Yangians, quantum loop algebras and elliptic quantum groups (joint with Sachin Gautam)

Valerio Toledano Laredo

Northeastern University

Banff February 10, 2016

Northeastern University

V. Toledano Laredo

Northeastern University

V. Toledano Laredo

• Yangian $Y_{\hbar}(\mathfrak{g})$.

Northeastern University

V. Toledano Laredo

• Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

Northeastern University

V. Toledano Laredo

• Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.

• Quantum Loop algebra $U_q(L\mathfrak{g})$.

Northeastern University

V. Toledano Laredo

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.
- Quantum Loop algebra $U_q(L\mathfrak{g})$. Deformation of $\mathfrak{g}[z, z^{-1}]$.

Northeastern University

angians, quantum loop algebras and elliptic quantum group

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.
- Quantum Loop algebra $U_q(L\mathfrak{g})$. Deformation of $\mathfrak{g}[z, z^{-1}]$.
- Elliptic Quantum Group $E_{\tau,\hbar}(\mathfrak{g})$.

- Yangian $Y_{\hbar}(\mathfrak{g})$. Deformation of $\mathfrak{g}[s]$.
- Quantum Loop algebra $U_q(L\mathfrak{g})$. Deformation of $\mathfrak{g}[z, z^{-1}]$.
- Elliptic Quantum Group $E_{\tau,\hbar}(\mathfrak{g})$. Deformation of $\vartheta : \mathbb{C} \to \mathfrak{g}$.

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

Northeastern University

Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g})$ and $E_{\tau,\hbar}(\mathfrak{g})$.

Northeastern University

V. Toledano Laredo

- Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g})$ and $E_{\tau,\hbar}(\mathfrak{g})$.
- All the results are valid for a symmetrisable Kac-Moody algebra g.

- Solve three problems about $Y_{\hbar}(\mathfrak{g}), U_q(L\mathfrak{g})$ and $E_{\tau,\hbar}(\mathfrak{g})$.
- All the results are valid for a symmetrisable Kac–Moody algebra g.
- For notational simplicity, restrict attention to $\mathfrak{g} = \mathfrak{sl}_2 = \langle e, f, h \rangle$.

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group?

Northeastern University

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$.

Northeastern University

V. Toledano Laredo

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$. Generators $\{\xi_r, x_r^+, x_r^-\}_{r>0}$

Northeastern University

V. Toledano Laredo

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$.

Generators $\{\xi_r, x_r^+, x_r^-\}_{r\geq 0}$, with classical limit $(\hbar \to 0)$

$$\xi_r o h \otimes s^r \qquad x_r^+ o e \otimes s^r \qquad x_r^- o f \otimes s^r$$

Northeastern University

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$.

Generators $\{\xi_r, x_r^+, x_r^-\}_{r\geq 0}$, with classical limit $(\hbar \to 0)$

$$\xi_r o h \otimes s^r \qquad x_r^+ o e \otimes s^r \qquad x_r^- o f \otimes s^r$$

Relations

Northeastern University

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$. Generators $\{\xi_r, x_r^+, x_r^-\}_{r \ge 0}$, with classical limit $(\hbar \to 0)$

$$\xi_r o h \otimes s^r \qquad x_r^+ o e \otimes s^r \qquad x_r^- o f \otimes s^r$$

Relations for any $r, s \in \mathbb{N}$

$$[\xi_r, \xi_s] = 0$$
$$[\xi_0, x_r^{\pm}] = \pm 2x_r^{\pm}$$
$$[x_r^+, x_s^-] = \xi_{r+s}$$

Northeastern University

3 1 4

V. Toledano Laredo

 $Y_{\hbar}(\mathfrak{g})$ assoc. alg./ \mathbb{C} , depending on $\hbar \in \mathbb{C}$, $Y_{\hbar}(\mathfrak{g})|_{\hbar=0} = U(\mathfrak{g}[s])$. Generators $\{\xi_r, x_r^+, x_r^-\}_{r \ge 0}$, with classical limit $(\hbar \to 0)$

$$\xi_r o h \otimes s^r \qquad x_r^+ o e \otimes s^r \qquad x_r^- o f \otimes s^r$$

Relations for any $r, s \in \mathbb{N}$

$$\begin{aligned} [\xi_r, \xi_s] &= 0\\ [\xi_0, x_r^{\pm}] &= \pm 2x_r^{\pm}\\ [x_r^{+}, x_s^{-}] &= \xi_{r+s} \end{aligned}$$
$$\begin{aligned} [\xi_{r+1}, x_s^{\pm}] - [\xi_r, x_{s+1}^{\pm}] &= \pm \hbar (\xi_r x_s^{\pm} + x_s^{\pm} \xi_r)\\ [x_{r+1}^{\pm}, x_s^{\pm}] - [x_r^{\pm}, x_{s+1}^{\pm}] &= \pm \hbar (x_r^{\pm} x_s^{\pm} + x_s^{\pm} x_r^{\pm}) \end{aligned}$$

Northeastern University

V. Toledano Laredo

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C} .

$$\operatorname{Irrep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects in $\operatorname{Rep}_{fd}(Y_{\hbar}(\mathfrak{g}))$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C} .

$$\operatorname{Irrep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

Example

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C} .

$$\operatorname{Irrep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

Example If $a_1, \ldots, a_m \in \mathbb{C}$, the evaluation representation

$$V = \mathbb{C}^2(a_1) \otimes \cdots \otimes \mathbb{C}^2(a_m)$$

Northeastern University

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C} .

$$\operatorname{Irrep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

Example If $a_1, \ldots, a_m \in \mathbb{C}$, the evaluation representation

$$V = \mathbb{C}^2(a_1) \otimes \cdots \otimes \mathbb{C}^2(a_m)$$

Northeastern University

is irreducible iff $a_i - a_j \neq \hbar$ for any $i \neq j$.

V. Toledano Laredo

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ are in bijection with unordered tuples of (not necessarily distinct) points in \mathbb{C} .

$$\operatorname{Irrep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

Example If $a_1, \ldots, a_m \in \mathbb{C}$, the evaluation representation

$$V = \mathbb{C}^2(a_1) \otimes \cdots \otimes \mathbb{C}^2(a_m)$$

Northeastern University

is irreducible iff $a_i - a_j \neq \hbar$ for any $i \neq j$. If so, it corresponds to the *m*-tuple $\{a_1, \ldots, a_m\}$.

Northeastern University

V. Toledano Laredo

Generating functions

Northeastern University

V. Toledano Laredo

Generating functions

$$\xi(u) = 1 + \hbar \sum_{r \ge 0} \xi_r u^{-r-1} \qquad \qquad x^{\pm}(u) = \hbar \sum_{r \ge 0} x_r^{\pm} u^{-r-1}$$

Northeastern University

V. Toledano Laredo

Generating functions

$$\xi(u) = 1 + \hbar \sum_{r \ge 0} \xi_r u^{-r-1} \qquad \qquad x^{\pm}(u) = \hbar \sum_{r \ge 0} x_r^{\pm} u^{-r-1}$$

Relations

Northeastern University

V. Toledano Laredo

Generating functions

$$\xi(u) = 1 + \hbar \sum_{r \ge 0} \xi_r u^{-r-1} \qquad \qquad x^{\pm}(u) = \hbar \sum_{r \ge 0} x_r^{\pm} u^{-r-1}$$

Relations

$$\begin{split} [\xi(u),\xi(v)] &= 0\\ [x^+(u),x^-(v)] &= \frac{\hbar}{u-v}(\xi(v)-\xi(u))\\ \xi(u)x^{\pm}(v)\xi(u)^{-1} &= \frac{u-v\pm\hbar}{u-v\mp\hbar}x^{\pm}(v)\mp\frac{2\hbar}{u-v\mp\hbar}x^{\pm}(u\mp\hbar)\\ x^{\pm}(u)x^{\pm}(v) &= \frac{u-v\pm\hbar}{u-v\mp\hbar}x^{\pm}(v)x^{\pm}(u)\mp\frac{\hbar}{u-v\mp\hbar}(x^{\pm}(u)^2+x^{\pm}(v)^2) \end{split}$$

Northeastern University

Yangians, quantum loop algebras and elliptic quantum g

Generating functions

$$\xi(u) = 1 + \hbar \sum_{r \ge 0} \xi_r u^{-r-1} \qquad \qquad x^{\pm}(u) = \hbar \sum_{r \ge 0} x_r^{\pm} u^{-r-1}$$

Relations

$$\begin{split} [\xi(u),\xi(v)] &= 0\\ [x^+(u),x^-(v)] &= \frac{\hbar}{u-v}(\xi(v)-\xi(u))\\ \xi(u)x^{\pm}(v)\xi(u)^{-1} &= \frac{u-v\pm\hbar}{u-v\mp\hbar}x^{\pm}(v)\mp\frac{2\hbar}{u-v\mp\hbar}x^{\pm}(u\mp\hbar)\\ x^{\pm}(u)x^{\pm}(v) &= \frac{u-v\pm\hbar}{u-v\mp\hbar}x^{\pm}(v)x^{\pm}(u)\mp\frac{\hbar}{u-v\mp\hbar}(x^{\pm}(u)^2+x^{\pm}(v)^2) \end{split}$$

Prop (GTL) On $V \in \operatorname{Rep}_{fd}(Y_{\hbar}(\mathfrak{g}))$, the fields $\xi(u)$, $x^{\pm}(u)$ are the Taylor expansions at $u = \infty$ of End(V)-valued rational functions.

