Characterization of the minimal series of Virasoro vertex operator algebras

Kiyokazu Nagatomo
School of Information Science and Technology Osaka University, JAPAN (nagatomo@ist.osaka-u.ac.jp)

Vertex Algebras and Quantum Groups
February 8 - February 12, 2016.
Banff International Research Station

Introduction

(1) We discuss two ways to characterize simple Virasoro vertex operator algebras (VOA) $L_{c_{p, q}}$ with the central charge $c_{p, q}=1-6(p-q)^{2} / p q(1<p<q$ and $(p, q)=1)$, 4 simple modules and satisfying modular linear differential equations (MLDE) of 4 th order.
(3) One is that the character of V with a central charge c has a form
(3) The other is that the 2nd coefficients of characters of simple V-modules except V are all 1 .
(9) The former shows that V is isomorphic to one of $\left(c_{2,9}=-46 / 3\right), L_{-3 / 5}\left(c_{3,5}=-3 / 5\right)$ and the two VOAs which are extensions of $L_{-114 / 7}\left(c_{3,14}=-114 / 7\right)$ and $L_{4 / 5}$ by and $L_{4 / 5: 3}\left(c_{3,14}=4 / 5\right)$, respectively.
(5) The 2nd condition implies that V is isomorphic to one of or it is pseudo-isomorphic to and the lattice with

Introduction

(1) We discuss two ways to characterize simple Virasoro vertex operator algebras (VOA) $L_{c_{p, q}}$ with the central charge $c_{p, q}=1-6(p-q)^{2} / p q(1<p<q$ and $(p, q)=1)$, 4 simple modules and satisfying modular linear differential equations (MLDE) of 4 th order.
(2) One is that the character of V with a central charge c has a form

$$
\operatorname{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+q^{2}+O\left(q^{3}\right)\right) \Leftrightarrow \operatorname{dim} V_{1}=0, \operatorname{dim} V_{2}=1
$$

(3) The other is that the 2nd coefficients of characters of simple V-modules except V are all 1 .
(9) The former shows that V is isomorphic to one of $\left(c_{2,9}=-46 / 3\right), L_{-3 / 5}\left(c_{3,5}=-3 / 5\right)$ and the two VOAs which are extensions of $L_{-114 / 7}\left(c_{3,14}=-114 / 7\right)$ and $L_{4 / 5}$ by $\left(c_{3,14}=4 / 5\right)$, respectively.
(3) The 2nd condition implies that V is isomorphic to one of or it is pseudo-isomorphic to and the lattice

Introduction

(1) We discuss two ways to characterize simple Virasoro vertex operator algebras (VOA) $L_{c_{p, q}}$ with the central charge $c_{p, q}=1-6(p-q)^{2} / p q(1<p<q$ and $(p, q)=1)$, 4 simple modules and satisfying modular linear differential equations (MLDE) of 4 th order.
(2) One is that the character of V with a central charge c has a form

$$
\operatorname{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+q^{2}+O\left(q^{3}\right)\right) \Leftrightarrow \operatorname{dim} V_{1}=0, \operatorname{dim} V_{2}=1
$$

(3) The other is that the 2nd coefficients of characters of simple V-modules except V are all 1 .

Introduction

(1) We discuss two ways to characterize simple Virasoro vertex operator algebras (VOA) $L_{c_{p, q}}$ with the central charge $c_{p, q}=1-6(p-q)^{2} / p q(1<p<q$ and $(p, q)=1)$, 4 simple modules and satisfying modular linear differential equations (MLDE) of 4 th order.
(2) One is that the character of V with a central charge c has a form

$$
\operatorname{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+q^{2}+O\left(q^{3}\right)\right) \Leftrightarrow \operatorname{dim} V_{1}=0, \operatorname{dim} V_{2}=1
$$

(3) The other is that the 2nd coefficients of characters of simple V-modules except V are all 1 .
(9) The former shows that V is isomorphic to one of $L_{-46 / 3}$ $\left(c_{2,9}=-46 / 3\right), L_{-3 / 5}\left(c_{3,5}=-3 / 5\right)$ and the two VOAs which are extensions of $L_{-114 / 7}\left(c_{3,14}=-114 / 7\right)$ and $L_{4 / 5}$ by $L_{-114 / 7,3}$ and $L_{4 / 5,3}\left(c_{3,14}=4 / 5\right)$, respectively.

