) \mp \frac{\hbar}{u-v \mp \hbar}\left(x^{ \pm}(u)^{2}+x^{ \pm}(v)^{2}\right)
\end{aligned}
$$

Prop (GTL) On $V \in \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$, the fields $\xi(u), x^{ \pm}(u)$ are the Taylor expansions at $u=\infty$ of $\operatorname{End}(V)$-valued rational functions.

The quantum loop algebra $U_{q}(L \mathfrak{g})$

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$

Generators

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$
Generators $X_{\ell}^{ \pm}, \ell \in \mathbb{Z}$ and $\Psi_{ \pm k}^{ \pm}, k \in \mathbb{N}$,

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$
Generators $X_{\ell}^{ \pm}, \ell \in \mathbb{Z}$ and $\Psi_{ \pm k}^{ \pm}, k \in \mathbb{N}$, with classical limit $(q \rightarrow 1)$
$X_{\ell}^{+} \rightarrow e \otimes z^{\ell} \quad X_{\ell}^{-} \rightarrow f \otimes z^{\ell} \quad \Psi_{0}^{ \pm} \sim q^{ \pm h} \quad \Psi_{ \pm k}^{ \pm} \sim \pm\left(q-q^{-1}\right) q^{ \pm h} \cdot h \otimes z^{ \pm k}$

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$
Generators $X_{\ell}^{ \pm}, \ell \in \mathbb{Z}$ and $\Psi_{ \pm k}^{ \pm}, k \in \mathbb{N}$, with classical limit $(q \rightarrow 1)$
$X_{\ell}^{+} \rightarrow e \otimes z^{\ell} \quad X_{\ell}^{-} \rightarrow f \otimes z^{\ell} \quad \Psi_{0}^{ \pm} \sim q^{ \pm h} \quad \Psi_{ \pm k}^{ \pm} \sim \pm\left(q-q^{-1}\right) q^{ \pm h} \cdot h \otimes z^{ \pm k}$

Relations

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$
Generators $X_{\ell}^{ \pm}, \ell \in \mathbb{Z}$ and $\Psi_{ \pm k}^{ \pm}, k \in \mathbb{N}$, with classical limit $(q \rightarrow 1)$
$X_{\ell}^{+} \rightarrow e \otimes z^{\ell} \quad X_{\ell}^{-} \rightarrow f \otimes z^{\ell} \quad \Psi_{0}^{ \pm} \sim q^{ \pm h} \quad \Psi_{ \pm k}^{ \pm} \sim \pm\left(q-q^{-1}\right) q^{ \pm h} \cdot h \otimes z^{ \pm k}$

Relations $\Psi_{0}^{+} \Psi_{0}^{-}=1$ and

$$
\begin{aligned}
& {\left[\Psi_{k}^{ \pm}, \Psi_{k^{\prime}}^{ \pm}\right]=0=\left[\Psi_{k}^{ \pm}, \Psi_{k^{\prime}}^{\mp}\right]} \\
& \Psi_{0}^{+} X_{\ell}^{ \pm}\left(\Psi_{0}^{+}\right)^{-1}=q^{ \pm 2} X_{\ell}^{ \pm}
\end{aligned}
$$

The quantum loop algebra $U_{q}(L \mathfrak{g})$

$U_{q}(L \mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \backslash \sqrt{1}$
Generators $X_{\ell}^{ \pm}, \ell \in \mathbb{Z}$ and $\Psi_{ \pm k}^{ \pm}, k \in \mathbb{N}$, with classical limit $(q \rightarrow 1)$
$X_{\ell}^{+} \rightarrow e \otimes z^{\ell} \quad X_{\ell}^{-} \rightarrow f \otimes z^{\ell} \quad \Psi_{0}^{ \pm} \sim q^{ \pm h} \quad \Psi_{ \pm k}^{ \pm} \sim \pm\left(q-q^{-1}\right) q^{ \pm h} \cdot h \otimes z^{ \pm k}$
Relations $\Psi_{0}^{+} \Psi_{0}^{-}=1$ and

$$
\begin{gathered}
{\left[\Psi_{k}^{ \pm}, \Psi_{k^{\prime}}^{ \pm}\right]=0=\left[\Psi_{k}^{ \pm}, \Psi_{k^{\prime}}^{\mp}\right]} \\
\Psi_{0}^{+} X_{\ell}^{ \pm}\left(\Psi_{0}^{+}\right)^{-1}=q^{ \pm 2} X_{\ell}^{ \pm} \\
{\left[X_{\ell}^{+}, X_{\ell^{\prime}}^{-}\right]=\frac{\Psi_{\ell+\ell^{\prime}}^{+}-\Psi_{\ell+\ell^{\prime}}^{-}}{q-q^{-1}}} \\
\Psi_{k+1}^{\varepsilon} X_{\ell}^{ \pm}-q^{ \pm 2} X_{\ell}^{ \pm} \Psi_{k+1}^{\varepsilon}=q^{ \pm 2} \Psi_{k}^{\varepsilon} X_{\ell+1}^{ \pm}-X_{\ell+1}^{ \pm} \Psi_{k}^{\varepsilon} \\
X_{\ell+1}^{ \pm} X_{\ell^{\prime}}^{ \pm}-q^{ \pm 2} X_{\ell^{\prime}}^{ \pm} X_{\ell+1}^{ \pm}=q^{ \pm 2} X_{\ell}^{ \pm} X_{\ell^{\prime}+1}^{ \pm}-X_{\ell^{\prime}+1}^{ \pm} X_{\ell \ell}^{ \pm}
\end{gathered}
$$

Irreducible finite-dimensional representations of $U_{q}(L \mathfrak{g})$

Irreducible finite-dimensional representations of $U_{q}(L \mathfrak{g})$

Theorem (Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}^{\times}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0}\left(\mathbb{C}^{\times}\right)^{n} / \mathfrak{S}_{n}
$$

Irreducible finite-dimensional representations of $U_{q}(L \mathfrak{g})$

Theorem (Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}^{\times}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0}\left(\mathbb{C}^{\times}\right)^{n} / \mathfrak{S}_{n}
$$

Example If $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}^{\times}$, the evaluation representation

$$
\mathcal{V}=\mathbb{C}^{2}\left(\alpha_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(\alpha_{m}\right)
$$

Irreducible finite-dimensional representations of $U_{q}(L \mathfrak{g})$

Theorem (Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}^{\times}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0}\left(\mathbb{C}^{\times}\right)^{n} / \mathfrak{S}_{n}
$$

Example If $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}^{\times}$, the evaluation representation

$$
\mathcal{V}=\mathbb{C}^{2}\left(\alpha_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(\alpha_{m}\right)
$$

is irreducible iff $\alpha_{i} / \alpha_{j} \neq q^{2}$, for any $i \neq j$.