V. Toledano Laredo

ins, quantum loop algebras and elliptic quantum groups

Northeastern University

 $U_q(L\mathfrak{g})$ associative algebra over $\mathbb C$ depending on $q\in\mathbb Cackslash\sqrt{1}$

Northeastern University

V. Toledano Laredo

 $U_q(L\mathfrak{g})$ associative algebra over $\mathbb C$ depending on $q\in\mathbb Cackslash\sqrt{1}$

Generators

Northeastern University

V. Toledano Laredo

 $U_q(L\mathfrak{g})$ associative algebra over \mathbb{C} depending on $q \in \mathbb{C} \setminus \sqrt{1}$ Generators $X_\ell^{\pm}, \ell \in \mathbb{Z}$ and $\Psi_{\pm k}^{\pm}, k \in \mathbb{N}$,

Northeastern University

V. Toledano Laredo

 $\begin{array}{l} U_q(L\mathfrak{g}) \text{ associative algebra over } \mathbb{C} \text{ depending on } q \in \mathbb{C} \backslash \sqrt{1} \\ \\ \text{Generators } X_\ell^{\pm}, \ \ell \in \mathbb{Z} \text{ and } \Psi_{\pm k}^{\pm}, \ k \in \mathbb{N}, \text{ with classical limit } (q \to 1) \\ \\ X_\ell^+ \to e \otimes z^\ell \quad X_\ell^- \to f \otimes z^\ell \quad \Psi_0^{\pm} \sim q^{\pm h} \quad \Psi_{\pm k}^{\pm} \sim \pm (q - q^{-1}) q^{\pm h} \cdot h \otimes z^{\pm k} \end{array}$

Northeastern University

angians, quantum loop algebras and elliptic quantum group

The quantum loop algebra $U_q(L\mathfrak{g})$

$$\begin{split} &U_q(L\mathfrak{g}) \text{ associative algebra over } \mathbb{C} \text{ depending on } q \in \mathbb{C} \setminus \sqrt{1} \\ &\text{Generators } X_\ell^{\pm}, \, \ell \in \mathbb{Z} \text{ and } \Psi_{\pm k}^{\pm}, \, k \in \mathbb{N}, \text{ with classical limit } (q \to 1) \\ &X_\ell^+ \to e \otimes z^\ell \quad X_\ell^- \to f \otimes z^\ell \qquad \Psi_0^\pm \sim q^{\pm h} \quad \Psi_{\pm k}^\pm \sim \pm (q - q^{-1}) q^{\pm h} \cdot h \otimes z^{\pm k} \end{split}$$

Relations

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum groups

The quantum loop algebra $U_q(L\mathfrak{g})$

 $\begin{array}{l} U_q(L\mathfrak{g}) \text{ associative algebra over } \mathbb{C} \text{ depending on } q \in \mathbb{C} \backslash \sqrt{1} \\ \\ \text{Generators } X_\ell^{\pm}, \, \ell \in \mathbb{Z} \text{ and } \Psi_{\pm k}^{\pm}, \, k \in \mathbb{N}, \, \text{with classical limit } (q \to 1) \\ \\ X_\ell^+ \to e \otimes z^\ell \quad X_\ell^- \to f \otimes z^\ell \qquad \Psi_0^{\pm} \sim q^{\pm h} \quad \Psi_{\pm k}^{\pm} \sim \pm (q - q^{-1}) q^{\pm h} \cdot h \otimes z^{\pm k} \end{array}$

Relations
$$\Psi_0^+ \Psi_0^- = 1$$
 and
 $[\Psi_k^\pm, \Psi_{k'}^\pm] = 0 = [\Psi_k^\pm, \Psi_{k'}^\pm]$
 $\Psi_0^+ X_\ell^\pm (\Psi_0^+)^{-1} = q^{\pm 2} X_\ell^\pm$

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

The quantum loop algebra $U_q(L\mathfrak{g})$

 $\begin{array}{l} U_q(L\mathfrak{g}) \text{ associative algebra over } \mathbb{C} \text{ depending on } q \in \mathbb{C} \backslash \sqrt{1} \\ \\ \text{Generators } X_\ell^{\pm}, \, \ell \in \mathbb{Z} \text{ and } \Psi_{\pm k}^{\pm}, \, k \in \mathbb{N}, \, \text{with classical limit } (q \to 1) \\ \\ X_\ell^+ \to e \otimes z^\ell \quad X_\ell^- \to f \otimes z^\ell \qquad \Psi_0^{\pm} \sim q^{\pm h} \quad \Psi_{\pm k}^{\pm} \sim \pm (q - q^{-1}) q^{\pm h} \cdot h \otimes z^{\pm k} \end{array}$

Relations
$$\Psi_0^+ \Psi_0^- = 1$$
 and
 $[\Psi_k^\pm, \Psi_{k'}^\pm] = 0 = [\Psi_k^\pm, \Psi_{k'}^\pm]$
 $\Psi_0^+ X_\ell^\pm (\Psi_0^+)^{-1} = q^{\pm 2} X_\ell^\pm$
 $[X_\ell^+, X_{\ell'}^-] = \frac{\Psi_{\ell+\ell'}^+ - \Psi_{\ell+\ell'}^-}{q - q^{-1}}$

$$\begin{split} \Psi_{k+1}^{\varepsilon} X_{\ell}^{\pm} - q^{\pm 2} X_{\ell}^{\pm} \Psi_{k+1}^{\varepsilon} &= q^{\pm 2} \Psi_{k}^{\varepsilon} X_{\ell+1}^{\pm} - X_{\ell+1}^{\pm} \Psi_{k}^{\varepsilon} \\ X_{\ell+1}^{\pm} X_{\ell'}^{\pm} - q^{\pm 2} X_{\ell'}^{\pm} X_{\ell+1}^{\pm} &= q^{\pm 2} X_{\ell}^{\pm} X_{\ell'+1}^{\pm} - X_{\ell'+1}^{\pm} X_{\ell}^{\pm} \\ &= Q_{k+1}^{\pm} X_{\ell'}^{\pm} - Q_{\ell'}^{\pm} X_{\ell'}^{\pm} X_{\ell+1}^{\pm} = Q_{k+1}^{\pm} X_{\ell'+1}^{\pm} - X_{\ell'+1}^{\pm} X_{\ell'}^{\pm} \\ &= Q_{k+1}^{\pm} X_{\ell'}^{\pm} - Q_{k+1}^{\pm} X_{\ell'}^{\pm} + Q_{k+1}^{\pm} = Q_{k+1}^{\pm} X_{\ell'+1}^{\pm} - Z_{\ell'+1}^{\pm} X_{\ell'}^{\pm} \\ &= Q_{k+1}^{\pm} X_{\ell'}^{\pm} - Q_{k+1}^{\pm} X_{\ell'}^{\pm} + Q_{k+1}^{\pm} = Q_{k+1}^{\pm} X_{\ell'+1}^{\pm} - Z_{\ell'+1}^{\pm} + Q_{k+1}^{\pm} \\ &= Q_{k+1}^{\pm} X_{\ell'}^{\pm} + Q_{k+1}^{\pm} = Q_{k+1}^{\pm} + Q_{k+1}^{\pm} + Q_{k+1}^{\pm} + Q_{k+1}^{\pm} \\ &= Q_{k+1}^{\pm} + Q_{k+1}$$

Irreducible finite-dimensional representations of $U_q(L\mathfrak{g})$

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

$$\operatorname{Irrep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))\longleftrightarrow \bigcup_{n\geq 0} (\mathbb{C}^{\times})^n/\mathfrak{S}_n$$