(3) The 2nd condition implies that V is isomorphic to one of

 or it is pseudo-isomorphic to and the lattice
Introduction

(1) We discuss two ways to characterize simple Virasoro vertex operator algebras (VOA) $L_{c_{p, q}}$ with the central charge $c_{p, q}=1-6(p-q)^{2} / p q(1<p<q$ and $(p, q)=1)$, 4 simple modules and satisfying modular linear differential equations (MLDE) of 4 th order.
(2) One is that the character of V with a central charge c has a form

$$
\operatorname{ch}_{V}=q^{-c / 24}\left(1+0 \cdot q+q^{2}+O\left(q^{3}\right)\right) \Leftrightarrow \operatorname{dim} V_{1}=0, \operatorname{dim} V_{2}=1
$$

(3) The other is that the 2nd coefficients of characters of simple V-modules except V are all 1 .
(1) The former shows that V is isomorphic to one of $L_{-46 / 3}$ $\left(c_{2,9}=-46 / 3\right), L_{-3 / 5}\left(c_{3,5}=-3 / 5\right)$ and the two VOAs which are extensions of $L_{-114 / 7}\left(c_{3,14}=-114 / 7\right)$ and $L_{4 / 5}$ by $L_{-114 / 7,3}$ and $L_{4 / 5,3}\left(c_{3,14}=4 / 5\right)$, respectively.
(6) The 2nd condition implies that V is isomorphic to one of $L_{-46 / 3}, L_{-3 / 5}$, or it is pseudo-isomorphic to and the lattice VOA $V_{L}, L=\mathbb{Z} \alpha$ with $\langle\alpha, \alpha\rangle=6$, where $\omega=\frac{\alpha_{-1}^{2}}{12} \mathbf{1}+\frac{1}{3} \alpha_{-2} \mathbf{1}$.

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying

```
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules
    forms a fundamental system of a MLDE of 4th order,
(C) }\operatorname{dim}\mp@subsup{V}{1}{}=0\mathrm{ and }\operatorname{dim}\mp@subsup{V}{2}{}=1\mathrm{ ,
(D) }\mp@subsup{a}{1}{i}=1\mathrm{ for all }i=2,3\mathrm{ and 4, where }\mp@subsup{f}{i}{}=\mp@subsup{\sum}{n=0}{\infty}\mp@subsup{a}{n}{i}\mp@subsup{q}{}{\mp@subsup{\lambda}{i}{}-c/24+n
where }\mp@subsup{\lambda}{1}{}=0\mathrm{ , i.e. }\mp@subsup{f}{1}{}\mathrm{ is the character of V}\mathrm{ .
Remarks. (1) We always assume (A) and (B)
(2) The minimal models satisfy (A), (B), (C) and (D)
(3) We take combinations of
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on
modules.
```


Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
\square
 where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B)
(2) The minimal models satisfy (A), (B), (C) and (D)
(3) We take combinations of
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on modules.

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,

Remarks. (1) We always assume (A) and (B)
(2) The minimal models satisfy (A), (B), (C) and (D)
(3) We take combinations of
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on
modules

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,

[^0]
Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,
(D) $a_{1}^{i}=1$ for all $i=2,3$ and 4 , where $f_{i}=\sum_{n=0}^{\infty} a_{n}^{i} q^{\lambda_{i}-c / 24+n}$. where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B)
(2) The minimal models satisfy (A), (B), (C) and (D)
(3) We take combinations of
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on
modules

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,
(D) $a_{1}^{i}=1$ for all $i=2,3$ and 4 , where $f_{i}=\sum_{n=0}^{\infty} a_{n}^{i} q^{\lambda_{i}-c / 24+n}$. where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B).
(2) The minimal models satisfy (A), (B), (C) and (D).
(3) We take combinations of (A), (B) and (C) or (A), (B) a
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on
modules

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,
(D) $a_{1}^{i}=1$ for all $i=2,3$ and 4 , where $f_{i}=\sum_{n=0}^{\infty} a_{n}^{i} q^{\lambda_{i}-c / 24+n}$. where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B).
(2) The minimal models satisfy (A), (B), (C) and (D).
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on
modules.