Irreducible finite-dimensional representations of $U_{q}(L \mathfrak{g})$

Theorem (Chari-Pressley) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C}^{\times}.

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0}\left(\mathbb{C}^{\times}\right)^{n} / \mathfrak{S}_{n}
$$

Example If $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{C}^{\times}$, the evaluation representation

$$
\mathcal{V}=\mathbb{C}^{2}\left(\alpha_{1}\right) \otimes \cdots \otimes \mathbb{C}^{2}\left(\alpha_{m}\right)
$$

is irreducible iff $\alpha_{i} / \alpha_{j} \neq q^{2}$, for any $i \neq j$. If so, it corresponds to the m-tuple $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

$U_{q}(L \mathfrak{g}):$ fields

$U_{q}(L \mathfrak{g})$: fields

$$
\begin{aligned}
\Psi(z)^{\infty} & =\sum_{r \geq 0} \Psi_{r}^{+} z^{-r} & X^{ \pm}(z)^{\infty} & =\sum_{r \geq 0} X_{r}^{ \pm} z^{-r} \\
\Psi(z)^{0} & =\sum_{r \geq 0} \Psi_{-r}^{-} z^{r} & X^{ \pm}(z)^{0} & =-\sum_{r>0} X_{-r}^{ \pm} z^{r}
\end{aligned}
$$

$U_{q}(L \mathfrak{g}):$ fields

$$
\begin{aligned}
\Psi(z)^{\infty}=\sum_{r \geq 0} \Psi_{r}^{+} z^{-r} & X^{ \pm}(z)^{\infty}=\sum_{r \geq 0} X_{r}^{ \pm} z^{-r} \\
\Psi(z)^{0}=\sum_{r \geq 0} \Psi_{-r}^{-} z^{r} & X^{ \pm}(z)^{0}=-\sum_{r>0} X_{-r}^{ \pm} z^{r}
\end{aligned}
$$

Prop. (Beck-Kac,Hernandez) On $V \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right), \Psi(z)^{\infty / 0}$ and $X^{ \pm}(z)^{\infty / 0}$ are the exp. at $z=\infty / 0$ of rat'l functions $\Psi(z), X^{ \pm}(z)$.

$U_{q}(L \mathfrak{g}):$ fields

$$
\begin{aligned}
\Psi(z)^{\infty}=\sum_{r \geq 0} \Psi_{r}^{+} z^{-r} & X^{ \pm}(z)^{\infty}=\sum_{r \geq 0} X_{r}^{ \pm} z^{-r} \\
\Psi(z)^{0}=\sum_{r \geq 0} \Psi_{-r}^{-} z^{r} & X^{ \pm}(z)^{0}=-\sum_{r>0} X_{-r}^{ \pm} z^{r}
\end{aligned}
$$

Prop. (Beck-Kac,Hernandez) On $V \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right), \Psi(z)^{\infty / 0}$ and $X^{ \pm}(z)^{\infty / 0}$ are the exp. at $z=\infty / 0$ of rat'l functions $\Psi(z), X^{ \pm}(z)$.
Relations

$U_{q}(L \mathfrak{g}):$ fields

$$
\begin{aligned}
\Psi(z)^{\infty}=\sum_{r \geq 0} \Psi_{r}^{+} z^{-r} & X^{ \pm}(z)^{\infty}=\sum_{r \geq 0} X_{r}^{ \pm} z^{-r} \\
\Psi(z)^{0}=\sum_{r \geq 0} \Psi_{-r}^{-} z^{r} & X^{ \pm}(z)^{0}=-\sum_{r>0} X_{-r}^{ \pm} z^{r}
\end{aligned}
$$

Prop. (Beck-Kac,Hernandez) On $V \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right), \Psi(z)^{\infty / 0}$ and $X^{ \pm}(z)^{\infty / 0}$ are the exp. at $z=\infty / 0$ of rat'l functions $\Psi(z), X^{ \pm}(z)$.

Relations $[\Psi(z), \Psi(w)]=0$

$U_{q}(L \mathfrak{g}):$ fields

$$
\begin{aligned}
\Psi(z)^{\infty} & =\sum_{r \geq 0} \Psi_{r}^{+} z^{-r} & X^{ \pm}(z)^{\infty} & =\sum_{r \geq 0} X_{r}^{ \pm} z^{-r} \\
\Psi(z)^{0} & =\sum_{r \geq 0} \Psi_{-r}^{-} z^{r} & X^{ \pm}(z)^{0} & =-\sum_{r>0} X_{-r}^{ \pm} z^{r}
\end{aligned}
$$

Prop. (Beck-Kac,Hernandez) On $V \in \operatorname{Rep}_{f d}\left(U_{q}(L \mathfrak{g})\right), \Psi(z)^{\infty / 0}$ and $X^{ \pm}(z)^{\infty / 0}$ are the exp. at $z=\infty / 0$ of rat'l functions $\Psi(z), X^{ \pm}(z)$.

Relations $[\Psi(z), \Psi(w)]=0$

$$
\begin{aligned}
\operatorname{Ad}(\Psi(z)) \mathcal{X}^{ \pm}(w) & =\frac{q^{ \pm 2} z-w}{z-q^{ \pm 2} w} \mathcal{X}^{ \pm}(w) \mp \frac{\left(q^{2}-q^{-2}\right) q^{ \pm 2} w}{z-q^{ \pm 2} w} \mathcal{X}^{ \pm}\left(q^{\mp 2} z\right) \\
\mathcal{X}^{ \pm}(z) \mathcal{X}^{ \pm}(w) & =\frac{q^{ \pm 2} z-w}{z-q^{ \pm 2} w} \mathcal{X}^{ \pm}(w) \mathcal{X}^{ \pm}(z) \mp \frac{1-q^{ \pm 2}}{z-q^{ \pm 2} w}\left(w \mathcal{X}^{ \pm}(z)^{2}+z \mathcal{X}^{ \pm}(w)^{2}\right. \\
{\left[\mathcal{X}^{+}(z), \mathcal{X}^{-}(w)\right] } & =\frac{1}{q-q^{-1}}\left(\frac{z \Psi(w)-w \Psi(z)}{z-w}-\Psi(0)\right)
\end{aligned}
$$

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

$$
\operatorname{lrrep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^{n} / \mathfrak{S}_{n}
$$

$$
\operatorname{Irrep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \longleftrightarrow \bigcup_{n \geq 0}\left(\mathbb{C}^{\times}\right)^{n} / \mathfrak{S}_{n}
$$

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E x p}$ preserves dimensions.