Northeastern University

$$\operatorname{Irrep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))\longleftrightarrow \bigcup_{n\geq 0} (\mathbb{C}^{\times})^n/\mathfrak{S}_n$$

Example If $\alpha_1, \ldots, \alpha_m \in \mathbb{C}^{\times}$, the evaluation representation

$$\mathcal{V} = \mathbb{C}^2(\alpha_1) \otimes \cdots \otimes \mathbb{C}^2(\alpha_m)$$

Northeastern University

V. Toledano Laredo

Yangians, quantum loop algebras and elliptic quantum group

$$\operatorname{Irrep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))\longleftrightarrow \bigcup_{n\geq 0} (\mathbb{C}^{\times})^n/\mathfrak{S}_n$$

Example If $\alpha_1, \ldots, \alpha_m \in \mathbb{C}^{\times}$, the evaluation representation

$$\mathcal{V} = \mathbb{C}^2(\alpha_1) \otimes \cdots \otimes \mathbb{C}^2(\alpha_m)$$

is irreducible iff $\alpha_i/\alpha_j \neq q^2$, for any $i \neq j$.

$$\operatorname{Irrep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))\longleftrightarrow \bigcup_{n\geq 0} (\mathbb{C}^{\times})^n/\mathfrak{S}_n$$

Example If $\alpha_1, \ldots, \alpha_m \in \mathbb{C}^{\times}$, the evaluation representation

$$\mathcal{V} = \mathbb{C}^2(\alpha_1) \otimes \cdots \otimes \mathbb{C}^2(\alpha_m)$$

is irreducible iff $\alpha_i/\alpha_j \neq q^2$, for any $i \neq j$. If so, it corresponds to the *m*-tuple $\{\alpha_1, \ldots, \alpha_m\}$.

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

$$\begin{split} \Psi(z)^{\infty} &= \sum_{r \ge 0} \Psi_r^+ z^{-r} & X^{\pm}(z)^{\infty} = \sum_{r \ge 0} X_r^{\pm} z^{-r} \\ \Psi(z)^0 &= \sum_{r \ge 0} \Psi_{-r}^- z^r & X^{\pm}(z)^0 = -\sum_{r > 0} X_{-r}^{\pm} z^r \end{split}$$

Northeastern University

V. Toledano Laredo

ngians, quantum loop algebras and elliptic quantum groups

$$\begin{split} \Psi(z)^{\infty} &= \sum_{r \ge 0} \Psi_r^+ z^{-r} & X^{\pm}(z)^{\infty} = \sum_{r \ge 0} X_r^{\pm} z^{-r} \\ \Psi(z)^0 &= \sum_{r \ge 0} \Psi_{-r}^- z^r & X^{\pm}(z)^0 = -\sum_{r > 0} X_{-r}^{\pm} z^r \end{split}$$

Prop. (Beck–Kac,Hernandez) On $V \in \operatorname{Rep}_{fd}(U_q(L\mathfrak{g}))$, $\Psi(z)^{\infty/0}$ and $X^{\pm}(z)^{\infty/0}$ are the exp. at $z = \infty/0$ of rat'l functions $\Psi(z)$, $X^{\pm}(z)$.

してん 聞い (聞き) (聞き) (日)

$$\begin{split} \Psi(z)^{\infty} &= \sum_{r \ge 0} \Psi_r^+ z^{-r} & X^{\pm}(z)^{\infty} = \sum_{r \ge 0} X_r^{\pm} z^{-r} \\ \Psi(z)^0 &= \sum_{r \ge 0} \Psi_{-r}^- z^r & X^{\pm}(z)^0 = -\sum_{r > 0} X_{-r}^{\pm} z^r \end{split}$$

Prop. (Beck–Kac,Hernandez) On $V \in \operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g})), \Psi(z)^{\infty/0}$ and $X^{\pm}(z)^{\infty/0}$ are the exp. at $z = \infty/0$ of rat'l functions $\Psi(z), X^{\pm}(z)$. Relations

Yangians, quantum loop algebras and elliptic quantum group

$$\begin{split} \Psi(z)^{\infty} &= \sum_{r \ge 0} \Psi_r^+ z^{-r} & X^{\pm}(z)^{\infty} = \sum_{r \ge 0} X_r^{\pm} z^{-r} \\ \Psi(z)^0 &= \sum_{r \ge 0} \Psi_{-r}^- z^r & X^{\pm}(z)^0 = -\sum_{r > 0} X_{-r}^{\pm} z^r \end{split}$$

Prop. (Beck–Kac,Hernandez) On $V \in \operatorname{Rep}_{fd}(U_q(L\mathfrak{g})), \Psi(z)^{\infty/0}$ and $X^{\pm}(z)^{\infty/0}$ are the exp. at $z = \infty/0$ of rat'l functions $\Psi(z), X^{\pm}(z)$. Relations $[\Psi(z), \Psi(w)] = 0$

.

$$\begin{split} \Psi(z)^{\infty} &= \sum_{r \ge 0} \Psi_r^+ z^{-r} & X^{\pm}(z)^{\infty} = \sum_{r \ge 0} X_r^{\pm} z^{-r} \\ \Psi(z)^0 &= \sum_{r \ge 0} \Psi_{-r}^- z^r & X^{\pm}(z)^0 = -\sum_{r > 0} X_{-r}^{\pm} z^r \end{split}$$

Prop. (Beck–Kac,Hernandez) On $V \in \operatorname{Rep}_{fd}(U_q(L\mathfrak{g}))$, $\Psi(z)^{\infty/0}$ and $X^{\pm}(z)^{\infty/0}$ are the exp. at $z = \infty/0$ of rat'l functions $\Psi(z)$, $X^{\pm}(z)$.

Relations
$$[\Psi(z), \Psi(w)] = 0$$

Ad $(\Psi(z))\mathcal{X}^{\pm}(w) = \frac{q^{\pm 2}z - w}{z - q^{\pm 2}w}\mathcal{X}^{\pm}(w) \mp \frac{(q^2 - q^{-2})q^{\pm 2}w}{z - q^{\pm 2}w}\mathcal{X}^{\pm}(q^{\mp 2}z)$
 $\mathcal{X}^{\pm}(z)\mathcal{X}^{\pm}(w) = \frac{q^{\pm 2}z - w}{z - q^{\pm 2}w}\mathcal{X}^{\pm}(w)\mathcal{X}^{\pm}(z) \mp \frac{1 - q^{\pm 2}}{z - q^{\pm 2}w}(w\mathcal{X}^{\pm}(z)^2 + z\mathcal{X}^{\pm}(w))$
 $[\mathcal{X}^{+}(z), \mathcal{X}^{-}(w)] = \frac{1}{q - q^{-1}}\left(\frac{z\Psi(w) - w\Psi(z)}{z - w} - \Psi(0)\right)$

Northeastern University

V. Toledano Laredo

/angians, quantum loop algebras and elliptic quantum group

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Northeastern University

V. Toledano Laredo

ans, quantum loop algebras and elliptic quantum groups

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

$$\operatorname{Irrep}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} \mathbb{C}^n / \mathfrak{S}_n$$

$$\operatorname{Irrep}_{\mathsf{fd}}(U_q(L\mathfrak{g})) \longleftrightarrow \bigcup_{n \geq 0} (\mathbb{C}^{\times})^n / \mathfrak{S}_n$$

Northeastern University

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Yangians, quantum loop algebras and elliptic quantum group

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E}xp$ preserves dimensions.

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E}xp$ preserves dimensions.

Caveat \mathcal{E} xp is a set-theoretic map, **not** a functor.

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E}xp$ preserves dimensions.

Caveat $\mathcal{E}xp$ is a set-theoretic map, **not** a functor.

Problem Construct a functor $\mathcal{F} : \operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$ which induces \mathcal{E}_{xp} ,

Northeastern University

" $Y_{\hbar}(\mathfrak{g})$ and $U_q(L\mathfrak{g})$ have the same f.d. representation theory"

Theorem (Nakajima, Varagnolo) If \mathfrak{g} is simply-laced, $\mathcal{E}xp$ preserves dimensions.

Caveat $\mathcal{E}xp$ is a set-theoretic map, **not** a functor.

Problem Construct a functor \mathcal{F} : $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$ which induces \mathcal{E}_{xp} , and an equivalence of appropriate subcategories.

Northeastern University

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an exponential cover of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$.

