BIRS Workshop on Coupled Mathematical Models ...

Banff ~ August 30, 2016

TUMOR INDUCED ANGIOGENESIS

Luis L. Bonilla

Gregorio Millán Institute for Fluid Dynamics, Nanoscience, and Industrial Mathematics Universidad Carlos III de Madrid, 28911 Leganés, Spain (bonilla@ing.uc3m.es)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Collaborators		

- Mariano Alvaro (Universidad Carlos III de Madrid)
- Bjorn Birnir (University of California at Santa Barbara)
- Vincenzo Capasso (Università degli Studi di Milano, ADAMSS, 20133 Milan, Italy)
- Manuel Carretero (Universidad Carlos III de Madrid)
- Filippo Terragni (Universidad Carlos III de Madrid)

ELE NOR

OUTLINE

2 Stochastic Model and Deterministic Description

< ∃ >

OUTLINE		

2 Stochastic Model and Deterministic Description

Soliton

THE FORMATION OF BLOOD VESSELS

 \bigstar Angiogenesis is essential for organ growth & repair

 \hookrightarrow Figure: Gariano and Gardner, Nature (2005)

-

JE OQO

Stochastic Model

 $\mathbf{Soliton}$

Final Comments

The formation of blood vessels

 \star Angiogenesis is essential for organ growth & repair

 \hookrightarrow Figure: Gariano and Gardner, Nature (2005)

★ Angiogenesis can be either physiological or pathological (tumor induced) → Figure: Chung et al., Nature Reviews (2010)

L. L. Bonilla

Tumor Induced Angiogenesis

5 / 24

ANGIOGENESIS TREATMENT

Experimental dose-effect analysis is routine in biomedical laboratories, but these still lack *methods of optimal control to assess effective therapies*

Systemic treatment: 19E6

Systemic treatment: E4B9

Figure: angiogenesis on a rat cornea – E. Dejana et al. (2005)

L. L. Bonilla

- E

⊒ ⊳.

Introduction	Stochastic Model 00 00000	Soliton 000000	Final Comments
Modeling an	GIOGENESIS		

- ★ Continuum models: reaction-diffusion equations for densities of endothelial cells, growth factors, ... (e.g. Chaplain) or kinetic equations for distributions of *active particles* (cells, agents, ...) (e.g. Bellomo)
- ★ Cellular models (T. Heck's 2015 classification):
 - tip cell migration,
 - stalk-tip cell dynamics,
 - cell dynamics at cellular scale (e.g. cellular Potts models).
- ★ Many are *multiscale models*, combining randomness at the natural microscale/mesoscale with numerical solutions of PDEs at the macroscale
- ★ Some mathematical models: Chaplain, Bellomo, Preziosi, Byrne, Folkman, Sleeman, Anderson, Stokes, Lauffenburger, Wheeler, Bauer, Bentley, Gerhardt, Travasso
- \bigstar Some experiments: Jain, Carmeliet, Dejana, Fruttiger
- \bigstar Mostly numerical outcomes, no stat-mech study

> = = ~ ~ ~

00000	

OUTLINE

2 Stochastic Model and Deterministic Description

Stochastic Model ●0

Soliton

Final Comments

STOCHASTIC MODEL AND DETERMINISTIC DESCRIPTION

(haptotaxis, blood circulation, vessel pruning & other processes are ignored) Bonilla et al, PRE 90, 062716, 2014, Terragni et al, PRE 93, 022413, 2015

< □ ▷ < 큔 ▷ < 토 ▷ < 토 ▷ 토|= ∽ 역 @ sis | 9 / 24

A TYPICAL VESSEL NETWORK SIMULATION

★ 2D spatial domain: $\mathbf{x} = (x, y) \in [0, L] \times [-1.5 L, 1.5 L]$

\star Primary vessel at x = 0. tumor at x = L: level curves depict the TAF field

 \hookrightarrow Figure: (a) 12 h (46 tips), (b) 24 h (60 tips), (c) 32 h (78 tips), (d) 36 h (76 tips)

