

Soft Matter Simulation of Cell Motility

HOUFU FAN and SHAOFAN LI

Department of Civil and Environmental Engineering

University of California at Berkely

Banff, Canada, September 1st, 2016

Small et. al. (2002)

Retrograde flow in lamellipodia motion

Liquid like medium

Ligand-receptor interactions

Ning Wang et al. Natural Reviews Molecular Cell Biology [2009]

II. How to model Cytoskeleton ?

How to model actin filament: (ATP) Hydrolysis of Actin filaments

Actin-filament is polarized because the cleft is always towards the minus end.

Hydrodynamics of active polar gel

The strong forms of an active nematic gel hydrodynamics are

$$\rho_f \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \mathbf{b}, \quad \forall \mathbf{x} \in V(t)$$
$$\rho_d \frac{D\tilde{\mathbf{h}}}{Dt} = \lambda \mathbf{d} \cdot \mathbf{h} - \mathbf{w} \cdot \mathbf{h} + \gamma \nabla \cdot \boldsymbol{\nabla} \otimes \mathbf{h}, \quad \forall \mathbf{x} \in V(t)$$

where the Cauchy stress is given as

$$\sigma = \sigma^{p} + \sigma^{a}$$

$$\sigma^{p} = -p\mathbf{I} + 2\mu\mathbf{a} - \frac{\lambda}{2}(\mathbf{h} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{h}) + \frac{1}{2}(\mathbf{h} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{h})$$

$$\sigma^{a} = -\zeta \mathbf{h} \otimes \mathbf{h}$$
where $\mathbf{s} = K\nabla^{2}\mathbf{h}$ and the term
$$\sigma^{active} = -\zeta \mathbf{h} \otimes \mathbf{h}$$
 is the active stress.

Reference: Voituriez, Jonnay, and Prost [2005]; Jülicher, Kruse, Prost, and Joanny [2007].

Active stress

(a) Active Stress

(b) Total stress response

Modeling Microtubles and actin filaments

GTP Hydrolysis

We are modeling microtubles as liquid crystal elastomer.

Actomyosin molecules in a cell

III. Multiscale Moving Contact Line Theory

Diffused Interface Phase-field Modeling

Margrit Klitz (2014)

Basic Idea

Conventional mving contact-line theory and Multiscale moving contact-line theory

Multiscale contact/adhesion model

Kinematics

 $\phi(r)$ - yields the Interaction Energy of Ω_1 and Ω_2

$$\Pi_{\rm C} = -\int_{\Omega_1} \int_{\Omega_2} \beta_1 \ \beta_2 \ \phi(\boldsymbol{x}_1 - \boldsymbol{x}_2) \ dv \ dv$$

 $\psi(r)$ - yields the Internal Energy of the two bodies

$$\Pi_{\text{int},1} = \int_{\Omega_1} W_1(\psi_1) \, dv \qquad \qquad W_1 := \frac{\beta_1}{2} \sum_{j \neq i}^{n_1} \psi_1(x_1 - \mathbf{z}_j)$$

Lennard-Jones Potential

$$\phi(r) = \epsilon \left(\frac{r_0}{r}\right)^{12} - 2\epsilon \left(\frac{r_0}{r}\right)^6$$

$$F(r) = -\frac{\partial \phi}{\partial r}$$

$$\frac{-\phi/\epsilon}{-Fr_0/\epsilon}$$

$$Rapid Decay$$

$$\frac{-1}{-2}$$

$$Repulsion$$

$$\frac{-1}{1}$$

$$\frac{-2}{-3}$$

$$\frac{-1}{1}$$

$$\frac{-2}{-3}$$

$$\frac{-2}{-3$$

Variational Principle

Interaction Potential

$$\Pi_{\rm C} = -\int_{\Omega_1} \int_{\Omega_2} \beta_1 \beta_2 \ \phi(r) \ dv \ dv$$