Northeastern University

V. Toledano Laredo

ans, quantum loop algebras and elliptic quantum groups

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

 $\Gamma: \operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$

Northeastern University

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}_{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g}))$$

such that

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group:

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}}_{\mathsf{fd}}(U_q(L\mathfrak{g}))$$

such that

1 $\Gamma(V) = V$ as vector spaces

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}_{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g}))$$

such that

1
$$\Gamma(V) = V$$
 as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}_{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g}))$$

such that

1
$$\Gamma(V) = V$$
 as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).

2 Γ is essentially surjective.

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}_{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g}))$$

such that

- **1** $\Gamma(V) = V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).
- **2** Γ is essentially surjective.
- 3 Γ maps simples to simples

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

$$\Gamma: \operatorname{\mathsf{Rep}}_{\operatorname{\mathsf{fd}}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{\mathsf{Rep}}_{\operatorname{\mathsf{fd}}}(U_q(L\mathfrak{g}))$$

such that

- **1** $\Gamma(V) = V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).
- **2** Γ is essentially surjective.
- **3** Γ maps simples to simples and induces the map $\mathcal{E}xp$ on parameters.

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

 $\Gamma : \operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$

such that

- **1** $\Gamma(V) = V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).
- **2** Γ is essentially surjective.
- **3** Γ maps simples to simples and induces the map $\mathcal{E} \times p$ on parameters.

Northeastern University

I restricts to an equivalence on a subcategory C ⊂ Rep_{fd}(Y_ħ(𝔅)) determined by a branch of log.

Theorem (Gautam–TL 2013)

 $\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g}))$ is an *exponential cover* of $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$. More precisely, there is a functor

 $\Gamma : \operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \longrightarrow \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$

such that

- **1** $\Gamma(V) = V$ as vector spaces ($\Rightarrow \Gamma$ is exact and faithful).
- **2** Γ is essentially surjective.
- **3** Γ maps simples to simples and induces the map $\mathcal{E}xp$ on parameters.

(日) (同) (三) (三)

Northeastern University

I restricts to an equivalence on a subcategory C ⊂ Rep_{fd}(Y_ħ(𝔅)) determined by a branch of log.

Main ingredient Γ is governed by an abelian difference equation.

A small computation

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group?

A small computation

• $V \in \mathsf{Rep}(\mathfrak{sl}_2)$ vector repr., V(a) eval. repr. of $Y_{\hbar}(\mathfrak{sl}_2)$, $a \in \mathbb{C}$

Northeastern University

V. Toledano Laredo

fangians, quantum loop algebras and elliptic quantum group

A small computation

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

Northeastern University

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

Northeastern University

V. Toledano Laredo

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q\mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$

Northeastern University

V. Toledano Laredo

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q \mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ • $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

Northeastern University

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q \mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ • $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z) \Omega = q^{-1} rac{q^2 z - lpha}{z - lpha} \Omega$$

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

■ $\mathcal{V} \in \operatorname{Rep}(U_q\mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ ■ $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z)\Omega = q^{-1}\frac{q^2z-\alpha}{z-\alpha}\Omega$$

$$\frac{u+\hbar-a}{u-a} \stackrel{?}{\rightsquigarrow} q^{-1} \frac{q^2 z - \alpha}{z-\alpha}$$

Northeastern University

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q \mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ • $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z)\,\Omega = q^{-1}\frac{q^2z-\alpha}{z-\alpha}\,\Omega$$

$$\frac{u+\hbar-a}{u-a} \stackrel{?}{\rightsquigarrow} q^{-1} \frac{q^2 z - \alpha}{z-\alpha}$$

• Termwise exponentiation: $z = e^{2\pi \iota u}$, $\alpha = e^{2\pi \iota a}$, $q = e^{\pi \iota \hbar}$

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q\mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ • $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z)\Omega = q^{-1}\frac{q^2z-\alpha}{z-\alpha}\Omega$$

$$\frac{u+\hbar-a}{u-a} \stackrel{?}{\rightsquigarrow} q^{-1} \frac{q^2 z - \alpha}{z-\alpha}$$

Termwise exponentiation: z = e^{2πιu}, α = e^{2πιa}, q = e^{πιħ}
 Better answer

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

• $\mathcal{V} \in \operatorname{Rep}(U_q\mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ • $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z)\,\Omega = q^{-1}\frac{q^2z-\alpha}{z-\alpha}\,\Omega$$

$$\frac{u+\hbar-a}{u-a} \stackrel{?}{\rightsquigarrow} q^{-1} \frac{q^2 z - \alpha}{z-\alpha}$$

Termwise exponentiation: z = e^{2πιu}, α = e^{2πιa}, q = e^{πιħ}
 Better answeraveraging

V ∈ Rep(sl₂) vector repr., V(a) eval. repr. of Y_ħ(sl₂), a ∈ C
 ω ∈ V(a) highest weight vector

$$\xi(u)\,\omega=rac{u+\hbar-a}{u-a}\,\omega$$

■ $\mathcal{V} \in \operatorname{Rep}(U_q\mathfrak{sl}_2)$ vector repr., $\mathcal{V}(\alpha)$ eval. repr. of $U_q(L\mathfrak{sl}_2)$, $\alpha \in \mathbb{C}^{\times}$ ■ $\Omega \in \mathcal{V}(\alpha)$ highest weight vector

$$\Psi^{\pm}(z)\Omega = q^{-1}\frac{q^2z-\alpha}{z-\alpha}\Omega$$

$u + \hbar - a$?	$q^{-1}q^2z-\alpha$
u — a	. 4	$\frac{q}{z-\alpha}$

• Termwise exponentiation: $z = e^{2\pi \iota u}$, $\alpha = e^{2\pi \iota a}$, $q = e^{\pi \iota \hbar}$

Better answeraveraging

$$q^{-1}\frac{q^2z-\alpha}{z-\alpha}=\cdots\frac{u+1+\hbar-a}{u+1-a}\cdot\frac{u+\hbar-a}{u-a}\cdot\frac{u-1+\hbar-a}{u-1-a}\cdots$$

V. Toledano Laredo

Northeastern University

V. Toledano Laredo

• $A: \mathbb{C} \to GL(V)$ rational function

Northeastern University

V. Toledano Laredo

• $A : \mathbb{C} \to GL(V)$ rational function • $A = 1 + A_0 u^{-1} + \cdots$

Northeastern University

V. Toledano Laredo

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

Northeastern University

V. Toledano Laredo

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

angians, quantum loop algebras and elliptic quantum groups

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

Theorem (Birkhoff, 1911)

Yangians, quantum loop algebras and elliptic quantum g

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

Northeastern University

Theorem (Birkhoff, 1911) If the eigenvalues of A_0 do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{\pm}: \mathbb{C} \to GL(V)$,

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

Northeastern University

Theorem (Birkhoff, 1911) If the eigenvalues of A_0 do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{\pm}: \mathbb{C} \to GL(V)$, which are uniquely determined by

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

Northeastern University

Theorem (Birkhoff, 1911) If the eigenvalues of A_0 do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{\pm} : \mathbb{C} \to GL(V)$, which are uniquely determined by 1 ϕ^{\pm} is holomorphic and invertible for $\pm \operatorname{Re} u >> 0$

•
$$A: \mathbb{C} \to GL(V)$$
 rational function
• $A = 1 + A_0 u^{-1} + \cdots$

(Symbolic) half-averages

$$\varphi^{-}(u) = A(u-1)A(u-2)\cdots \qquad \varphi^{+}(u) = A(u)^{-1}A(u+1)^{-1}\cdots$$

satisfy the additive difference equation

$$\varphi^{\pm}(u+1) = A(u)\varphi^{\pm}(u)$$

Theorem (Birkhoff, 1911) If the eigenvalues of A_0 do not differ by integers, there are canonical meromorphic fundamental solutions $\phi^{\pm}: \mathbb{C} \to GL(V)$, which are uniquely determined by

1 ϕ^{\pm} is holomorphic and invertible for $\pm \operatorname{Re} u >> 0$

2
$$\phi^{\pm} \sim (1 + O(u^{-1}))(\pm u)^{A_0}$$
 for $\pm \operatorname{Re} u >> 0$

V. Toledano Laredo

angians, quantum loop algebras and elliptic quantum group

Northeastern University

Theorem (Birkhoff, 1911)

Northeastern University

V. Toledano Laredo

Theorem (Birkhoff, 1911)

I S(u) is a 1-periodic function of u, and thus a function of $z = e^{2\pi \iota u}$