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E x p}$ preserves dimensions.

Caveat $\mathcal{E} \times p$ is a set-theoretic map, not a functor.

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E x p}$ preserves dimensions.

Caveat $\mathcal{E x p}$ is a set-theoretic map, not a functor.
Problem Construct a functor $\mathcal{F}: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ which induces $\mathcal{E} \times p$,

Problem \# 1: relation between $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$?

" $Y_{\hbar}(\mathfrak{g})$ and $U_{q}(L \mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E x p}$ preserves dimensions.

Caveat $\mathcal{E x p}$ is a set-theoretic map, not a functor.
Problem Construct a functor $\mathcal{F}: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ which induces $\mathcal{E} \times p$, and an equivalence of appropriate subcategories.

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \iota \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$.

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \iota \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \iota \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
■ $\Gamma(V)=V$ as vector spaces

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
1 $\Gamma(V)=V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \iota \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
I $\Gamma(V)=V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).

- 「 is essentially surjective.

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
$1 \Gamma(V)=V$ as vector spaces $(\Rightarrow \Gamma$ is exact and faithful).
2 「 is essentially surjective.
3「 maps simples to simples

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$. More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
$1 \Gamma(V)=V$ as vector spaces $(\Rightarrow \Gamma$ is exact and faithful).
2 「 is essentially surjective.
3 「 maps simples to simples and induces the map $\mathcal{E} \times p$ on parameters.

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$.
More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
$1 \Gamma(V)=V$ as vector spaces $(\Rightarrow \Gamma$ is exact and faithful).
2 「 is essentially surjective.
3Γ maps simples to simples and induces the map $\mathcal{E} \times p$ on parameters.
4Γ restricts to an equivalence on a subcategory $\mathcal{C} \subset \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ determined by a branch of log.

Solution. $\hbar \in \mathbb{C} \backslash \mathbb{Q}, q=e^{\pi \hbar \hbar} \in \mathbb{C}^{\times} \backslash \sqrt{1}$

Theorem (Gautam-TL 2013)
$\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$.
More precisely, there is a functor

$$
\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \longrightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)
$$

such that
$1 \Gamma(V)=V$ as vector spaces $(\Rightarrow \Gamma$ is exact and faithful).
2 「 is essentially surjective.
3 「 maps simples to simples and induces the map $\mathcal{E} \times p$ on parameters.
4Γ restricts to an equivalence on a subcategory $\mathcal{C} \subset \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right)$ determined by a branch of log.

Main ingredient Γ is governed by an abelian difference equation.

A small computation

A small computation

■ $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(\operatorname{ssl}_{2}\right), \alpha \in \mathbb{C}^{\times}$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L \mathfrak{s l}_{2}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L \mathfrak{s l}_{2}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\Psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega
$$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L \mathfrak{s l}_{2}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\begin{aligned}
& \Psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega \\
& \frac{u+\hbar-a}{u-a} \stackrel{?}{\sim} q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}
\end{aligned}
$$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L \mathfrak{s l}_{2}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\begin{aligned}
& \psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega \\
& \frac{u+\hbar-a}{u-a} \stackrel{?}{\sim} q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}
\end{aligned}
$$

- Termwise exponentiation: $\boldsymbol{z}=e^{2 \pi \iota u}, \alpha=e^{2 \pi \iota a}, \boldsymbol{q}=e^{\pi \iota \hbar}$

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L_{\mathfrak{s} l_{2}}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\begin{aligned}
& \psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega \\
& \frac{u+\hbar-a}{u-a} \stackrel{?}{\sim} q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}
\end{aligned}
$$

- Termwise exponentiation: $z=e^{2 \pi \iota u}, \alpha=e^{2 \pi \iota a}, q=e^{\pi \iota \hbar}$
- Better answer

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L \mathfrak{s l}_{2}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\begin{aligned}
& \psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega \\
& \frac{u+\hbar-a}{u-a} \stackrel{?}{\sim} q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}
\end{aligned}
$$

- Termwise exponentiation: $z=e^{2 \pi \iota u}, \alpha=e^{2 \pi \iota a}, q=e^{\pi \iota \hbar}$
- Better answeraveraging

A small computation

- $V \in \operatorname{Rep}\left(\mathfrak{s l}_{2}\right)$ vector repr., $V(a)$ eval. repr. of $Y_{\hbar}\left(\mathfrak{s l}_{2}\right), a \in \mathbb{C}$
- $\omega \in V(a)$ highest weight vector

$$
\xi(u) \omega=\frac{u+\hbar-a}{u-a} \omega
$$

- $\mathcal{V} \in \operatorname{Rep}\left(U_{q} \mathfrak{s l}_{2}\right)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_{q}\left(L_{\mathfrak{s} l_{2}}\right), \alpha \in \mathbb{C}^{\times}$
- $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$
\begin{aligned}
& \psi^{ \pm}(z) \Omega=q^{-1} \frac{q^{2} z-\alpha}{z-\alpha} \Omega \\
& \frac{u+\hbar-a}{u-a} \stackrel{?}{\sim} q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}
\end{aligned}
$$

- Termwise exponentiation: $z=e^{2 \pi \iota u}, \alpha=e^{2 \pi \iota a}, \boldsymbol{q}=e^{\pi \iota \hbar}$
- Better answeraveraging

$$
q^{-1} \frac{q^{2} z-\alpha}{z-\alpha}=\cdots \frac{u+1+\hbar-a}{u+1-a} \cdot \frac{u+\hbar-a}{u-a} \cdot \frac{u-1+\hbar-a}{u-1-a} \cdots
$$

How to average: Additive Difference Equations (ADEs)

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

Theorem (Birkhoff, 1911)

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

Theorem (Birkhoff, 1911) If the eigenvalues of A_{0} do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{ \pm}: \mathbb{C} \rightarrow G L(V)$,

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

Theorem (Birkhoff, 1911) If the eigenvalues of A_{0} do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{ \pm}: \mathbb{C} \rightarrow G L(V)$, which are uniquely determined by