L. L. Bonilla

Soliton

Final Comments

Key point: Ensemble averaged tip densities

GOAL: a deterministic description of the vessel tip mean density

- ★ Anastomosis keeps the number of tips N(t) relatively low
- ▲ No laws of large numbers can be applied
- ▲ The stochastic model is not self-averaging (fluctuations do not decay)
- ♠ Set *N* independent replicas of the angiogenic process. Empirical distribution of tips, per unit volume, in (**x**, **v**) phase space

$$p_{\mathcal{N}}(t, \mathbf{x}, \mathbf{v}) = \frac{1}{\mathcal{N}} \sum_{\omega=1}^{\mathcal{N}} \left[\sum_{i=1}^{N(t, \omega)} \delta_{\sigma_x}(\mathbf{x} - \mathbf{X}^i(t, \omega)) \delta_{\sigma_v}(\mathbf{v} - \mathbf{v}^i(t, \omega)) \right] \xrightarrow{\mathcal{N} \to \infty} p(t, \mathbf{x}, \mathbf{v})$$

Empirical distribution of tips, per unit volume, in physical space

$$\tilde{p}_{\mathcal{N}}(t,\mathbf{x}) = \frac{1}{\mathcal{N}} \sum_{\omega=1}^{\mathcal{N}} \left[\sum_{i=1}^{N(t,\omega)} \delta_{\sigma_{x}}(\mathbf{x} - \mathbf{X}^{i}(t,\omega)) \right] \xrightarrow[\mathcal{N} \to \infty]{} \tilde{p}(t,\mathbf{x}) \xrightarrow[\mathcal{N} \to \infty]{} \tilde{p}(t,\mathbf{x})$$

L. L. Bonilla

Marginal tip density from $\mathcal{N} = 400$ replicas (Lump)

 \hookrightarrow Figure: (a) 12 h (56 tips), (b) 24 h (69 tips), (c) 32 h (72 tips), (d) 36 h (66 tips)

L. L. Bonilla

12 / 24

E AQA

Marginal tip density from $\mathcal{N} = 400$ replicas (soliton)

 \hookrightarrow Figure: (a) 12 h (56 tips), (b) 24 h (69 tips), (c) 32 h (72 tips), (d) 36 h (66 tips)

13 / 24

ELE NOR

ENSEMBLE-AVERAGED vs. DETERMINISTIC DESCRIPTIONS

- \checkmark All parameters appear in both models (with the same values)
- Main parameter values are extracted from experiments

The two descriptions agree quite well (qualitatively) as far as the anastomosis coefficient is suitably estimated: our fit minimizes the relative RMS error on the number of tips for 8 h < t < 30 h calculated with the two approaches

ENSEMBLE-AVERAGED vs. DETERMINISTIC DESCRIPTIONS

 \hookrightarrow Figure: marginal tip density by ensemble averages over $\mathcal{N} = 400$ replicas (left) and deterministic equations (right), for (a) 12 h, (b) 24 h, (c) 32 h, (d) 36 h

15 / 24

315

Outline		

2 Stochastic Model and Deterministic Description

Vessel TIPS Advance as a pulse

- ★ Deterministic marginal tip density at the x-axis, $\tilde{p}(t, x, y = 0)$
- **\star** Tips form a growing pulse moving toward the tumor (x = L) by chemotaxis

 \hookrightarrow Figure: (a) 12 h, (b) 24 h, (c) 32 h, (d) 36 h

L. L. Bonilla

3 5

Soliton (Bonilla et al, Sci. Rep. 6, 31296, 2016)