Northeastern University

V. Toledano Laredo

Theorem (Birkhoff, 1911)

- **I** S(u) is a 1-periodic function of u, and thus a function of $z = e^{2\pi \iota u}$
- **2** $S(z) : \mathbb{P}^1 \to GL(V)$ is a rational function of z such that

Theorem (Birkhoff, 1911)

1 S(u) is a 1-periodic function of u, and thus a function of $z = e^{2\pi \iota u}$

2 $S(z): \mathbb{P}^1 \to GL(V)$ is a rational function of z such that

$$S(\infty)=e^{\pi\iota A_0}=S(0)^{-1}$$

Theorem (Birkhoff, 1911)

1 S(u) is a 1-periodic function of u, and thus a function of $z = e^{2\pi \iota u}$ **2** $S(z) : \mathbb{P}^1 \to GL(V)$ is a rational function of z such that

$$S(\infty) = e^{\pi \iota A_0} = S(0)^{-1}$$

Remark. S(u) is a regularisation of

$$\cdots A(u+2)A(u+1)A(u)A(u-1)A(u-2)\cdots$$

Northeastern University

Additive difference equations: example

Northeastern University

V. Toledano Laredo

Additive difference equations: example

Scalar additive difference equation

$$f(u+1)=\frac{u-a}{u-b}f(u)$$

Northeastern University

V. Toledano Laredo

$$f(u+1)=\frac{u-a}{u-b}f(u)$$

The fundamental solutions are given by Euler's Gamma function Γ

$$\phi^{+} = \frac{\Gamma(u-a)}{\Gamma(u-b)} \qquad \qquad \phi^{-} = \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}$$

Northeastern University

$$f(u+1)=\frac{u-a}{u-b}f(u)$$

The fundamental solutions are given by Euler's Gamma function $\boldsymbol{\Gamma}$

$$\phi^{+} = \frac{\Gamma(u-a)}{\Gamma(u-b)} \qquad \qquad \phi^{-} = \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}$$

The connection matrix is

$$S(u) = \frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)} = \frac{e^{2\pi\iota u} - e^{2\pi\iota a}}{e^{2\pi\iota u} - e^{2\pi\iota b}} \cdot e^{\pi\iota(b-a)}$$

Northeastern University

$$f(u+1)=\frac{u-a}{u-b}f(u)$$

The fundamental solutions are given by Euler's Gamma function $\boldsymbol{\Gamma}$

$$\phi^{+} = \frac{\Gamma(u-a)}{\Gamma(u-b)} \qquad \qquad \phi^{-} = \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}$$

The connection matrix is

$$S(u) = \frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)} = \frac{e^{2\pi \iota u} - e^{2\pi \iota a}}{e^{2\pi \iota u} - e^{2\pi \iota b}} \cdot e^{\pi \iota (b-a)}$$

$$\Gamma(u)\Gamma(1-u) = \pi/\sin(\pi u)).$$

$$f(u+1) = \frac{u-a}{u-b}f(u)$$

The fundamental solutions are given by Euler's Gamma function $\boldsymbol{\Gamma}$

$$\phi^{+} = \frac{\Gamma(u-a)}{\Gamma(u-b)} \qquad \qquad \phi^{-} = \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)}$$

The connection matrix is

$$S(u) = \frac{\Gamma(u-b)}{\Gamma(u-a)} \frac{\Gamma(1-u+b)}{\Gamma(1-u+a)} = \frac{e^{2\pi\iota u} - e^{2\pi\iota a}}{e^{2\pi\iota u} - e^{2\pi\iota b}} \cdot e^{\pi\iota(b-a)}$$

 $(\Gamma(u)\Gamma(1-u) = \pi/\sin(\pi u))$. Termwise exponentiation.

The functor $\Gamma: V \in \operatorname{Rep}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})) \stackrel{?}{\rightsquigarrow} U_q(L\mathfrak{g}) \circlearrowleft V$

Northeastern University

V. Toledano Laredo

The functor $\Gamma: V \in \operatorname{Rep}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})) \stackrel{?}{\rightsquigarrow} U_q(L\mathfrak{g}) \circlearrowleft V$

Main idea

Northeastern University

V. Toledano Laredo

The functor $\Gamma: V \in \operatorname{Rep}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})) \stackrel{?}{\rightsquigarrow} U_q(L\mathfrak{g}) \circlearrowleft V$

Main idea

• Recall that
$$\xi(u) \in GL(V)(u)$$
, $\xi(\infty) = 1$

Northeastern University

angians, quantum loop algebras and elliptic quantum group

The functor Γ : $V \in \operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})) \stackrel{?}{\rightsquigarrow} U_q(L\mathfrak{g}) \circlearrowleft V$

Main idea

• Recall that $\xi(u) \in GL(V)(u)$, $\xi(\infty) = 1$

Consider the additive difference equation

Northeastern University

Main idea

- Recall that $\xi(u) \in GL(V)(u), \ \xi(\infty) = 1$
- Consider the additive difference equation

```
f(u+1) = \xi(u)f(u)
```


Northeastern University

V. Toledano Laredo

Main idea

- Recall that $\xi(u) \in GL(V)(u), \ \xi(\infty) = 1$
- Consider the additive difference equation

$f(u+1) = \xi(u)f(u)$

The functor Γ is governed by this ADE

Main idea

- Recall that $\xi(u) \in GL(V)(u), \ \xi(\infty) = 1$
- Consider the additive difference equation

```
f(u+1) = \xi(u)f(u)
```

• The functor Γ is governed by this ADE Action of the commutative generators Ψ_k^{\pm}

Main idea

- Recall that $\xi(u) \in GL(V)(u), \ \xi(\infty) = 1$
- Consider the additive difference equation

$f(u+1) = \xi(u)f(u)$

• The functor Γ is governed by this ADE Action of the commutative generators Ψ_{μ}^{\pm}

$$\Psi(z) \longrightarrow S(z) = \cdots \xi(u+1)\xi(u)\xi(u-1)\cdots$$

Yangians, quantum loop algebras and elliptic quantum group

V. Toledano Laredo

Action of the generators X_k^{\pm}

Northeastern University

V. Toledano Laredo

Action of the generators X_k^{\pm}

• $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)

Northeastern University

V. Toledano Laredo

Action of the generators X_k^{\pm}

■
$$g^+(u) = \cdots \xi(u+2)\xi(u+1)$$
 (reg.)

•
$$g^{-}(u) = \xi(u-1)\xi(u-2)\cdots$$
 (reg.

Northeastern University

V. Toledano Laredo

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{\pm}} \frac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

Northeastern University

V. Toledano Laredo

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{\pm}} \frac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

• C^{\pm} encloses the poles of $x^{\pm}(u)$ and none of their \mathbb{Z}^{\times} -translates.

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z) \rightarrow \Gamma(\hbar) \oint_{C^{\pm}} \frac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

C[±] encloses the poles of x[±](u) and none of their Z[×]-translates.
 z lies outside exp(2πιC[±]).

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z)
ightarrow \Gamma(\hbar) \oint_{C^{\pm}} rac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

C[±] encloses the poles of x[±](u) and none of their Z[×]-translates.
 z lies outside exp(2πιC[±]).

Northeastern University

Theorem (GTL) The above formulae define an action of $U_q(L\mathfrak{g})$ on V

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z)
ightarrow \Gamma(\hbar) \oint_{C^{\pm}} rac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

C[±] encloses the poles of x[±](u) and none of their Z[×]-translates.
 z lies outside exp(2πιC[±]).

Theorem (GTL) The above formulae define an action of $U_q(L\mathfrak{g})$ on V and therefore an exact, faithful functor $\Gamma : \operatorname{Rep}_{\mathrm{fd}}(Y_{\hbar}(\mathfrak{g})) \to \operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$.

Action of the generators
$$X_k^{\pm}$$

 $g^+(u) = \cdots \xi(u+2)\xi(u+1)$ (reg.)
 $g^-(u) = \xi(u-1)\xi(u-2)\cdots$ (reg.)

$$X^{\pm}(z)
ightarrow \Gamma(\hbar) \oint_{C^{\pm}} rac{z}{z - e^{2\pi \iota u}} g^{\pm}(u) x^{\pm}(u) du$$

• C^{\pm} encloses the poles of $x^{\pm}(u)$ and none of their \mathbb{Z}^{\times} -translates.

z lies outside $\exp(2\pi \iota C^{\pm})$.