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

Theorem (Birkhoff, 1911) If the eigenvalues of A_{0} do not differ by integers, there are canonical meromorphic fundamental solutions
$\phi^{ \pm}: \mathbb{C} \rightarrow G L(V)$, which are uniquely determined by
I $\phi^{ \pm}$is holomorphic and invertible for $\pm \operatorname{Re} u \gg 0$

How to average: Additive Difference Equations (ADEs)

■ $A: \mathbb{C} \rightarrow G L(V)$ rational function

- $A=1+A_{0} u^{-1}+\cdots$
(Symbolic) half-averages

$$
\varphi^{-}(u)=A(u-1) A(u-2) \cdots \quad \varphi^{+}(u)=A(u)^{-1} A(u+1)^{-1} \cdots
$$

satisfy the additive difference equation

$$
\varphi^{ \pm}(u+1)=A(u) \varphi^{ \pm}(u)
$$

Theorem (Birkhoff, 1911) If the eigenvalues of A_{0} do not differ by integers, there are canonical meromorphic fundamental solutions
$\phi^{ \pm}: \mathbb{C} \rightarrow G L(V)$, which are uniquely determined by
$1 \phi^{ \pm}$is holomorphic and invertible for $\pm \operatorname{Re} u \gg 0$
2 $\phi^{ \pm} \sim\left(1+O\left(u^{-1}\right)\right)(\pm u)^{A_{0}}$ for $\pm \operatorname{Re} u \gg 0$

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Theorem (Birkhoff, 1911)

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Theorem (Birkhoff, 1911)
1 I $S(u)$ is a 1-periodic function of u, and thus a function of $z=e^{2 \pi \iota u}$

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Theorem (Birkhoff, 1911)
$1 S(u)$ is a 1-periodic function of u, and thus a function of $z=e^{2 \pi \iota u}$
2. $S(z): \mathbb{P}^{1} \rightarrow G L(V)$ is a rational function of z such that

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Theorem (Birkhoff, 1911)
$1 S(u)$ is a 1-periodic function of u, and thus a function of $z=e^{2 \pi \iota u}$
2. $S(z): \mathbb{P}^{1} \rightarrow G L(V)$ is a rational function of z such that

$$
S(\infty)=e^{\pi \iota A_{0}}=S(0)^{-1}
$$

Connection (monodromy) matrix: $S(u)=\phi^{+}(u)^{-1} \cdot \phi^{-}(u)$

Theorem (Birkhoff, 1911)
$1 S(u)$ is a 1-periodic function of u, and thus a function of $z=e^{2 \pi \iota u}$
2. $S(z): \mathbb{P}^{1} \rightarrow G L(V)$ is a rational function of z such that

$$
S(\infty)=e^{\pi \iota A_{0}}=S(0)^{-1}
$$

Remark. $S(u)$ is a regularisation of

$$
\cdots A(u+2) A(u+1) A(u) A(u-1) A(u-2) \cdots
$$

Additive difference equations: example

Additive difference equations: example

Scalar additive difference equation

$$
f(u+1)=\frac{u-a}{u-b} f(u)
$$

Additive difference equations: example

Scalar additive difference equation

$$
f(u+1)=\frac{u-a}{u-b} f(u)
$$

The fundamental solutions are given by Euler's Gamma function 「

$$
\phi^{+}=\frac{\Gamma(u-a)}{\Gamma(u-b)} \quad \phi^{-}=\frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}
$$

Additive difference equations: example

Scalar additive difference equation

$$
f(u+1)=\frac{u-a}{u-b} f(u)
$$

The fundamental solutions are given by Euler's Gamma function「

$$
\phi^{+}=\frac{\Gamma(u-a)}{\Gamma(u-b)} \quad \phi^{-}=\frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}
$$

The connection matrix is

$$
S(u)=\frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}=\frac{e^{2 \pi \iota u}-e^{2 \pi \iota a}}{e^{2 \pi \iota u}-e^{2 \pi \iota b}} \cdot e^{\pi \iota(b-a)}
$$

Additive difference equations: example

Scalar additive difference equation

$$
f(u+1)=\frac{u-a}{u-b} f(u)
$$

The fundamental solutions are given by Euler's Gamma function「

$$
\phi^{+}=\frac{\Gamma(u-a)}{\Gamma(u-b)} \quad \phi^{-}=\frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}
$$

The connection matrix is

$$
\begin{aligned}
S(u) & =\frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}=\frac{e^{2 \pi \iota u}-e^{2 \pi \iota a}}{e^{2 \pi \iota u}-e^{2 \pi \iota b}} \cdot e^{\pi \iota(b-a)} \\
(\Gamma(u) \Gamma(1-u) & =\pi / \sin (\pi u)) .
\end{aligned}
$$

Additive difference equations: example

Scalar additive difference equation

$$
f(u+1)=\frac{u-a}{u-b} f(u)
$$

The fundamental solutions are given by Euler's Gamma function「

$$
\phi^{+}=\frac{\Gamma(u-a)}{\Gamma(u-b)} \quad \phi^{-}=\frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}
$$

The connection matrix is

$$
S(u)=\frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}=\frac{e^{2 \pi \iota u}-e^{2 \pi \iota a}}{e^{2 \pi \iota u}-e^{2 \pi \iota b}} \cdot e^{\pi \iota(b-a)}
$$

$(\Gamma(u) \Gamma(1-u)=\pi / \sin (\pi u))$. Termwise exponentiation.

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$
- Consider the additive difference equation

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$
- Consider the additive difference equation

$$
f(u+1)=\xi(u) f(u)
$$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$
- Consider the additive difference equation

$$
f(u+1)=\xi(u) f(u)
$$

- The functor Γ is governed by this ADE

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{h}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$
- Consider the additive difference equation

$$
f(u+1)=\xi(u) f(u)
$$

- The functor Γ is governed by this ADE Action of the commutative generators $\Psi_{k}^{ \pm}$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Main idea

- Recall that $\xi(u) \in G L(V)(u), \xi(\infty)=1$
- Consider the additive difference equation

$$
f(u+1)=\xi(u) f(u)
$$

- The functor Γ is governed by this ADE

Action of the commutative generators $\Psi_{k}^{ \pm}$

$$
\Psi(z) \longrightarrow S(z)=\cdots \xi(u+1) \xi(u) \xi(u-1) \cdots
$$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)

■ $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)
- $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi \iota u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)
- $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi u u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

- $C^{ \pm}$encloses the poles of $x^{ \pm}(u)$ and none of their \mathbb{Z}^{\times}-translates.

