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Notation (Classical Lie Theory)

G : a simple, simply connected algebraic group over C
g = Lie G

T : a maximal split torus in G

Φ: the corresponding (irreducible) root system associated to (G ,T )

Φ±: the positive (respectively, negative) roots

B: a Borel subgroup containing T corresponding to the negative roots

∆ = {α1, α2, . . . , αn}: an ordering of the simple roots

W : the Weyl group of Φ

W` = W n `ZΦ: the affine Weyl group of Φ

ρ: the Weyl weight defined by ρ = 1
2

∑
α∈Φ+ α

α0 highest short root

h: the Coxeter number of Φ, given by h = 〈ρ, α∨0 〉+ 1
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Quantum Groups: Conventions

Assumptions

Let ζ ∈ C be a primitive `th root of unity.

The integer ` is odd and greater than 1.

If the root system Φ has type G2, then 3 does not divide `.

The integer ` is good for Φ, that is ` is not divisible by a bad prime
for Φ. If ` is not good it is called bad.
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Quantum Groups: Notation

Uζ(g): quantized enveloping algebra specialized at ζ

U(g): ordinary universal enveloping algebra

Uζ(g): Lusztig A-form specialized at ζ (distribution algebra)

uζ(g): small quantum group (f.d. Hopf algebra)

Uζ(g)� uζ(g) ↪→ Uζ(g)
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Quantum Groups: Representation Theory

X = Zω1 ⊕ · · · ⊕ Zωn: the weight lattice, where ωi ∈ E are the
fundamental weights.

X+ = Nω1 + · · ·+ Nωn: the dominant weights

Lζ(λ): simple module Uζ(g) of highest weight λ ∈ X+

∇ζ(λ) = ind
Uζ(g)

Uζ(b)λ: induced module where λ ∈ X+

∆ζ(λ): Weyl module where λ ∈ X+

Tζ(λ): tilting module of high weight λ ∈ X+

∆ζ(λ)
surjective−−−−−→ Lζ(λ)

injective

y yinjective

Tζ(λ)
surjective−−−−−→ ∇ζ(λ).
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Connections to Complex Algebraic Geometry

uζ(g)C Uζ(g) (normal subHopf algebra)

Uζ(g)/uζ(g) ∼= U(g)

Let M be in mod(Uζ(g)). Then the cohomology H•(uζ(g),M)
becomes a rational G -module. (i.e., cohomology takes you from the
quantum world to the classical world)

In fact we will see that if ` > h the cohomology yields a ”naive
functor” from mod(Uζ(g))-modules to Coh(N ) (i.e., f.g. graded
C[N ]-modules).

One point to keep in mind is that unlike the case with algebraic
groups in characteristic p > 0, in the quantum case you can only
apply Frobenius map once.
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Calculation of the Cohomology Ring

Theorem (Ginzburg-Kumar, 1993)

Let g be a complex simple Lie algebra and N be the nilpotent cone. If
l > h then

(a) Hodd(uζ(g),C) = 0;

(b) H2•(uζ(g),C) = C[N ].

In [BNPP], we calculated the cohomology ring when l < h and showed
that the odd degree cohomology vanishes and in most cases
H2•(uζ(g),C) = C[G · uJ ] where G · uJ is the closure of some Richardson
orbit. Our calculations heavily used the fact that

RnindG
PJ

S•(u∗J) = 0

for n > 0 (Grauert-Riemenschneider Vanishing Theorem).
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Support Theory

Theorem (BNPP)

Let M ∈ mod(uζ(g)) and R = H2•(uζ(g),C). Then Ext•uζ(g)(C,M) is a
finitely generated R-module.

Definition

Let M ∈ mod(uζ(g)). Let JM be the annihilator of the action of R on
Ext•uζ(g)(C,M∗ ⊗M). The support variety of M is defined as

Vuζ(g)(M) = MaxSpec(R/JM).
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ABG Equivalence of Categories

Theorem (Arkhipov-Bezrukavnikov-Ginzburg)

Let l > h. There exists the following equivalences of derived categories

Db(Uζ(g)mix
0 ) ∼= Db(CohG×C∗(G ×B n)) ∼= Db(Perv mix(Gr)).