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,
(D) $a_{1}^{i}=1$ for all $i=2,3$ and 4 , where $f_{i}=\sum_{n=0}^{\infty} a_{n}^{i} q^{\lambda_{i}-c / 24+n}$. where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B).
(2) The minimal models satisfy (A), (B), (C) and (D).
(3) We take combinations of $(A),(B)$ and (C) or (A), (B) and (D).
a classification since we need not know any information on
modules

Minimal models-characterization

We study simple VOAs $V=\bigoplus_{n=0}^{\infty} V_{n}$ with central charges c satisfying
(A) The central charges and conformal weights are rational,
(B) Any basis of the space of characters of simple V-modules forms a fundamental system of a MLDE of 4th order,
(C) $\operatorname{dim} V_{1}=0$ and $\operatorname{dim} V_{2}=1$,
(D) $a_{1}^{i}=1$ for all $i=2,3$ and 4 , where $f_{i}=\sum_{n=0}^{\infty} a_{n}^{i} q^{\lambda_{i}-c / 24+n}$. where $\lambda_{1}=0$, i.e. f_{1} is the character of V.

Remarks. (1) We always assume (A) and (B).
(2) The minimal models satisfy (A), (B), (C) and (D).
(3) We take combinations of $(A),(B)$ and (C) or (A), (B) and (D).
(4) Obviously, the combination (A), (B) and (C) is nicer as
a classification since we need not know any information on modules.

Generality for the classification

(1) Let $f=e^{-c / 24}\left(1+0 \cdot q+q^{2}+m q^{3}+\cdots\right)(m \in \mathbb{Z})$ be a solution of a MLDE

$$
\begin{aligned}
& D^{4}(f)-E_{2} D^{3}(f)+\left(3 E_{2}^{\prime}+x E_{4}\right) D^{2}(f) \\
& \quad-\left(E_{2}^{\prime \prime}+\frac{x}{2} E_{4}^{\prime}-y E_{6}\right) D(f)+z E_{8} f=0, \quad\left(D=q \frac{d}{d q}\right) .
\end{aligned}
$$

(3) First 3 coefficients give a system of simultaneous 3 linear equations in x, y and z.
\qquad

Generality for the classification

(1) Let $f=e^{-c / 24}\left(1+0 \cdot q+q^{2}+m q^{3}+\cdots\right)(m \in \mathbb{Z})$ be a solution of a MLDE

$$
\begin{aligned}
& D^{4}(f)-E_{2} D^{3}(f)+\left(3 E_{2}^{\prime}+x E_{4}\right) D^{2}(f) \\
& \quad-\left(E_{2}^{\prime \prime}+\frac{x}{2} E_{4}^{\prime}-y E_{6}\right) D(f)+z E_{8} f=0, \quad\left(D=q \frac{d}{d q}\right) .
\end{aligned}
$$

(2) First 3 coefficients give a system of simultaneous 3 linear equations in x, y and z.

Generality for the classification

(1) Let $f=e^{-c / 24}\left(1+0 \cdot q+q^{2}+m q^{3}+\cdots\right)(m \in \mathbb{Z})$ be a solution of a MLDE

$$
\begin{aligned}
& D^{4}(f)-E_{2} D^{3}(f)+\left(3 E_{2}^{\prime}+x E_{4}\right) D^{2}(f) \\
& \quad-\left(E_{2}^{\prime \prime}+\frac{x}{2} E_{4}^{\prime}-y E_{6}\right) D(f)+z E_{8} f=0, \quad\left(D=q \frac{d}{d q}\right) .
\end{aligned}
$$

(2) First 3 coefficients give a system of simultaneous 3 linear equations in x, y and z.
(3) $c \neq 0,-22 / 5$ and $7 / 578 \Longrightarrow$

$$
\begin{aligned}
& x=-\frac{56 c^{3}+993 c^{2}-11660 c-1440}{96(578 c-7)} \\
& y=-\frac{-25 c^{4}-829 c^{3}-7347 c^{2}+1008 c+3456}{1728(578 c-7)} \\
& z=-\frac{14 c^{5}+425 c^{4}+3672 c^{3}+5568 c^{2}+9216 c}{110592(578 c-7)}
\end{aligned}
$$

Solutions of the Diophantus equation

We have the Diophantus equation (as a necessary condition)

$$
\begin{gathered}
1050 c^{5}+(5 m+31020) c^{4}+(275600-703 m) c^{3} \\
+(32992 m+673104) c^{2}+(504352-517172 m) c \\
+3984 m-210432=0
\end{gathered}
$$

The Diophantus equation is completely solved as

m	c
1	$-46 / 3,-68 / 7,-3 / 5,1 / 2$
2	$-114 / 7,4 / 5$
501971	36^{*}
3132760	$122 / 3^{*}$
37950512	$238 / 5^{*}$
42987520	48^{*}

Remark. (a) The all solutions with superscript (*) were found by
D. Zagier. There are more solutions with negative m.
(b) It was proved D. Zagier that they gives all rational c and
integral m solutions. However, these do not give any VOA.