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)
- $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi \iota u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

- $C^{ \pm}$encloses the poles of $x^{ \pm}(u)$ and none of their \mathbb{Z}^{\times}-translates.
- z lies outside $\exp \left(2 \pi \iota C^{ \pm}\right)$.

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)
- $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi u u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

- $C^{ \pm}$encloses the poles of $x^{ \pm}(u)$ and none of their \mathbb{Z}^{\times}-translates.
- z lies outside $\exp \left(2 \pi \iota C^{ \pm}\right)$.

Theorem (GTL) The above formulae define an action of $U_{q}(L \mathfrak{g})$ on V

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)

■ $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi u u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

- $C^{ \pm}$encloses the poles of $x^{ \pm}(u)$ and none of their \mathbb{Z}^{\times}-translates.
- z lies outside $\exp \left(2 \pi \iota C^{ \pm}\right)$.

Theorem (GTL) The above formulae define an action of $U_{q}(L \mathfrak{g})$ on V and therefore an exact, faithful functor $\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$.

The functor $\Gamma: V \in \operatorname{Rep}_{f d}\left(Y_{\hbar}(\mathfrak{g})\right) \stackrel{?}{\leadsto} U_{q}(L \mathfrak{g}) \circlearrowleft V$

Action of the generators $X_{k}^{ \pm}$

- $g^{+}(u)=\cdots \xi(u+2) \xi(u+1) \quad$ (reg.)
- $g^{-}(u)=\xi(u-1) \xi(u-2) \cdots \quad$ (reg.)

$$
X^{ \pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{ \pm}} \frac{z}{z-e^{2 \pi u u}} g^{ \pm}(u) x^{ \pm}(u) d u
$$

- $C^{ \pm}$encloses the poles of $x^{ \pm}(u)$ and none of their \mathbb{Z}^{\times}-translates.
- z lies outside $\exp \left(2 \pi \iota C^{ \pm}\right)$.

Theorem (GTL) The above formulae define an action of $U_{q}(L \mathfrak{g})$ on V and therefore an exact, faithful functor $\Gamma: \operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$.

Remark The inverse functor is governed by the Riemann-Hilbert problem $S(z) \sim A(u)$ (always solvable since $[S(z), S(w)]=0)$.

Tensor structures

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.
- $\mathcal{R}_{\mathcal{V}_{1}, \mathcal{V}_{2}}^{0}(\zeta): \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \xrightarrow{\sim} \mathcal{V}_{2} \otimes_{\zeta^{-1}} \mathcal{V}_{1}$

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.
- $\mathcal{R}_{\mathcal{V}_{1}, \mathcal{V}_{2}}^{0}(\zeta): \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \xrightarrow{\sim} \mathcal{V}_{2} \otimes_{\zeta^{-1}} \mathcal{V}_{1}$
- \mathcal{R}^{0} the commutative part of the universal R-matrix of $U_{q}(L \mathfrak{g})$.

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$

■ $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.

- $\mathcal{R}_{\mathcal{V}_{1}, \mathcal{V}_{2}}^{0}(\zeta): \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \xrightarrow{\sim} \mathcal{V}_{2} \otimes_{\zeta^{-1}} \mathcal{V}_{1}$
- \mathcal{R}^{0} the commutative part of the universal R-matrix of $U_{q}(L \mathfrak{g})$.

Theorem (GTL, arXiv:14035251)
$1\left(\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right), \otimes_{s}, R^{0}(s)\right)$ is a meromorphic braided tensor category.

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.
- $\mathcal{R}_{\mathcal{V}_{1}, \mathcal{V}_{2}}^{0}(\zeta): \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \xrightarrow{\sim} \mathcal{V}_{2} \otimes_{\zeta^{-1}} \mathcal{V}_{1}$
- \mathcal{R}^{0} the commutative part of the universal R-matrix of $U_{q}(L \mathfrak{g})$.

Theorem (GTL, arXiv:14035251)
$1\left(\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right), \otimes_{s}, R^{0}(s)\right)$ is a meromorphic braided tensor category.
■ 「: $\left(\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right), \otimes_{s}, R^{0}(s)\right) \longrightarrow\left(\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right), \otimes_{\zeta}, R^{0}(\zeta)\right)$ has a (meromorphic) braided tensor structure.

Tensor structures

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$ is a meromorphic braided tensor category.

- $\mathcal{V}_{1}, \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \in \operatorname{Rep}_{\mathrm{fd}, \mathbb{C}(\zeta)}\left(U_{q}(L \mathfrak{g})\right)$
- $\left(\mathcal{V}_{1} \otimes_{\zeta_{1}} \mathcal{V}_{2}\right) \otimes_{\zeta_{2}} \mathcal{V}_{3}=\mathcal{V}_{1} \otimes_{\zeta_{1} \zeta_{2}}\left(\mathcal{V}_{2} \otimes_{\zeta_{2}} \mathcal{V}_{3}\right)$
$\square \otimes_{\zeta}$ is the (deformed) Drinfeld coproduct.
- $\mathcal{R}_{\mathcal{V}_{1}, \mathcal{V}_{2}}^{0}(\zeta): \mathcal{V}_{1} \otimes_{\zeta} \mathcal{V}_{2} \xrightarrow{\sim} \mathcal{V}_{2} \otimes_{\zeta^{-1}} \mathcal{V}_{1}$
- \mathcal{R}^{0} the commutative part of the universal R-matrix of $U_{q}(L \mathfrak{g})$.

Theorem (GTL, arXiv:14035251)
$1\left(\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right), \otimes_{s}, R^{0}(s)\right)$ is a meromorphic braided tensor category.
■ 「: $\left(\operatorname{Rep}_{\mathrm{fd}}\left(Y_{\hbar}(\mathfrak{g})\right), \otimes_{s}, R^{0}(s)\right) \longrightarrow\left(\operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right), \otimes_{\zeta}, R^{0}(\zeta)\right)$ has a (meromorphic) braided tensor structure.

Remark (2) is a meromorphic, q-deformed version of the Kazhdan-Lusztig equivalence $\mathcal{O}_{\kappa}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \operatorname{Rep}_{\mathrm{fd}}\left(U_{q} \mathfrak{g}\right)$.

