Self-consistent perturbation theory for two dimensional twisted bilayers

<u>Sharmila N. Shirodkar</u>, Georgios A. Tritsaris, Efthimios Kaxiras Paul Cazeaux, Mitchell Luskin, Petr Plechac, Eric Cances

John A. Paulson School of Engineering and Applied Sciences Harvard University

29th August 2016

Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications, BIRS- Banff, Canada

Perturbation theory for weakly coupled two-dimensional layers, Journal of Materials Research, 31 (07), 959-966 (2016).

2D materials

- Class of materials merely a few atoms thick
- Exhibit exotic/novel properties

Graphene Family

Graphene

sp2 hybridized single atom thick C sheet

Hexagonal boron-nitride

sp2 hybridized B-N in graphene structure

Applications in solar cells, transistors, semiconductors

Fluorographene

Fluorine saturated graphene

Transition metal dichalcogenides family

MoS₂, WS₂, MoSe₂, WSe₂: 3 atomic layers thick

Except graphene, all above materials are semiconducting/insulating

Layered structures

• Stacking order

Unusual properties and new phenomena can be explored!

Applications and interesting phenomena

Excitons: Photovoltaic device

L. Britnell *et al* (K. S. Novoselov), Science 340, 1311 (2013)

- Ultra-thin and flexible
- 30% quantum efficiency

Moire patterns: rotated layers

Different structures due to layering

- Stacking sequences between layers: AA, AB, ABC, ...
- Incommensurate layers

Fluorographene -MoS, bilayer

 $\frac{a1}{a2}$

Commensurate : rational number

Incommensurate: irrational number

Lin-Feng Wang et al, Nanotechnology 25, 385701 (2014)

T G Mendes-de-Sa et al, Nanotechnology 23, 475602 (2012)

DFT simulations of incommensurate/rotated layers need large and expensive supercell calcs.

Can we circumvent full DFT calculations?

Rotation of layers

What in DFT calcs. is expensive?

- ΔV_{12} required to get exact solution
 - Needs full DFT calcs.
 - → Expensive for incommensurate / rotated structures
- Weakly interacting layers: Apply perturbation theory!
 - Approximate / self-consistently determine ΔV_{12}
 - $V_2 + \Delta V_{12}$ acts as perturbation on layer 1 & vice versa

V1

 V_2

No full DFT

calcs. on

supercell!

Model

- Holds for finite systems (commensurate/incommensurate)
- Wavefunction total system = Linear combination of individual layers

$$\psi_N^{(n)} = \sum_{m=1}^N c_{1,N}^{(n,m)} \psi_1^{(m)} + c_{2,N}^{(n,m)} \psi_2^{(m)},$$

• Solve the generalized eigenvalue problem

$$\mathcal{H}_N C_N^{(n)} = \epsilon_N^{(n)} S_N C_N^{(n)}.$$

$$\mathcal{H}_{N} = \begin{bmatrix} H_{11} \text{ (intralayer)} & H_{12} \text{ interlayer} \\ H_{12} \text{ interlayer} & H_{22} \text{ (intralayer)} \end{bmatrix}$$

isolated layer (unit cell) DFT calcs. are performed What is the form of ΔV_{12} ?

Methodology

1) ΔV_{12} : in-plane avg.

- → $\Delta V_{12}(z)$: constant in x and y
- Extend $\Delta V_{12}(z)$ in-plane : rotated supercells
- Solve the eigenvalue problem once!

2) ΔV_{12} : self-consistent

- → Begin with $\Delta V_{12} = 0$
- No approximations!

Apply the model to periodic commensurate structures

 $\Delta V_{12} = 0$

1) $\Delta V_{12}(z)$: in-plane averaged

• Unit cells (AB stacked)

Model results agree well with DFT results

Rotated structures

Form supercell with non-trivial rotations!