Theorem (GTL) The above formulae define an action of $U_q(L\mathfrak{g})$ on V and therefore an exact, faithful functor $\Gamma : \operatorname{Rep}_{fd}(Y_{\hbar}(\mathfrak{g})) \to \operatorname{Rep}_{fd}(U_q(L\mathfrak{g}))$.

Remark The inverse functor is governed by the Riemann–Hilbert problem $S(z) \sim A(u)$ (always solvable since [S(z), S(w)] = 0).

Northeastern University

V. Toledano Laredo

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

Northeastern University

V. Toledano Laredo

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

• $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}, \mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$

Northeastern University

V. Toledano Laredo

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}, \mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$
- $\bullet \ (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}, \mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$
- $\bullet (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g})) \leadsto \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd,\mathbb{C}(\zeta)}}(U_q(L\mathfrak{g}))$
- $\bullet \ (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.

$$\blacksquare \ \mathcal{R}^{\mathsf{0}}_{\mathcal{V}_1,\mathcal{V}_2}(\zeta): \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \xrightarrow{\sim} \mathcal{V}_2 \otimes_{\zeta^{-1}} \mathcal{V}_1$$

V. Toledano Laredo

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd}}(U_q(L\mathfrak{g})) \leadsto \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{\mathsf{Rep}_{fd,\mathbb{C}(\zeta)}}(U_q(L\mathfrak{g}))$
- $\bullet \ (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.
- $\bullet \ \mathcal{R}^{\mathsf{0}}_{\mathcal{V}_1,\mathcal{V}_2}(\zeta): \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \xrightarrow{\sim} \mathcal{V}_2 \otimes_{\zeta^{-1}} \mathcal{V}_1$
- \mathcal{R}^0 the commutative part of the universal *R*-matrix of $U_q(L\mathfrak{g})$.

V. Toledano Laredo

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd},\mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$
- $\bullet \ (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.
- $\bullet \ \mathcal{R}^{\mathsf{0}}_{\mathcal{V}_1,\mathcal{V}_2}(\zeta): \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \xrightarrow{\sim} \mathcal{V}_2 \otimes_{\zeta^{-1}} \mathcal{V}_1$
- \mathcal{R}^0 the commutative part of the universal *R*-matrix of $U_q(L\mathfrak{g})$.

Theorem (GTL, arXiv:14035251)

1 $(\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})), \otimes_s, R^0(s))$ is a meromorphic braided tensor category.

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd},\mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$
- $\bullet \ (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.

$$\blacksquare \ \mathcal{R}^{\mathsf{0}}_{\mathcal{V}_1,\mathcal{V}_2}(\zeta): \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \xrightarrow{\sim} \mathcal{V}_2 \otimes_{\zeta^{-1}} \mathcal{V}_1$$

• \mathcal{R}^0 the commutative part of the universal *R*-matrix of $U_q(L\mathfrak{g})$.

Theorem (GTL, arXiv:14035251)

- **I** $(\operatorname{Rep}_{\mathsf{fd}}(Y_{\hbar}(\mathfrak{g})), \otimes_s, R^0(s))$ is a meromorphic braided tensor category.
- 2 Γ : $(\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})), \otimes_s, R^0(s)) \longrightarrow (\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})), \otimes_{\zeta}, R^0(\zeta))$ has a (meromorphic) braided tensor structure.

Theorem (D. Hernandez, GTL) $\operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$ is a meromorphic braided tensor category.

- $\mathcal{V}_1, \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \rightsquigarrow \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \in \operatorname{Rep}_{\operatorname{fd},\mathbb{C}(\zeta)}(U_q(L\mathfrak{g}))$
- $\bullet (\mathcal{V}_1 \otimes_{\zeta_1} \mathcal{V}_2) \otimes_{\zeta_2} \mathcal{V}_3 = \mathcal{V}_1 \otimes_{\zeta_1 \zeta_2} (\mathcal{V}_2 \otimes_{\zeta_2} \mathcal{V}_3)$
- \otimes_{ζ} is the (deformed) Drinfeld coproduct.

$$\bullet \ \mathcal{R}^{\mathsf{0}}_{\mathcal{V}_1,\mathcal{V}_2}(\zeta): \mathcal{V}_1 \otimes_{\zeta} \mathcal{V}_2 \xrightarrow{\sim} \mathcal{V}_2 \otimes_{\zeta^{-1}} \mathcal{V}_1$$

• \mathcal{R}^0 the commutative part of the universal *R*-matrix of $U_q(L\mathfrak{g})$.

Theorem (GTL, arXiv:14035251)

- 1 $(\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})), \otimes_s, R^0(s))$ is a meromorphic braided tensor category.
- 2 Γ : $(\operatorname{Rep}_{\operatorname{fd}}(Y_{\hbar}(\mathfrak{g})), \otimes_s, R^0(s)) \longrightarrow (\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})), \otimes_{\zeta}, R^0(\zeta))$ has a (meromorphic) braided tensor structure.

Remark (2) is a meromorphic, q-deformed version of the Kazhdan-Lusztig equivalence $\mathcal{O}_{\kappa}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \operatorname{Rep}_{\mathrm{fd}}(U_q\mathfrak{g})_{\mathfrak{f}}$

Northeastern University

V. Toledano Laredo

 \blacksquare Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

Northeastern University

V. Toledano Laredo

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$ $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

Northeastern University

V. Toledano Laredo

Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

$$R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

Northeastern University

V. Toledano Laredo

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

$$R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

■ Yangians Y_ħ(𝔅) (resp. quantum loop algebras U_q(L𝔅)) give rise to rational (resp. trigonometric) solutions of the YBE.

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_ħ(𝔅) (resp. quantum loop algebras U_q(L𝔅)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) 🔅

V. Toledano Laredo

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_h(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) Felder ('94)

V. Toledano Laredo

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_h(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) (3)

Felder ('94)

V. Toledano Laredo

Consider the dynamical Yang–Baxter equations

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_h(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) 🙁

Felder ('94)

V. Toledano Laredo

Consider the dynamical Yang–Baxter equations

$$\begin{aligned} R_{12}(u,\lambda-h^{(3)})R_{13}(u+v,\lambda)R_{23}(v,\lambda-h^{(1)}) \\ &= R_{23}(v,\lambda)R_{13}(u+v,\lambda-h^{(2)})R_{12}(u,\lambda) \end{aligned}$$

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_ħ(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) (2)

Felder ('94)

Consider the dynamical Yang–Baxter equations

$$R_{12}(u, \lambda - h^{(3)})R_{13}(u + v, \lambda)R_{23}(v, \lambda - h^{(1)})$$

= $R_{23}(v, \lambda)R_{13}(u + v, \lambda - h^{(2)})R_{12}(u, \lambda)$

where $\lambda \in \mathfrak{h}$, $R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the *i*th weight on $V^{\otimes 3}$.

V. Toledano Laredo

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_ħ(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) 🔅

Felder ('94)

Consider the dynamical Yang–Baxter equations

$$R_{12}(u, \lambda - h^{(3)})R_{13}(u + v, \lambda)R_{23}(v, \lambda - h^{(1)})$$

= $R_{23}(v, \lambda)R_{13}(u + v, \lambda - h^{(2)})R_{12}(u, \lambda)$

where $\lambda \in \mathfrak{h}$, $R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the *i*th weight on $V^{\otimes 3}$. Solutions to the DYBE exist for all \mathfrak{g} (Felder, Etingof) \bigcirc

• Quantum groups are related to the Yang–Baxter equations on $V^{\otimes 3}$

 $R_{12}(u)R_{13}(u+v)R_{23}(v) = R_{23}(v)R_{13}(u+v)R_{12}(u)$

where $R : \mathbb{C} \to \text{End}(V \otimes V)$ is meromorphic, $R_{12} = R \otimes 1, \ldots$

- Yangians Y_ħ(g) (resp. quantum loop algebras U_q(Lg)) give rise to rational (resp. trigonometric) solutions of the YBE.
- Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) 🔅

Felder ('94)

Consider the *dynamical* Yang–Baxter equations

$$R_{12}(u, \lambda - h^{(3)})R_{13}(u + v, \lambda)R_{23}(v, \lambda - h^{(1)})$$

= $R_{23}(v, \lambda)R_{13}(u + v, \lambda - h^{(2)})R_{12}(u, \lambda)$

where $\lambda \in \mathfrak{h}$, $R \in \operatorname{End}_{\mathfrak{h}}(V \otimes V)$, and $h^{(i)}$ is the *i*th weight on $V^{\otimes 3}$.