Elliptic quantum groups

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)
- Consider the dynamical Yang-Baxter equations

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)
- Consider the dynamical Yang-Baxter equations

$$
\begin{aligned}
& R_{12}\left(u, \lambda-h^{(3)}\right) R_{13}(u+v, \lambda) R_{23}\left(v, \lambda-h^{(1)}\right) \\
& \quad=R_{23}(v, \lambda) R_{13}\left(u+v, \lambda-h^{(2)}\right) R_{12}(u, \lambda)
\end{aligned}
$$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)
- Consider the dynamical Yang-Baxter equations

$$
\begin{aligned}
& R_{12}\left(u, \lambda-h^{(3)}\right) R_{13}(u+v, \lambda) R_{23}\left(v, \lambda-h^{(1)}\right) \\
& \quad=R_{23}(v, \lambda) R_{13}\left(u+v, \lambda-h^{(2)}\right) R_{12}(u, \lambda)
\end{aligned}
$$

where $\lambda \in \mathfrak{h}, R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the i th weight on $V \otimes 3$.

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
■ Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)
- Consider the dynamical Yang-Baxter equations

$$
\begin{aligned}
& R_{12}\left(u, \lambda-h^{(3)}\right) R_{13}(u+v, \lambda) R_{23}\left(v, \lambda-h^{(1)}\right) \\
& \quad=R_{23}(v, \lambda) R_{13}\left(u+v, \lambda-h^{(2)}\right) R_{12}(u, \lambda)
\end{aligned}
$$

where $\lambda \in \mathfrak{h}, R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the ith weight on $V \otimes 3$.

- Solutions to the DYBE exist for all \mathfrak{g} (Felder, Etingof) $)$

Elliptic quantum groups

- Quantum groups are related to the Yang-Baxter equations on $V^{\otimes 3}$

$$
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u)
$$

where $R: \mathbb{C} \rightarrow \operatorname{End}(V \otimes V)$ is meromorphic, $R_{12}=R \otimes 1, \ldots$

- Yangians $Y_{\hbar}(\mathfrak{g})$ (resp. quantum loop algebras $\left.U_{q}(L \mathfrak{g})\right)$ give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin-Drinfeld) $)$ Felder ('94)
- Consider the dynamical Yang-Baxter equations

$$
\begin{aligned}
& R_{12}\left(u, \lambda-h^{(3)}\right) R_{13}(u+v, \lambda) R_{23}\left(v, \lambda-h^{(1)}\right) \\
& \quad=R_{23}(v, \lambda) R_{13}\left(u+v, \lambda-h^{(2)}\right) R_{12}(u, \lambda)
\end{aligned}
$$

where $\lambda \in \mathfrak{h}, R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the ith weight on $V \otimes 3$.

- Solutions to the DYBE exist for all \mathfrak{g} (Felder, Etingof) $)$
- Elliptic quantum groups are the quantum groups associated to elliptic solutions of the DYBE (works well only in type A \mathcal{D}).

Problem \# 2: present elliptic quantum groups

Problem \# 2: present elliptic quantum groups

Let $\operatorname{Im} \tau>0$ and $p=e^{2 \pi \iota \tau}$. Assume that $\mathbb{Z} \hbar \cap(\mathbb{Z}+\tau \mathbb{Z})=\{0\}$.

Problem \# 2: present elliptic quantum groups

Let $\operatorname{Im} \tau>0$ and $p=e^{2 \pi \iota \tau}$. Assume that $\mathbb{Z} \hbar \cap(\mathbb{Z}+\tau \mathbb{Z})=\{0\}$.
Idea

Problem \# 2: present elliptic quantum groups

Let $\operatorname{Im} \tau>0$ and $p=e^{2 \pi \iota \tau}$. Assume that $\mathbb{Z} \hbar \cap(\mathbb{Z}+\tau \mathbb{Z})=\{0\}$.
Idea Given $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$, use the multiplicative p-difference equations defined by the commuting fields of $U_{q}(L \mathfrak{g})$

$$
G(p z)=\Psi(z) G(z)
$$

to construct an action of $E_{\tau, \hbar}(\mathfrak{g})$ on \mathcal{V}.

Problem \# 2: present elliptic quantum groups

Let $\operatorname{Im} \tau>0$ and $p=e^{2 \pi \iota \tau}$. Assume that $\mathbb{Z} \hbar \cap(\mathbb{Z}+\tau \mathbb{Z})=\{0\}$.
Idea Given $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$, use the multiplicative p-difference equations defined by the commuting fields of $U_{q}(L \mathfrak{g})$

$$
G(p z)=\Psi(z) G(z)
$$

to construct an action of $E_{\tau, \hbar}(\mathfrak{g})$ on \mathcal{V}.

$\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \sim \mathcal{V} \sim \begin{gathered}\text { p-difference } \\ \text { equations }\end{gathered} \sim E_{\tau, \hbar}(\mathfrak{g})$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K
$$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\begin{aligned}
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K \\
\phi(p z)=\Psi(z) \phi(z) \quad \text { NOT regular at } 0 / \infty(K \neq 1)
\end{aligned}
$$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K
$$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K
$$

$\phi_{0}(z)$ canonical fund. soln. holo. near $0, \phi_{0}(0)=1$
$\phi_{\infty}(z)$ canonical fund. soln. holo. near $\infty, \phi_{\infty}(\infty)=1$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K
$$

$\phi_{0}(z)$ canonical fund. soln. holo. near $0, \phi_{0}(0)=1$
$\phi_{\infty}(z)$ canonical fund. soln. holo. near $\infty, \phi_{\infty}(\infty)=1$

Monodromy $M(z)=\phi_{0}(z)^{-1} \cdot K^{-1} \cdot \phi_{\infty}(z)$

p-difference equations on $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right)$

$$
\Psi(z) \in G L(\mathcal{V})(z):[\Psi(z), \Psi(w)]=0 \text { and } \Psi(\infty)=\Psi(0)^{-1}=: K
$$

$\phi_{0}(z)$ canonical fund. soln. holo. near $0, \phi_{0}(0)=1$
$\phi_{\infty}(z)$ canonical fund. soln. holo. near $\infty, \phi_{\infty}(\infty)=1$

Monodromy $M(z)=\phi_{0}(z)^{-1} \cdot K^{-1} \cdot \phi_{\infty}(z)$

$$
M(p z)=K^{-2} M(z)
$$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, h}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, \hbar}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{f d}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, k}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

$$
\Phi(u) \longrightarrow M(z)=\phi_{0}^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)
$$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, k}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

$$
\Phi(u) \longrightarrow M(z)=\phi_{0}^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)
$$