7x7 supercell: 21.787° rotation

We test our model on this system

• Supercells: AB stacked Gr/Gr with and without rotation

2) ΔV_{12} : Self-consistent

Error varies linearly with iteration

Energy	DFT	Model	Diff
Kinetic	572.69	572.05	-0.64
Hartree	-27.12	-27.26	-0.14
Exc	-38.34	-38.39	-0.05

b) h-BN/h-BN

Energy	DFT	Model	Diff
Kinetic	643.37	642.86	-0.51
Hartree	-27.62	-27.64	-0.02
Exc	-37.04	-37.08	0.06

Error saturates at the first step. Convergence is better for insulators! c) Gr/h-BN

Band gap = 0.030 eVDFT gap = 0.038 eV

Energy	DFT	Model	Diff
Kinetic	605.24	604.58	-0.66
Hartree	-23.23	-23.38	-0.15
Exc	-36.45	-36.51	-0.06

d) MoS_2/MoS_2

Model — DFT --- Single layer DFT

Energy	DFT	Model	Diff
Kinetic	1493.32	1491.40	-1.92
Hartree	-22.34	-22.81	-0.47
Exc	-35.99	-36.08	-0.09

Error larger than Gr-Gr.

The band structure is well represented!

b) h-BN/h-BN

Energy	DFT	Model	Diff
Kinetic	643.37	642.86	-0.51
Hartree	-27.62	-27.64	-0.02
Exc	-37.04	-37.08	0.06

Error saturates at the first step. Convergence is better for insulators!

DFT

0

Model — DFT --- Single layer DFT

Energy	DFT	Model	Diff
Kinetic	1439.16	1440.69	1.53
Hartree	-34.23	-34.19	0.04
Exc	-40.80	-40.08	0.72

f) 7x7 Supercells

a) Gr/Gr (0° rotation)

Model

Shortcomings

Occupied 'p' orbitals of layer 2 decay fast near potential of layer 1

Occupied 'd' orbitals of WS_2 do not decay fast near potential of MoS_2

- Occupied 'd' orbitals do not decay fast enough near the other layer
- Errors larger in MoS₂ as compared with Graphene

Conclusions

- Capability of the Code
 - Rotated and Unrotated structures
 - k-point grid and path in k-space
 - Generates DOS and Band structures
 - Extended to self-consistent calculations
 - Total Energy can be calculated
- No a priori knowledge of interaction potential required
- Errors ~ 50 meV w.r.t. DFT calculations
- Lattice mismatched / rotated incommensurate structures can be simulated without full DFT calculations!
- Future scope: heterostructures MoS₂, Black phosphorus, Gr ...

Acknowledgements

Efthimios Kaxiras

Georgios Tritsaris

Collaborators

- ARO MURI Award W911NF-14-0247
- Odyssey cluster at Harvard University
- XSEDE

Petr Plechac University of Delaware

Eric Cances Ecole des Ponts

Thank you

e) WS₂/ WS₂

Model — DFT --- Single layer DFT

Energy	DFT	Model	Diff
Kinetic	1385.69	1386.77	1.08
Hartree	-46.22	-47.08	-0.86
Exc	-45.54	-45.65	-0.11

2) ΔV_{12} : Self-consistent

Unit cells (AB stacked)
a) Gr/Gr

Calculation converged at first step!

Energy	DFT	Model	Diff
Kinetic	579.19	578.70	-0.49
Hartree	-33.25	-33.19	0.06
Exc	-52.10	-52.05	0.05

b) h-BN/h-BN

Error saturates at the first step. Convergence is better for insulators! c) Gr/h-BN

DFT gap = 0.034 eV

d) MoS_2/MoS_2

Model — DFT --- Single layer DFT

 ΔV_{12} DFT

Model

Error larger than Gr-Gr. The band structure is well represented!

Energy	DFT	Model	Diff
Kinetic	1502.2	1502.7	0.5
Hartree	-61.06	-60.42	-0.36
Exc	-187.34	-187.23	0.11

e) MoS_2/WS_2

Model — DFT --- Single layer DFT

Energy	DFT	Model	Diff
Kinetic	1446.56	1447.09	0.53
Hartree	-74.31	-72.80	1.51
Exc	-231.49	-231.26	0.23

f) WS₂/ WS₂

— DFT --- Single layer DFT Model

Energy	DFT	Model	Diff
Kinetic	1391.90	1387.75	-4.5
Hartree	-86.46	-85.70	0.76
Exc	-275.60	-275.48	0.12

 $Error = I \int (\rho_{in} - \rho_{out}) dr I$

Error decreases linearly

Self-consistent results agree well with DFT!