- Solutions to the DYBE exist for all 𝔅 (Felder, Etingof) 🙂
- Elliptic quantum groups are the quantum groups associated to elliptic solutions of the DYBE (works well only in type A ②).

Problem # 2: present elliptic quantum groups

Northeastern University

V. Toledano Laredo

Let Im $\tau > 0$ and $p = e^{2\pi \iota \tau}$. Assume that $\mathbb{Z}\hbar \cap (\mathbb{Z} + \tau \mathbb{Z}) = \{0\}$.

Northeastern University

V. Toledano Laredo

Let $\operatorname{Im} \tau > 0$ and $p = e^{2\pi \iota \tau}$. Assume that $\mathbb{Z}\hbar \cap (\mathbb{Z} + \tau \mathbb{Z}) = \{0\}$.

Idea

Northeastern University

V. Toledano Laredo

Let $\operatorname{Im} \tau > 0$ and $p = e^{2\pi \iota \tau}$. Assume that $\mathbb{Z}\hbar \cap (\mathbb{Z} + \tau \mathbb{Z}) = \{0\}$.

Idea Given $\mathcal{V} \in \operatorname{Rep}_{\mathrm{fd}}(U_q(L\mathfrak{g}))$, use the multiplicative *p*-difference equations defined by the commuting fields of $U_q(L\mathfrak{g})$

 $G(pz) = \Psi(z)G(z)$

to construct an action of $E_{\tau,\hbar}(\mathfrak{g})$ on \mathcal{V} .

Northeastern University

Let $\operatorname{Im} \tau > 0$ and $p = e^{2\pi \iota \tau}$. Assume that $\mathbb{Z}\hbar \cap (\mathbb{Z} + \tau \mathbb{Z}) = \{0\}$.

Idea Given $\mathcal{V} \in \operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g}))$, use the multiplicative *p*-difference equations defined by the commuting fields of $U_q(L\mathfrak{g})$

 $G(pz) = \Psi(z)G(z)$

to construct an action of $E_{\tau,\hbar}(\mathfrak{g})$ on \mathcal{V} .

Yangians, quantum loop algebras and elliptic quantum group

Northeastern University

V. Toledano Laredo

p-difference equations on $\mathcal{V} \in \mathsf{Rep}_{\mathsf{fd}}(U_q(L\mathfrak{g}))$

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

Northeastern University

V. Toledano Laredo

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

$$\phi(pz) = \Psi(z)\phi(z)$$

NOT regular at $0/\infty$ ($K \neq 1$)

Northeastern University

V. Toledano Laredo

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

Northeastern University

V. Toledano Laredo

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

 $\phi_0(z)$ canonical fund. soln. holo. near 0, $\phi_0(0) = 1$ $\phi_{\infty}(z)$ canonical fund. soln. holo. near ∞ , $\phi_{\infty}(\infty) = 1$

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

 $\phi_0(z)$ canonical fund. soln. holo. near 0, $\phi_0(0) = 1$ $\phi_{\infty}(z)$ canonical fund. soln. holo. near ∞ , $\phi_{\infty}(\infty) = 1$

Monodromy
$$M(z) = \phi_0(z)^{-1} \cdot K^{-1} \cdot \phi_\infty(z)$$

Northeastern University

 $\Psi(z) \in GL(\mathcal{V})(z)$: $[\Psi(z), \Psi(w)] = 0$ and $\Psi(\infty) = \Psi(0)^{-1} =: K$

 $\phi_0(z)$ canonical fund. soln. holo. near 0, $\phi_0(0) = 1$ $\phi_{\infty}(z)$ canonical fund. soln. holo. near ∞ , $\phi_{\infty}(\infty) = 1$

Northeastern University

Monodromy
$$M(z) = \phi_0(z)^{-1} \cdot K^{-1} \cdot \phi_\infty(z)$$

 $M(pz) = K^{-2}M(z)$

Northeastern University

V. Toledano Laredo

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

Northeastern University

V. Toledano Laredo

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

$$\Phi(u) \longrightarrow M(z) = \phi_0^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)$$

Northeastern University

V. Toledano Laredo

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

$$\Phi(u) \longrightarrow M(z) = \phi_0^{-1}(z) \cdot K^{-1} \cdot \phi_{\infty}(z)$$

Action of the raising/lowering generators $\mathfrak{X}^{\pm}(u,\lambda)$ $(\lambda \in \mathfrak{h})$

Northeastern University

V. Toledano Laredo

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

$$\Phi(u) \longrightarrow M(z) = \phi_0^{-1}(z) \cdot K^{-1} \cdot \phi_\infty(z)$$

Action of the raising/lowering generators $\mathfrak{X}^{\pm}(u,\lambda)$ $(\lambda \in \mathfrak{h})$

$$\mathfrak{X}^{\pm}(u,\lambda) \longrightarrow \oint_{C} \frac{\theta(u-v+\lambda)}{\theta(u-v)\theta(\lambda)} G^{\pm}(e^{2\pi\iota v}) \mathcal{X}^{\pm}(e^{2\pi\iota v}) dv$$

Northeastern University

Yangians, quantum loop algebras and elliptic quantum gro

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

$$\Phi(u) \longrightarrow M(z) = \phi_0^{-1}(z) \cdot K^{-1} \cdot \phi_\infty(z)$$

Action of the raising/lowering generators $\mathfrak{X}^{\pm}(u,\lambda)$ $(\lambda \in \mathfrak{h})$

$$\mathfrak{X}^{\pm}(u,\lambda) \longrightarrow \oint_{\mathcal{C}} \frac{\theta(u-v+\lambda)}{\theta(u-v)\theta(\lambda)} G^{\pm}(e^{2\pi\iota v}) \mathcal{X}^{\pm}(e^{2\pi\iota v}) \, dv$$

• $G^+(z) = \phi_0(pz)^{-1}$ $G^-(z) = \phi_\infty(z)$

Northeastern University

Yangians, quantum loop algebras and elliptic quantum g

Action of the commuting generators $\Phi(u)$ $(z = e^{2\pi \iota u})$

$$\Phi(u) \longrightarrow M(z) = \phi_0^{-1}(z) \cdot K^{-1} \cdot \phi_\infty(z)$$

Action of the raising/lowering generators $\mathfrak{X}^{\pm}(u,\lambda)$ $(\lambda \in \mathfrak{h})$

$$\mathfrak{X}^{\pm}(u,\lambda) \longrightarrow \oint_{C} \frac{\theta(u-v+\lambda)}{\theta(u-v)\theta(\lambda)} G^{\pm}(e^{2\pi\iota v}) \mathcal{X}^{\pm}(e^{2\pi\iota v}) \, dv$$

•
$$G^+(z) = \phi_0(pz)^{-1}$$
 $G^-(z) = \phi_\infty(z)$
• $\theta(u+1) = -\theta(u), \ \theta(u+\tau) = -e^{-\pi \iota \tau} e^{-2\pi \iota u} \theta(u), \ \theta'(0) = 1.$

Commutation relations

Theorem (GTL) The following commutation relations in End(V)

Northeastern University

V. Toledano Laredo

Commutation relations

Theorem (GTL) The following commutation relations in End(V)

 $[\Phi(u),\Phi(v)]=0$

Northeastern University

V. Toledano Laredo

Commutation relations

Theorem (GTL) The following commutation relations in $End(\mathcal{V})$

 $[\Phi(u),\Phi(v)]=0$

$$\begin{aligned} \mathsf{Ad}(\Phi(u))\mathfrak{X}^{\pm}(v,\lambda) &= \frac{\theta(u-v\pm\hbar)}{\theta(u-v\mp\hbar)}\mathfrak{X}^{\pm}(v,\lambda\pm 2\hbar) \\ &= \frac{\theta(2\hbar)\theta(u-v-\lambda\mp\hbar)}{\theta(u-v\mp\hbar)\theta(\lambda)}\mathfrak{X}^{\pm}(u\mp\hbar,\lambda\pm 2\hbar) \\ \mathfrak{X}^{\pm}(u,\lambda\pm\hbar)\mathfrak{X}^{\pm}(v,\lambda\mp\hbar) &= \frac{\theta(u-v\pm\hbar)}{\theta(u-v\mp\hbar)}\mathfrak{X}^{\pm}(v,\lambda\pm\hbar)\mathfrak{X}^{\pm}(u,\lambda\mp\hbar) \\ &\pm \frac{\theta(u-v-\lambda)\theta(\hbar)}{\theta(u-v\mp\hbar)\theta(\lambda)}\mathfrak{X}^{\pm}(u,\lambda\pm\hbar)\mathfrak{X}^{\pm}(u,\lambda\mp\hbar) \\ &= \frac{\theta(u-v+\lambda)\theta(\hbar)}{\theta(u-v\mp\hbar)\theta(\lambda)}\mathfrak{X}^{\pm}(v,\lambda\pm\hbar)\mathfrak{X}^{\pm}(v,\lambda\mp\hbar) \end{aligned}$$

Northeastern University

V. Toledano Laredo

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1+\lambda_2=\hbar\mu$

Northeastern University

V. Toledano Laredo

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$

Northeastern University

V. Toledano Laredo

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$ Remarks.