♦ Overdamped limit of vessel extension: $\frac{d\mathbf{X}^{i}}{dt} = \mathbf{F} + \beta^{-1/2} \frac{d\mathbf{W}^{i}}{dt}$, yields simple equation for $\tilde{p}(t, \mathbf{x})$:

$$\frac{\partial \tilde{p}}{\partial t} + \nabla_x \cdot \left[\mathbf{F}(C) \tilde{p} \right] = \frac{1}{2\beta} \Delta_x \tilde{p} + \mu(C) \tilde{p} - \Gamma \tilde{p} \int_0^t \tilde{p}(s, \mathbf{x}) ds$$

♠ Renormalized μ can be obtained by a Chapman-Enskog perturbation method (assuming that the tip density rapidly approaches local equilibrium in **v**)

 \blacklozenge Ignore diffusion, assume almost constant μ & ${\bf F}$ produce 1D soliton

$$s(t,x) = \frac{(2K\Gamma + \mu^2)c}{2\Gamma(c - F_x/\beta)} \operatorname{sech}^2 \left[\frac{\sqrt{2K\Gamma + \mu^2}}{2(c - F_x/\beta)} (x - ct - \xi_0) \right]$$

 \star Analogy with the soliton of the Korteweg-de Vries equation

★ Blue parameters (dimensionless) come from the angiogenesis model (those depending on TAF are computed by considering $C(t_0, x, y)$, setting y = 0, and averaging over x)

★ Red parameters (dimensionless) are related to the soliton (K, c, ξ_0)

Soliton collective coordinates

$$s(t,x) = \frac{(2K\Gamma + \mu^2)c}{2\Gamma(c - F_x/\beta)} \operatorname{sech}^2 \left[\frac{\sqrt{2K\Gamma + \mu^2}}{2(c - F_x/\beta)} (x - X) \right]$$

Let the soliton parameters depend on time & consider a new "center"

$$K = K(t), \quad c = c(t), \quad X = X(t), \quad \dot{X} = c$$

- ★ Collective coordinates K(t), c(t), X(t) satisfy ODEs reflecting influence of diffusion and non-constant TAF
- \star Good predictions on the soliton position & amplitude can be obtained as to *mimic the behavior of the vessel tips pulse*
- ★ Soliton controls $\tilde{p}(t, \mathbf{x})$ behavior after formation stage

DETERMINISTIC PULSE *vs.* Soliton

L. L. Bonilla

20 / 2

Stochastic pulse vs. Soliton (ensemble average 400 replicas)

Introduction

Stochastic Model

Soliton

Final Comments

Position of maximum marginal density for different replicas

L. L. Bonilla

22 / 24

00000	

OUTLINE

2 Stochastic Model and Deterministic Description

Perspectives		

- **O** Blueprint for other models
- *Haptotaxis, anti-angiogenic drugs* added as extra field RDE and extra forces in Langevin equations
- Stability of soliton, initial stage and arrival to tumor
- Effect of haptotaxis, anti-angiogenic drugs on soliton: control of angiogenesis, therapy

== ~~~~

Perspectives		

- **O** Blueprint for other models
- *Haptotaxis, anti-angiogenic drugs* added as extra field RDE and extra forces in Langevin equations
- Stability of soliton, initial stage and arrival to tumor
- Effect of haptotaxis, anti-angiogenic drugs on soliton: control of angiogenesis, therapy

THANK YOU!!!

Derivation of a mean field equation for the vessel tip density, as $\mathcal{N} \to \infty$

- \star Itō's formula is applied for a smooth $g(\mathbf{x}, \mathbf{v})$ & the process in Langevin eqns
- ★ For any replica ω , at time t, the number of tips per unit volume in the (\mathbf{x}, \mathbf{v}) phase space is given by the *empirical distribution*

$$Q_N^*(t, \mathbf{x}, \mathbf{v}, \omega) = \sum_{i=1}^{N(t,\omega)} \delta_{\sigma_x}(\mathbf{x} - \mathbf{X}^i(t, \omega)) \delta_{\sigma_v}(\mathbf{v} - \mathbf{v}^i(t, \omega))$$

