

2D Layered Materials: Ab-initio Wannier Tight-Binding Hamiltonian Approach

Shiang Fang, Efthimios Kaxiras Harvard University

2D Layered Materials

Shiang Fang

Outline

- Electrons in solids and non-interacting electron approximation
- Ab-initio tight-binding hamiltonian from Wannier transformation based on density functional theory calculations
- Modeling for 2D layered material heterostructures and example with twisted bilayer graphene
- Wannier construction and topological obstructions

Electrons in Solids

High temperature superconductivity

Fractional quantum Hall

Topological Insulator

- Strongly correlated phases
- Topological phases
- Anyonic statistics
- Spin liquids

Or simply behave as non-interacting electrons (Fermi liquid theory) !

Ref: P. W. Anderson, More is different, Science, New Series, Vol. 177, pp 39

Shiang Fang

Electrons in Solids

Non-interacting Hamiltonian

$$-\frac{\hbar^2}{2m}\partial_x^2\Psi(x) + V(x)\Psi(x) = E\Psi(x)$$

Periodic potential

$$V(x+a) = V(x)$$

Ref: Efthimios Kaxiras, Atomic and Electronic Structure of Solids

Shiang Fang

Electrons in Solids

Example: pz bonding orbital for hexagonal boron nitride layer

 $\Psi(x+a) = e^{ika}\Psi(x)$

- Wavefunction satisfies twist boundary condition and is extended in space
- Bands are classfied into band index n and crystal momentum label k (diagonal hamiltonian).

Shiang Fang

Wannier Functions: Localized Basis

Example: Wannier pz orbital for hexagonal boron nitride layer

$$|\vec{R}\rangle = \frac{V}{(2\pi)^3} \int_{BZ} |\vec{k}\rangle e^{-i\vec{k}\vec{R}}dk$$

- Fourier transform from extended Bloch waves to localized Wannier basis
- The hamiltonian is transformed into tightbinding form with short-range hoppings.

Shiang Fang

Wannier Functions: Localized Basis

Shiang Fang

TMDC Interlayer Coupling

two-center Slater-Koster approximation

Ref: Shiang Fang et al., Phys. Rev. B 92, 205108 (2015)

Shiang Fang

Graphene Interlayer Coupling

 $t(\vec{r}) = V_0(r) + V_3(r)[\cos(3\theta_{12}) + \cos(3\theta_{21})] + V_6(r)[\cos(6\theta_{12}) + \cos(6\theta_{21})]$

Ref: Shiang Fang et al., Phys. Rev. B 93, 235153 (2016)

Shiang Fang

Graphene bilayer with a twist

sfang@physics.harvard.edu

Graphene bilayer with a twist

Shiang Fang

Flat Bands and Moiré Pattern

 Moiré pattern: charge distribution for the flat bands: highly localized at AA-sites (31,30) twist structure (N=11164) with angle ~ 1, we observe:

• The flat bands through out the whole BZ.

Shiang Fang

Wannier and Topological Classification

"Ten-Fold Way	/" for topological cla	assifica	itions					
		TRS	PHS	SLS	d=1	<i>d</i> =2	<i>d</i> =3	_
Standard	A (unitary)	0	0	0	-	Z	-	Integer Quantum Hall; Chern insulator Z2 Topological Insulator
(wigner-Dyson)	AI (orthogonal) AII (symplectic)	+1 -1	0	0	-	$\overline{\mathbb{Z}_2}$	Z ₂	
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z	
(sublattice)	BDI (chiral orthogonal)	+1	+1	1	Z	-	-	
	CII (chiral symplectic)	-1	-1	1	Z	-	\mathbb{Z}_2	
BdG	D	0	+1	0	\mathbb{Z}_2	Z	-	Topological
	С	0	-1	0	-	Z	-	superconductivity /
	DIII	-1	+1	1	Z ₂	\mathbb{Z}_2	Z	Maiorana fermions
	CI	+1	-1	1	-	-	Z	

- Depending on the symmetry, there are different topological classes for the filled Hilbert space of a Hamiltonian.
- Non-zero Chern number gives obstructions for the construction of Wannier functions

Ref: Andreas P. Schnyder et al., Phys. Rev. B 78, 195125 (2008)

Shiang Fang

Summary

- Ab-initio tight-binding hamiltonian from Wannier transformation based on density functional theory calculations as an efficient way of modeling the materials
- Specific examples with 2D layered heterostructure and the interlayer coupling models for graphene and TMDCs
- Wannier construction and the topological obstructions in the presence of non-zero Chern numbers

Acknowledgements

Efthimios Kaxiras

Mitchell Luskin

Paul Cazeaux

Stephen Carr

Daniel Massatt

Rodrick Kate Defo Sharmila Shirodkar

Tuesday 19:30-20:15 poster session with Stephen Thursday 9:45-10:45 (Daniel, Stephen and Paul), applications based on Wannier tight-binding models for especially large scale incommensurate 2D layered heterostructure simulations

Grants:

- STC CIQM, NSF Grant No. DMR-1231319
- ARO MURI Award No. W911NF-14-0247