Northeastern University

angians, quantum loop algebras and elliptic quantum group

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$

Remarks.

1 We have the following quasi-periodicity

 $\Phi(u+1) = \Phi(u)$ and $\Phi(u+\tau) = e^{-2\pi \iota \hbar h} \Phi(u)$

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$

Remarks.

1 We have the following quasi-periodicity

 $\Phi(u+1) = \Phi(u)$ and $\Phi(u+\tau) = e^{-2\pi\iota\hbar h}\Phi(u)$

$$\mathfrak{X}^{\pm}(u+1,\lambda) = \mathfrak{X}^{\pm}(u,\lambda+1) = \mathfrak{X}^{\pm}(u,\lambda)$$

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$

Remarks.

1 We have the following quasi-periodicity

 $\Phi(u+1) = \Phi(u)$ and $\Phi(u+\tau) = e^{-2\pi\iota\hbar h}\Phi(u)$

$$\mathfrak{X}^{\pm}(u+1,\lambda) = \mathfrak{X}^{\pm}(u,\lambda+1) = \mathfrak{X}^{\pm}(u,\lambda)$$

$$\mathfrak{X}^{\pm}(u+\tau,\lambda)=e^{-2\pi\iota\lambda}\mathfrak{X}^{\pm}(u,\lambda)$$

Northeastern University

On a weight space $\mathcal{V}[\mu]$ we have the following, if $\lambda_1 + \lambda_2 = \hbar\mu$ $\theta(\hbar)[\mathfrak{X}^+(u,\lambda_1),\mathfrak{X}^-(v,\lambda_2)] = \frac{\theta(u-v+\lambda_1)}{\theta(u-v)\theta(\lambda_1)}\Phi(v) + \frac{\theta(u-v-\lambda_2)}{\theta(u-v)\theta(\lambda_2)}\Phi(u)$

Remarks.

1 We have the following quasi-periodicity

 $\Phi(u+1) = \Phi(u)$ and $\Phi(u+\tau) = e^{-2\pi\iota\hbar h}\Phi(u)$

$$\mathfrak{X}^{\pm}(u+1,\lambda)=\mathfrak{X}^{\pm}(u,\lambda+1)=\mathfrak{X}^{\pm}(u,\lambda)$$

$$\mathfrak{X}^{\pm}(u+ au,\lambda)=e^{-2\pi\iota\lambda}\mathfrak{X}^{\pm}(u,\lambda)$$

2 These relations and the quasi-periodicity properties were already worked out by Enriquez-Felder (1998), in connection with a Drinfeld-type presentation of Felder's elliptic quantum group $E_{\tau,\hbar}(\mathfrak{sl}_2)$.

Northeastern University

V. Toledano Laredo

Definition The category $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Northeastern University

V. Toledano Laredo

Definition The category $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Objects (GTL) A finite-dimensional vector space \mathbb{V} , together with a semisimple operator h and meromorphic End(\mathbb{V})-valued functions $\Phi(u), X^{\pm}(u, \lambda)$ such that

Northeastern University

angians, quantum loop algebras and elliptic quantum groups

Definition The category $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Objects (GTL) A finite-dimensional vector space \mathbb{V} , together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$ -valued functions $\Phi(u), X^{\pm}(u, \lambda)$ such that

$$[h, \Phi(u)] = 0$$
 and $[h, \mathfrak{X}^{\pm}(u, \lambda)] = \pm 2\mathfrak{X}^{\pm}(u, \lambda)$

Northeastern University

Definition The category $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Objects (GTL) A finite-dimensional vector space \mathbb{V} , together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$ -valued functions $\Phi(u), X^{\pm}(u, \lambda)$ such that

$$[h, \Phi(u)] = 0$$
 and $[h, \mathfrak{X}^{\pm}(u, \lambda)] = \pm 2\mathfrak{X}^{\pm}(u, \lambda)$

satisfying the periodicity properties and the relations given above.

Definition The category $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Objects (GTL) A finite-dimensional vector space \mathbb{V} , together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$ -valued functions $\Phi(u), X^{\pm}(u, \lambda)$ such that

 $[h, \Phi(u)] = 0$ and $[h, \mathfrak{X}^{\pm}(u, \lambda)] = \pm 2\mathfrak{X}^{\pm}(u, \lambda)$

satisfying the periodicity properties and the relations given above.

Morphisms (Felder) A morphism between \mathbb{V} and \mathbb{W} is a meromorphic function $\varphi(\lambda) \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{V}, \mathbb{W})$ such that

Definition The category $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ is given by

Objects (GTL) A finite-dimensional vector space \mathbb{V} , together with a semisimple operator h and meromorphic $\operatorname{End}(\mathbb{V})$ -valued functions $\Phi(u), X^{\pm}(u, \lambda)$ such that

$$[h, \Phi(u)] = 0$$
 and $[h, \mathfrak{X}^{\pm}(u, \lambda)] = \pm 2\mathfrak{X}^{\pm}(u, \lambda)$

satisfying the periodicity properties and the relations given above.

Morphisms (Felder) A morphism between \mathbb{V} and \mathbb{W} is a meromorphic function $\varphi(\lambda) \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{V}, \mathbb{W})$ such that

$$arphi(\lambda)h = harphi(\lambda) \ arphi(\lambda) \Phi(u) = \Phi(u)arphi(\lambda+2\hbar) \ arphi(-\lambda-\hbar)\mathfrak{X}^+(u,\lambda) = \mathfrak{X}^+(u,\lambda)arphi(-\lambda+\hbar) \ arphi(\lambda-\hbar h-\hbar)\mathfrak{X}^-(u,\lambda) = \mathfrak{X}^-(u,\lambda)arphi(\lambda-\hbar h+\hbar)$$

Northeastern University

V. Toledano Laredo

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Northeastern University

V. Toledano Laredo

Theorem (GTL) The simple objects in $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0}(E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Northeastern University

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Northeastern University

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ is defined over a larger field.

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \to \mathbb{C}^{\times}/p^{\mathbb{Z}}$, one can define subcategories

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0}(E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \to \mathbb{C}^{\times}/p^{\mathbb{Z}}$, one can define subcategories

$$\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(U_q(L\mathfrak{g}))$$
 and $\mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$

Northeastern University

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\mathrm{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \to \mathbb{C}^{\times}/p^{\mathbb{Z}}$, one can define subcategories

 $\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(U_q(L\mathfrak{g})) \quad \text{ and } \quad \mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$

with \mathcal{L}_{Π} defined over $\mathbb C$ and isomorphism dense,

Theorem (GTL) The simple objects in $\operatorname{Rep}_{fd}(E_{\tau,\hbar}(\mathfrak{g}))$ are in bijection with tuples of unordered points on the elliptic curve $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$.

$$\operatorname{Irr}(\mathcal{L})\longleftrightarrow \bigcup_{N\geq 0} (E)^N/\mathfrak{S}_N$$

Key issue $E_{\tau,\hbar}(\mathfrak{g})$ does not have a triangular decomposition.

Key ingredient Functor Θ : $\operatorname{Rep}_{\operatorname{fd}}(U_q(L\mathfrak{g})) \to \operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g})).$

Remark Θ cannot restrict to an equivalence because $\operatorname{Rep}_{\operatorname{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$ is defined over a larger field. However, for any branch Π of $\mathbb{C}^{\times} \to \mathbb{C}^{\times}/p^{\mathbb{Z}}$, one can define subcategories

$$\mathcal{C}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(U_q(L\mathfrak{g})) \quad \text{ and } \quad \mathcal{L}_{\Pi} \subset \operatorname{Rep}_{\mathsf{fd}}(E_{\tau,\hbar}(\mathfrak{g}))$$

with \mathcal{L}_{Π} defined over \mathbb{C} and isomorphism dense, and $\Theta : \mathcal{C}_{\Pi} \to \mathcal{L}_{\Pi}$ is an equivalence.