The ABG equivalence establishes connections between

principal block of representations of the quantum at a root of 1;

G -equivariant coherent sheaves on the Springer resolution;

perverse sheaves on the loop Grassmannian for the Langlands dual
group.

A version of the ”naive functor” is built into the first equivalence

Db(Uζ(g)mix
0 ) ∼= Db(CohG×C∗(G ×B n))
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Consequences of the ABG Equivalence Theorem

The ABG equivalence yields a proof of Lusztig’s Character Formula
(LCF) for simple Uζ(g)-modules for ` > h. The LCF for quantum
groups was proved in the mid 1990s by work of Kazhdan-Lusztig and
Kashiwara-Tanisaki.

The validity of the LCF completely determines, through parity
considerations, the groups Ext•Uζ(g)(Lζ(λ), Lζ(µ)) when λ, µ are
regular high weights. In fact, the dimensions of these cohomology
groups are given in terms of Kazhdan-Lusztig polynomials.

Bezrukanikov used the ABG equivalence to compute the support
varieties of tilting modules.
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Quantum Dimension

Following Parshall-Wang, define the height function wht : X → Z[ 1
2 ]. For

α ∈ Φ, let dα = 〈α, α〉/2 = 〈α, α〉/〈α0, α0〉 ∈ {1, 2, 3}. Given
λ =

∑
α∈Π rαα ∈ X (rα ∈ Q), put

wht(λ) :=
∑
α∈∆

rαdα =
2〈λ, ρ〉
〈α0, α0〉

=
1

2

∑
α∈Φ+

dα〈λ, α∨〉. (1)

Given a finite-dimensional X -graded vector space V =
⊕

λ∈X Vλ, its
generic dimension is the Laurent polynomial

dimt V :=
∑
λ∈X

(dim Vλ)t−2 wht(λ) ∈ Z[t, t−1] (2)

We also put ch(V ) =
∑

λ∈X (dim Vλ)e(λ) for the character of V .
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For λ ∈ X , set

Dλ(t) =
∏
α∈Φ+

(tdα〈λ+ρ,α∨〉 − t−dα〈λ+ρ,α∨〉) ∈ Z[t, t−1]. (3)

Lemma (Parshall-Wang)

Suppose that V is a finite-dimensional X -graded vector space such that
ch(V ) = χ(λ) for some λ ∈ X +. Then

dimt V = Dλ(t)/D0(t). (4)

We call (4) the Weyl generic dimension formula. Its value at t = 1 gives
Weyl’s classical dimension formula for the f.d. irreducible U(g)-module of
high weight λ.
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Lower Bound for Support Varieties via the Quantum
Dimension

For the root system Φ, let

d(Φ+, `) = |{α ∈ Φ+ | dα〈ρ, α∨〉 = wht(α) ∈ `Z}|.

If ` ≥ h, one can check that d(Φ+, `) = 0.

Theorem (N-Parshall-Vella, 2002)

Let M ∈ mod(Uζ(g)). Then

dimVuζ(g)(M) ≥ |Φ| − d(Φ, `)− 2s + 2

where s is a positive integer such that Φ`(t)s - dimt M. Here Φ`(t) is the
`th cyclotomic polynomial.
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Support Varieties: ∇ζ(λ)

Set Φλ = {α ∈ Φ : 〈λ+ ρ, α∨〉 ∈ `Z}

Theorem

Let λ ∈ X +, and choose J ⊆ ∆ such that w(Φλ) = ΦJ for some w ∈W .
Then

Vuζ(g)(∇ζ(λ)) = G · uJ .

This theorem was proved by Ostrik (1997) for ` > h.

Bendel-Nakano-Parshall-Pillen proved the theorem for ` good, and
have made calculations for when ` is bad. For bad `, the orbits that
arise need not be Richardson.
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Support Varieties: ∇ζ(λ) (Main Ideas in the Proof)

1) In order to prove the inclusion Vuζ(g)(∇ζ(λ)) ⊆ G · uJ , one needs to use

Relative support varieties and the “baby Verma modules”

Spectral sequence techniques and localization of the cohomology

2) Since G · uJ is an irreducible variety, it suffices to show that

dimVuζ(g)(∇ζ(λ)) = dim G · uJ = |Φ| − |ΦJ |.