Solutions of the Diophantus equation

We have the Diophantus equation (as a necessary condition)

$$
\begin{gathered}
1050 c^{5}+(5 m+31020) c^{4}+(275600-703 m) c^{3} \\
+(32992 m+673104) c^{2}+(504352-517172 m) c \\
+3984 m-210432=0
\end{gathered}
$$

The Diophantus equation is completely solved as

m	c
1	$-46 / 3,-68 / 7,-3 / 5,1 / 2$
2	$-114 / 7,4 / 5$
501971	36^{*}
3132760	$122 / 3^{*}$
37950512	$238 / 5^{*}$
42987520	48^{*}

Remark. (a) The all solutions with superscript (*) were found by
D. Zagier. There are more solutions with negative m.
(b) It was proved D. Zagier that they gives all rational c and
integral m solutions. However, these do not give any VOA.

Solutions of the Diophantus equation

We have the Diophantus equation (as a necessary condition)

$$
\begin{gathered}
1050 c^{5}+(5 m+31020) c^{4}+(275600-703 m) c^{3} \\
+(32992 m+673104) c^{2}+(504352-517172 m) c \\
+3984 m-210432=0
\end{gathered}
$$

The Diophantus equation is completely solved as

m	c
1	$-46 / 3,-68 / 7,-3 / 5,1 / 2$
2	$-114 / 7,4 / 5$
501971	36^{*}
3132760	$122 / 3^{*}$
37950512	$238 / 5^{*}$
42987520	48^{*}

Remark. (a) The all solutions with superscript (*) were found by
D. Zagier. There are more solutions with negative m
(b) It was proved D. Zagier that they gives all rational c and
integral m solutions. However, these do not give any VOA.

Solutions of the Diophantus equation

We have the Diophantus equation (as a necessary condition)

$$
\begin{gathered}
1050 c^{5}+(5 m+31020) c^{4}+(275600-703 m) c^{3} \\
+(32992 m+673104) c^{2}+(504352-517172 m) c \\
+3984 m-210432=0
\end{gathered}
$$

The Diophantus equation is completely solved as

m	c
1	$-46 / 3,-68 / 7,-3 / 5,1 / 2$
2	$-114 / 7,4 / 5$
501971	36^{*}
3132760	$122 / 3^{*}$
37950512	$238 / 5^{*}$
42987520	48^{*}

Remark. (a) The all solutions with superscript (*) were found by D. Zagier. There are more solutions with negative m.

Solutions of the Diophantus equation

We have the Diophantus equation (as a necessary condition)

$$
\begin{gathered}
1050 c^{5}+(5 m+31020) c^{4}+(275600-703 m) c^{3} \\
+(32992 m+673104) c^{2}+(504352-517172 m) c \\
+3984 m-210432=0
\end{gathered}
$$

The Diophantus equation is completely solved as

m	c
1	$-46 / 3,-68 / 7,-3 / 5,1 / 2$
2	$-114 / 7,4 / 5$
501971	36^{*}
3132760	$122 / 3^{*}$
37950512	$238 / 5^{*}$
42987520	48^{*}

Remark. (a) The all solutions with superscript (*) were found by D. Zagier. There are more solutions with negative m.
(b) It was proved D. Zagier that they gives all rational c and integral m solutions. However, these do not give any VOA.

Central charges $c=-46 / 3$ and $-3 / 5$

Theorem 1

Let V be a VOA satisfying (A), (B) and (C) with the central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either the minimal model $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

Theorem 2
 I et W he a vertex operator algebra satisfying $(A),(B)$ and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$

Remark. The dimensions of the sets of characters of the minimal

 models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10 , respectively, since $c_{3.14}=-114 / 7$ and $c_{3.14}=4 / 5$
Central charges $c=-46 / 3$ and $-3 / 5$

Theorem 1

Let V be a VOA satisfying (A), (B) and (C) with the central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either the minimal model $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

Theorem 2
 Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10, respectively, since $c_{3.14}=-114 / 7$ and $c_{3.14}=4 / 5$

Central charges $c=-46 / 3$ and $-3 / 5$

Theorem 1

Let V be a VOA satisfying (A), (B) and (C) with the central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either the minimal model $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

Theorem 2

Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$.