★ If \mathcal{N} is sufficiently large, Q_N^* may admit a *density* by laws of large numbers

$$\begin{split} & \frac{1}{\mathcal{N}} \sum_{\omega=1}^{\mathcal{N}} Q_N^*(t, \mathbf{x}, \mathbf{v}, \omega) \, \sim \, p(t, \mathbf{x}, \mathbf{v}) \\ \implies & \frac{1}{\mathcal{N}} \sum_{\omega=1}^{\mathcal{N}} \left[\sum_{i=1}^{N(t, \omega)} \, g(\mathbf{X}^i(t, \omega), \mathbf{v}^i(t, \omega)) \right] \, \sim \, \int g(\mathbf{x}, \mathbf{v}) \, p(t, \mathbf{x}, \mathbf{v}) \, d\mathbf{x} \, d\mathbf{v} \end{split}$$

★ Tip branching & anastomosis are added as *source* & *sink* terms to the obtained equation for $p(t, \mathbf{x}, \mathbf{v})$ in strong form

1/4

If a tip meets an existing vessel, they join at that point & time \hookrightarrow the tip stops the evolution

The "death" rate of tips is a fraction of the occupation time density

$$\int_0^t ds \sum_{i=1}^{N(s)} \delta_{\sigma_x}(\mathbf{x} - \mathbf{X}^i(s)),$$

which is the concentration of vessels per unit volume, at t and \mathbf{x}

Note: tips occupy a volume $d\mathbf{x}$ about \mathbf{x} when they reach it, or by branching, or during anastomosis (this depends on the past history of a given stochastic replica)

 \star Since p has 2nd-order derivatives in **v**

$$p(t, \mathbf{x}, \mathbf{v}) \to 0 \text{ as } |\mathbf{v}| \to \infty$$

 \star Which spatial bcs for p? (p has 1st-order derivatives in x)

At each t, we expect to know

 \checkmark the marginal tip density at the tumor (x = L)

$$\tilde{p}(t, L, y) = \tilde{p}_L(t, y)$$

 \checkmark the normal *tip flux density* injected at the primary vessel (x = 0)

$$-\mathbf{n} \cdot \mathbf{j}(t,0,y) = j_0(t,y)$$

Using these values & assuming p close to a local equilibrium distribution at the boundaries, we impose compatible bcs for p^+ at x = 0 and p^- at x = L First order derivatives in **x**: 2 one-half boundary conditions at x = 0, x = L:

$$p^{+}(t,0,y,v,w) = \frac{e^{-\frac{k|\mathbf{v}-\mathbf{v}_{0}|^{2}}{\sigma^{2}}}}{\int_{0}^{\infty}\int_{-\infty}^{\infty}v'e^{-\frac{k|\mathbf{v}'-\mathbf{v}_{0}|^{2}}{\sigma^{2}}}dv'\,dw'} \left[j_{0}(t,y) - \int_{-\infty}^{0}\int_{-\infty}^{\infty}v'p^{-}(t,0,y,v',w')dv'\,dw'\right]$$

$$p^{-}(t,L,y,v,w) = \frac{e^{-\sigma^{2}}}{\int_{-\infty}^{0} \int_{-\infty}^{\infty} e^{-\frac{k|\mathbf{v}'-\mathbf{v}_{0}|^{2}}{\sigma^{2}}} dv' \, dw'} \left[\tilde{p}_{L}(t,y) - \int_{0}^{\infty} \int_{-\infty}^{\infty} p^{+}(t,L,y,v',w') dv' dw' \right]$$

where

★
$$\mathbf{v} = (v, w); p^+ = p \text{ for } v > 0 \text{ and } p^- = p \text{ for } v < 0$$

★ \mathbf{v}_0 is the mean velocity of the vessel tips
★ σ^2/k is the temperature of the local equilibrium distribution

< □ ▶ < @ ▶ < 문 ▶ < 문 ▶ 문|급 ∽) ९ (~ esis | 4 / 4