This is accomplished by using the NPV-theorem, and proving that
Φ`(t)s - dimt ∇ζ(λ) where −d(Φ, `) + 2s − 2 = |ΦJ |. Or equivalently,
s = |Φ+

J | − d(Φ+, `) + 1.
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Now observe that |Φ+
J | − d(Φ+, `) = |Φ+

λ | − d(Φ+, `) is the multiplicity of
Φ`(t) as a divisor of dimt ∇ζ(λ).

dimt ∇ζ(λ) =
∏
α∈Φ+

(tdα〈λ+ρ,α∨〉 − t−dα〈λ+ρ,α∨〉)

(tdα〈ρ,α∨〉 − t−dα〈ρ,α∨〉)
.

Therefore, for s = |Φ+
J | − d(Φ+, `) + 1, it follows that Φ`(t)s - dimt ∇ζ(λ).
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Lusztig Character Formula

The affine Weyl group W` is generated as a group by the fundamental
system S` ⊂W`. Given I ⊆ S`, set W`,I = 〈I 〉 ≤W`, and set
W I
` = {w ∈W` : l(w) ≤ l(ws) for all s ∈W`,I}. Let 6 denote the

Chevalley–Bruhat partial ordering on W`.

Given y 6 w in W`, Py ,w (q) is the Kazhdan–Lusztig polynomial
associated to the pair (y ,w).

Deodhar introduced two generalizations of the Py ,w ’s, called parabolic
Kazhdan–Lusztig polynomials, which depend on a choice of subset I ⊆ S`,
and a choice of a root u of the equation u2 = q + (q − 1)u, i.e., u = −1
or u = q.
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Given I ⊆ S`, and given (y ,w) ∈W I
` ×W I

` with y 6 w , the parabolic

Kazhdan–Lusztig polynomial P I ,−1
y ,w associated to the root u = q is related

to the usual Kazhdan–Lusztig polynomials by the following equation.1

P I ,−1
y ,w =

∑
x∈WI ,yx6w

(−1)l(x)Pyx ,w . (5)

We have several basic properties:

If y 
 w , then P I ,−1
y ,w = 0.

The coefficients of the P I ,−1
y ,w are non-negative integers.

1We are following the notational convention used by Kashiwara and
Tanisaki, so the superscript in P I ,a

y,w indicates the opposite root of the equation
u2 = q + (q − 1)u
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Fix λ− ∈ C
−
Z . The stabilizer in W` of λ− is defined by

W`,λ− = {w ∈W` |w · λ− = λ−}; it is generated as a group by the set
I := W`,λ− ∩ S`. Then W`,λ− = W`,I := 〈I 〉 ≤W` is a parabolic subgroup
of W`. If w ∈W` is minimal dominant for λ−, then w ∈W I

` .

Theorem

Let w ∈W` be minimal dominant for λ−, and write λ = w · λ−. Let
I ⊆ S` be such that W`,λ− = W`,I . Then

ch Lζ(λ) =
∑
y∈W I

`

(−1)l(w)−l(y)P I ,−1
y ,w (1) ch ∆ζ(y · λ−). (6)

dimt Lζ(λ) =
∑
y∈W I

`

(−1)l(w)−l(y)P I ,−1
y ,w (1)Dy ·λ−(t)/D0(t),
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Support Varieties: Lζ(λ)

Theorem (DNP, 2014)

Let ` > h and λ ∈ X +. Choose J ⊆ ∆ such that w(Φλ) = ΦJ for some
w ∈W . Then

Vuζ(g)(Lζ(λ)) = G · uJ .

This theorem provides the most extensive calculation for the support
varieties for irreducible representations for an extensive class of
finite-dimensional Hopf algebras.
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Support Varieties: Lζ(λ) (Main Ideas in the Proof)

1) Using the results on the supports of ∇ζ(λ), one can use induction on
the weight ordering to prove that

Vuζ(g)(Lζ(λ)) ⊆ G · uJ .