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10 , respectively, since $c_{3.14}=-114 / 7$ and $c_{3.14}=4 / 5$

Central charges $c=-46 / 3$ and $-3 / 5$

Theorem 1

Let V be a VOA satisfying (A), (B) and (C) with the central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either the minimal model $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

$$
\text { List of } c=\{+|4 \phi / / \beta,+\phi \beta / / / 7,+| \nexists \beta / / \bar{F},+\beta \beta / / \Phi, \nmid / / \nmid,-114 / 7,4 / 5\} \text {. }
$$

Theorem 2

Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$.

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10 , respectively, since $c_{3,14}=-114 / 7$ and $c_{3,14}=4 / 5$.

Theorem for $c=-144 / 7$ and $4 / 5$

Theorem 3

Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$.

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10, respectively, since $c_{3,14}=-114 / 7$ and $c_{3,14}=4 / 5$.

Theorem for $c=-144 / 7$ and $4 / 5$

$$
\text { List of } c=\{+/ 4 \phi / / / \beta,+|\beta \beta / / / 7,+| \nmid \beta / / \Phi,+/ \beta / / \Phi, 7 / / 9,-114 / 7,4 / 5\} \text {. }
$$

Theorem 3

Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$.

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10 , respectively, since $c_{3.14}=-114 / 7$ and $c_{3.14}=4 / 5$

Theorem for $c=-144 / 7$ and $4 / 5$

$$
\text { List of } c=\{+/ 4 \phi / / / \beta,+|\phi \beta / / / 7,+| A \beta / / \Phi,+/ \beta / / \Phi, 7 / / 9,-114 / 7,4 / 5\} \text {. }
$$

Theorem 3

Let V be a vertex operator algebra satisfying (A), (B) and (C) with a central charge $c=-114 / 7$ or $4 / 5$. Then V is isomorphic to either $L_{-114 / 7} \oplus L(-114 / 7,3)$ or $L_{4 / 5} \oplus L(4 / 5,3)$.

Remark. The dimensions of the sets of characters of the minimal models $L_{-114 / 7}$ and $L_{4 / 5}$ are 13 and 10 , respectively, since $c_{3,14}=-114 / 7$ and $c_{3,14}=4 / 5$.

Central charges $c=-46 / 3,-3 / 5$ and -7

Theorem 4
 Let V be a vertex operator algebra satisfying (A), (B) and (D). Then the central charge of V is $-46 / 3,-3 / 5$ or -7 .

Theorem 5
 Let V be a vertex operator algebra satisfying (A), (B) and (D) with a central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

Central charges $c=-46 / 3,-3 / 5$ and -7

Theorem 4

Let V be a vertex operator algebra satisfying (A), (B) and (D). Then the central charge of V is $-46 / 3,-3 / 5$ or -7 .

Theorem 5

Let V be a vertex operator algebra satisfying (A), (B) and (D) with a central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

Central charges $c=-46 / 3,-3 / 5$ and -7

Theorem 4

Let V be a vertex operator algebra satisfying (A), (B) and (D). Then the central charge of V is $-46 / 3,-3 / 5$ or -7 .

Theorem 5

Let V be a vertex operator algebra satisfying (A), (B) and (D) with a central charge $-46 / 3$ or $-3 / 5$. Then V is isomorphic to either $L_{-46 / 3}$ or $L_{-3 / 5}$, respectively.

List of $c+/ 4 \beta / / / \beta,+/ \beta / / / \Phi,-7$.

Theorem 6

Let V be a vertex operator algebra satisfying (A), (B) and (D). If the central charge of V is -7 , then the space linearly generated by characters of simple V-modules coincides with that of simple (sifted) V_{L}-modules, where $L=\mathbb{Z} \alpha$ with $\langle\alpha, \alpha\rangle=6$ and the Virasoro element is

$$
\omega=\frac{\alpha_{-1}^{2}}{12} \mathbf{1}+\frac{1}{3} \alpha_{-2} \mathbf{1}
$$

Theorem 6

Let V be a vertex operator algebra satisfying (A), (B) and (D). If the central charge of V is -7 , then the space linearly generated by characters of simple V-modules coincides with that of simple (sifted) V_{L}-modules, where $L=\mathbb{Z} \alpha$ with $\langle\alpha, \alpha\rangle=6$ and the Virasoro element is

$$
\omega=\frac{\alpha_{-1}^{2}}{12} \mathbf{1}+\frac{1}{3} \alpha_{-2} \mathbf{1}
$$

$+146 / / \beta,+1 \beta / / 5,+7$

[^0]: modules