Action of the raising/lowering generators $\mathfrak{X}^{ \pm}(u, \lambda) \quad(\lambda \in \mathfrak{h})$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{f d}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, k}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

$$
\Phi(u) \longrightarrow M(z)=\phi_{0}^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)
$$

Action of the raising/lowering generators $\mathfrak{X}^{ \pm}(u, \lambda) \quad(\lambda \in \mathfrak{h})$

$$
\mathfrak{X}^{ \pm}(u, \lambda) \longrightarrow \oint_{C} \frac{\theta(u-v+\lambda)}{\theta(u-v) \theta(\lambda)} G^{ \pm}\left(e^{2 \pi \iota v}\right) \mathcal{X}^{ \pm}\left(e^{2 \pi \iota v}\right) d v
$$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{f d}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, k}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

$$
\Phi(u) \longrightarrow M(z)=\phi_{0}^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)
$$

Action of the raising/lowering generators $\mathfrak{X}^{ \pm}(u, \lambda) \quad(\lambda \in \mathfrak{h})$

$$
\mathfrak{X}^{ \pm}(u, \lambda) \longrightarrow \oint_{C} \frac{\theta(u-v+\lambda)}{\theta(u-v) \theta(\lambda)} G^{ \pm}\left(e^{2 \pi \iota v}\right) \mathcal{X}^{ \pm}\left(e^{2 \pi \iota v}\right) d v
$$

- $G^{+}(z)=\phi_{0}(p z)^{-1}$
$G^{-}(z)=\phi_{\infty}(z)$

The functor $\Theta: \mathcal{V} \in \operatorname{Rep}_{f d}\left(U_{q}(L \mathfrak{g})\right) \rightsquigarrow E_{T, k}(\mathfrak{g}) \circlearrowleft \mathcal{V}$

Action of the commuting generators $\Phi(u) \quad\left(z=e^{2 \pi \iota u}\right)$

$$
\Phi(u) \longrightarrow M(z)=\phi_{0}^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)
$$

Action of the raising/lowering generators $\mathfrak{X}^{ \pm}(u, \lambda) \quad(\lambda \in \mathfrak{h})$

$$
\mathfrak{X}^{ \pm}(u, \lambda) \longrightarrow \oint_{C} \frac{\theta(u-v+\lambda)}{\theta(u-v) \theta(\lambda)} G^{ \pm}\left(e^{2 \pi \iota v}\right) \mathcal{X}^{ \pm}\left(e^{2 \pi \iota v}\right) d v
$$

- $G^{+}(z)=\phi_{0}(p z)^{-1} \quad G^{-}(z)=\phi_{\infty}(z)$

■ $\theta(u+1)=-\theta(u), \theta(u+\tau)=-e^{-\pi \iota \tau} e^{-2 \pi \iota u} \theta(u), \theta^{\prime}(0)=1$.

Commutation relations

Theorem (GTL) The following commutation relations in End (\mathcal{V})

Commutation relations

Theorem (GTL) The following commutation relations in $\operatorname{End}(\mathcal{V})$

$$
[\Phi(u), \Phi(v)]=0
$$

Commutation relations

Theorem (GTL) The following commutation relations in $\operatorname{End}(\mathcal{V})$

$$
[\Phi(u), \Phi(v)]=0
$$

$$
\begin{aligned}
\operatorname{Ad}(\Phi(u)) \mathfrak{X}^{ \pm}(v, \lambda)= & \frac{\theta(u-v \pm \hbar)}{\theta(u-v \mp \hbar)} \mathfrak{X}^{ \pm}(v, \lambda \pm 2 \hbar) \\
& \mp \frac{\theta(2 \hbar) \theta(u-v-\lambda \mp \hbar)}{\theta(u-v \mp \hbar) \theta(\lambda)} \mathfrak{X}^{ \pm}(u \mp \hbar, \lambda \pm 2 \hbar) \\
\mathfrak{X}^{ \pm}(u, \lambda \pm \hbar) \mathfrak{X}^{ \pm}(v, \lambda \mp \hbar)= & \frac{\theta(u-v \pm \hbar)}{\theta(u-v \mp \hbar)} \mathfrak{X}^{ \pm}(v, \lambda \pm \hbar) \mathfrak{X}^{ \pm}(u, \lambda \mp \hbar) \\
& \pm \frac{\theta(u-v-\lambda) \theta(\hbar)}{\theta(u-v \mp \hbar) \theta(\lambda)} \mathfrak{X}^{ \pm}(u, \lambda \pm \hbar) \mathfrak{X}^{ \pm}(u, \lambda \mp \hbar) \\
& \mp \frac{\theta(u-v+\lambda) \theta(\hbar)}{\theta(u-v \mp \hbar) \theta(\lambda)} \mathfrak{X}^{ \pm}(v, \lambda \pm \hbar) \mathfrak{X}^{ \pm}(v, \lambda \mp \hbar)
\end{aligned}
$$

Commutation Relations continued

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Remarks.

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Remarks.
1 We have the following quasi-periodicity

$$
\Phi(u+1)=\Phi(u) \quad \text { and } \quad \Phi(u+\tau)=e^{-2 \pi \iota \hbar h} \Phi(u)
$$

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Remarks.

1 We have the following quasi-periodicity

$$
\begin{gathered}
\Phi(u+1)=\Phi(u) \quad \text { and } \quad \Phi(u+\tau)=e^{-2 \pi \iota \hbar h} \Phi(u) \\
\mathfrak{X}^{ \pm}(u+1, \lambda)=\mathfrak{X}^{ \pm}(u, \lambda+1)=\mathfrak{X}^{ \pm}(u, \lambda)
\end{gathered}
$$

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Remarks.