2) As in the prior calculation, we need to show that Φ`(t)s - dimt Lζ(λ)
where 2s − 2 = |ΦJ | (i.e., s − 1 = |Φ+

J | or s = |Φ+
J |+ 1). That is, ζ is not

a root of dimt Lζ(λ) of multiplicity s = |Φ+
J |+ 1. But, dim Lζ(λ) is given

via Kazhdan-Lusztig polynomials!
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Set f (t) = D0(t) · dimt Lζ(λ). Recall that

dimt Lζ(λ) =
∑
y∈W I

`

(−1)l(w)−l(y)P I ,−1
y ,w (1)Dy ·λ−(t)/D0(t),

If f (i)(ζ) = 0 for all 0 ≤ i < n, but f (n)(ζ) 6= 0, then ζ occurs as a root of
f with multiplicity exactly equal to n.

Set n = |Φ+
λ− | = |Φ+

J |. Then n = |Φ+
y ·λ− | for any y ∈W`.

We know that Φ`(t) occurs as a factor of Dy ·λ−(t) precisely n times. It

remains to show that f (n)(ζ) 6= 0.

Daniel K. Nakano (UGA) Quantum Groups 23 / 28



One can differentiate f (t) n times,

f (n)(ζ) =
∑
y∈W I

`

(−1)l(w)−l(y)P I ,−1
y ,w (1)D

(n)
y ·λ−(ζ)

=
∑
y∈W I

`

(−1)l(w)−(aλ− )P I ,−1
y ,w (1)(n!)

 ∏
α∈Φ+

λ

2dα〈λ+ ρ, α∨〉

 ζ−nEλ−(ζ)

=
(

(−1)l(w)−aλ− (n!)ζ−nEλ−(ζ)
)∑

y∈W I
`

P I ,−1
y ,w (1)

 ∏
α∈Φ+

λ

2dα〈λ+ ρ, α∨〉


The first term in the product is non-zero. The second term in the product
is a sum of non-negative integers (by the positivity property for the

parabolic Kazhdan-Lusztig polynomials). Since P I ,−1
w ,w (1) = 1, we conclude

that the second term in the product is a strictly positive integer, hence
that f (n)(ζ) 6= 0.
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Support Varieties: Irreducible Representations, char p

Theorem (NPV, DNP)

Assume that G is a simple, simply-connected algebraic group over an
algebraically closed field k of characteristic p > h. Assume that the
Lusztig character formula holds for all restricted dominant weights. Then
for λ ∈ X + and J ⊆ ∆ with w(Φλ) = ΦJ ,

Vu(g)(L(λ)) = G · uJ .

Williamson has shown that the Lusztig Character Formula (LCF) can
fail to hold even when p > h. It is known to hold for very large primes
by Andersen-Jantzen-Soergel (1994) and work of Fiebig (2012).

It would be interesting to know in cases when the LCF fails to hold if
the supports for irreducibles are given by the aforementioned formula.
When the LCF fails to hold the Ext groups are different.
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Epilogue: Open Problems

1) [Calculation of Ext-groups]

Calculate ExtnUζ(g)(L(λ), L(µ)) for all λ, µ ∈ X+.

From the proof of the Lusztig Character Formula, this is known when λ
and µ are regular weights. What about singular weights?

2) [Explicit Description of Support Varieties]

Is there a “rank variety” description of Vuζ(g)(M)?
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Epilogue: Open Problems, con’t

3) [Connection to Affine Lie Algebras]

Let ĝ = C[t, t−1]⊗ g⊕Cc ⊕Cd be the corresponding untwisted affine Lie
algebra, and g̃ be the subalgebra g̃ = C[t, t−1]⊗g⊕Cc ⊆ ĝ. For κ ∈ C we
let Oκ be the full subcategory of all g̃-modules, M, for which the central
element c acts by κ and M satisfies certain category O-type finiteness
conditions. For a certain κ, there exists an equivalence of tensor categories

F` : Oκ → mod(Uζ(g))

a) Is there any new information about support varieties and cohomology
that can be gained by using this equivalence of categories?

b) How does the twisting of modules under the Frobenius morphism
behave under this equivalence?
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Thank you for your attention.
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