1 We have the following quasi-periodicity

$$
\begin{gathered}
\Phi(u+1)=\Phi(u) \quad \text { and } \quad \Phi(u+\tau)=e^{-2 \pi \iota \hbar h} \Phi(u) \\
\mathfrak{X}^{ \pm}(u+1, \lambda)=\mathfrak{X}^{ \pm}(u, \lambda+1)=\mathfrak{X}^{ \pm}(u, \lambda) \\
\mathfrak{X}^{ \pm}(u+\tau, \lambda)=e^{-2 \pi \iota \lambda} \mathfrak{X}^{ \pm}(u, \lambda)
\end{gathered}
$$

Commutation Relations continued

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_{1}+\lambda_{2}=\hbar \mu$

$$
\theta(\hbar)\left[\mathfrak{X}^{+}\left(u, \lambda_{1}\right), \mathfrak{X}^{-}\left(v, \lambda_{2}\right)\right]=\frac{\theta\left(u-v+\lambda_{1}\right)}{\theta(u-v) \theta\left(\lambda_{1}\right)} \Phi(v)+\frac{\theta\left(u-v-\lambda_{2}\right)}{\theta(u-v) \theta\left(\lambda_{2}\right)} \Phi(u)
$$

Remarks.

1 We have the following quasi-periodicity

$$
\begin{gathered}
\Phi(u+1)=\Phi(u) \quad \text { and } \quad \Phi(u+\tau)=e^{-2 \pi \iota \hbar h} \Phi(u) \\
\mathfrak{X}^{ \pm}(u+1, \lambda)=\mathfrak{X}^{ \pm}(u, \lambda+1)=\mathfrak{X}^{ \pm}(u, \lambda) \\
\mathfrak{X}^{ \pm}(u+\tau, \lambda)=e^{-2 \pi \iota \lambda} \mathfrak{X}^{ \pm}(u, \lambda)
\end{gathered}
$$

2 These relations and the quasi-periodicity properties were already worked out by Enriquez-Felder (1998), in connection with a Drinfeld-type presentation of Felder's elliptic quantum group $E_{\tau, \hbar}\left(\mathfrak{s l}_{2}\right)$.

A representation category for elliptic quantum groups

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by
Objects (GTL) A finite-dimensional vector space \mathbb{V}, together with a semisimple operator h and meromorphic End (\mathbb{V})-valued functions $\Phi(u), X^{ \pm}(u, \lambda)$ such that

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by
Objects (GTL) A finite-dimensional vector space \mathbb{V}, together with a semisimple operator h and meromorphic End (\mathbb{V})-valued functions $\Phi(u),, X^{ \pm}(u, \lambda)$ such that

$$
[h, \Phi(u)]=0 \quad \text { and } \quad\left[h, \mathfrak{X}^{ \pm}(u, \lambda)\right]= \pm 2 \mathfrak{X}^{ \pm}(u, \lambda)
$$

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by
Objects (GTL) A finite-dimensional vector space \mathbb{V}, together with a semisimple operator h and meromorphic End (\mathbb{V})-valued functions $\Phi(u),, X^{ \pm}(u, \lambda)$ such that

$$
[h, \Phi(u)]=0 \quad \text { and } \quad\left[h, \mathfrak{X}^{ \pm}(u, \lambda)\right]= \pm 2 \mathfrak{X}^{ \pm}(u, \lambda)
$$

satisfying the periodicity properties and the relations given above.

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by
Objects (GTL) A finite-dimensional vector space \mathbb{V}, together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$-valued functions $\Phi(u),, X^{ \pm}(u, \lambda)$ such that

$$
[h, \Phi(u)]=0 \quad \text { and } \quad\left[h, \mathfrak{X}^{ \pm}(u, \lambda)\right]= \pm 2 \mathfrak{X}^{ \pm}(u, \lambda)
$$

satisfying the periodicity properties and the relations given above.
Morphisms (Felder) A morphism between \mathbb{V} and \mathbb{W} is a meromorphic function $\varphi(\lambda) \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{V}, \mathbb{W})$ such that

A representation category for elliptic quantum groups

Definition The category $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is given by
Objects (GTL) A finite-dimensional vector space \mathbb{V}, together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$-valued functions $\Phi(u),, X^{ \pm}(u, \lambda)$ such that

$$
[h, \Phi(u)]=0 \quad \text { and } \quad\left[h, \mathfrak{X}^{ \pm}(u, \lambda)\right]= \pm 2 \mathfrak{X}^{ \pm}(u, \lambda)
$$

satisfying the periodicity properties and the relations given above.
Morphisms (Felder) A morphism between \mathbb{V} and \mathbb{W} is a meromorphic function $\varphi(\lambda) \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{V}, \mathbb{W})$ such that

$$
\begin{aligned}
\varphi(\lambda) h & =h \varphi(\lambda) \\
\varphi(\lambda) \Phi(u) & =\Phi(u) \varphi(\lambda+2 \hbar) \\
\varphi(-\lambda-\hbar) \mathfrak{X}^{+}(u, \lambda) & =\mathfrak{X}^{+}(u, \lambda) \varphi(-\lambda+\hbar) \\
\varphi(\lambda-\hbar h-\hbar) \mathfrak{X}^{-}(u, \lambda) & =\mathfrak{X}^{-}(u, \lambda) \varphi(\lambda-\hbar h+\hbar)
\end{aligned}
$$

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{Irr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{lrr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Problem \#3: classify irreducible representations of $E_{T, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{lrr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition. Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{Irr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / S_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{Irr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \Im_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is defined over a larger field.

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{lrr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} / p^{\mathbb{Z}}$, one can define subcategories

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{Irr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} / p^{\mathbb{Z}}$, one can define subcategories

$$
\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \quad \text { and } \quad \mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)
$$

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{lrr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} / p^{\mathbb{Z}}$, one can define subcategories

$$
\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \quad \text { and } \quad \mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)
$$

with \mathcal{L}_{\square} defined over \mathbb{C} and isomorphism dense,

Problem \#3: classify irreducible representations of $E_{\tau, \hbar}(\mathfrak{g})$

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ are in bijection with tuples of unordered points on the elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.

$$
\operatorname{lrr}(\mathcal{L}) \longleftrightarrow \bigcup_{N \geq 0}(E)^{N} / \mathfrak{S}_{N}
$$

Key issue $E_{\tau, \hbar}(\mathfrak{g})$ does not have a triangular decomposition.
Key ingredient Functor $\Theta: \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \rightarrow \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$.
Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times} / p^{\mathbb{Z}}$, one can define subcategories

$$
\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(U_{q}(L \mathfrak{g})\right) \quad \text { and } \quad \mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathrm{fd}}\left(E_{\tau, \hbar}(\mathfrak{g})\right)
$$

with \mathcal{L}_{Π} defined over \mathbb{C} and isomorphism dense, and $\Theta: \mathcal{C}_{\Pi} \rightarrow \mathcal{L}_{\Pi}$ is an equivalence.