Principle of virtual Work

$$egin{aligned} \Pi &= \sum_{I=1}^2 \left[\Pi_{ ext{int},I} - \Pi_{ ext{ext},I}
ight] - \Pi_{ ext{C}} \ \delta \Pi &= 0 \;, \quad orall \; \delta oldsymbol{arphi}_I \end{aligned}$$

Variation

$$\begin{split} \delta \Pi_{\mathrm{C}} \ &= \ - \int_{\Omega_{1}} \int_{\Omega_{2}} \beta_{1} \beta_{2} \Big(\frac{\partial \phi(r)}{\partial \boldsymbol{x}_{1}} \cdot \delta \boldsymbol{\varphi}_{1} + \frac{\partial \phi(r)}{\partial \boldsymbol{x}_{2}} \cdot \delta \boldsymbol{\varphi}_{2} \Big) \ dv \ dv \\ &= \ \int_{\Omega_{1}} \delta \boldsymbol{\varphi}_{1} \cdot \beta_{1} \boldsymbol{b}_{1} \ dv + \int_{\Omega_{2}} \delta \boldsymbol{\varphi}_{2} \cdot \beta_{2} \boldsymbol{b}_{2} \ dv \end{split}$$

Adhesive Body Forces

$$egin{aligned} m{b}_1(m{x}_1) &:= -rac{\partial \Phi_2}{\partial m{x}_1} \;, & \Phi_2 \; := \; \int_{\Omega_2} eta_2 \; \phi(r) \; dv \ m{b}_2(m{x}_2) \; := \; -rac{\partial \Phi_1}{\partial m{x}_2} \;, & \Phi_1 \; := \; \int_{\Omega_1} eta_1 \; \phi(r) \; dv \end{aligned}$$

Convert body-to-body interaction into Surface-to-surface interaction: Derjaquin Approximation

$$\mathbf{f}_{\mathrm{C},i} = \int_{\Omega_i^e} \int_{\Omega_j^e} \mathbf{N}_i^T \beta_i \beta_j \frac{\partial \phi}{\partial \boldsymbol{x}_i} \, dv \, dv$$

Method 1

 \rightarrow the number of interacting elements can become large

Method 2 : Project volume integration onto surface

$$dv_1 dv_2 = -\frac{r}{r_s} dr \ d\tilde{r} \ (\bar{\boldsymbol{r}} \cdot \boldsymbol{n}_1)(\bar{\boldsymbol{r}} \cdot \boldsymbol{n}_2) \ da_1 da_2$$

 \rightarrow Integrate *r*-Direction analytically

Interaction Force Vector

Surface Stress Tensor

Fan and Li [2015] JCP

An Elasto-hydrodynamics Interface Theory

$$\mathbf{f}^{D,\alpha} := \nabla_s \varsigma_\alpha + \mathbf{t}^\alpha = \rho_{s\alpha} v_\alpha \mathbf{v}_\alpha, \quad \alpha = G, L, S$$

Surface stress

An Extension of the Gurtin-Murdoch Surface Elasticity Theory

Morton E. Gurtin

A. Ian Murdoch

For L-phase

$$\sigma = \kappa_L (\ln J)\mathbf{I} + \mu_L (\nabla \otimes \mathbf{v} + (\nabla \otimes \mathbf{v})^T)$$
For S-phase

 $\mathbf{S} = \lambda_S \operatorname{Tr}(\mathbf{E})\mathbf{I} + 2\mu_S \mathbf{E},$

Without considering interface diffusion and friction, we choose the following interface constitutive relations,

$$\varsigma_{LS} = \gamma_{LS} \mathbf{I}_s^{(2)} + \nabla_s \gamma_{LS} \mathbf{I}_s^{(2)} + \frac{\partial W_S}{\partial \epsilon_s} + \mu_{LS} \mathbf{d}_s + \gamma_{LS} \nabla_s \otimes \mathbf{u}; \qquad (2.13)$$

$$\varsigma_{GL} = \gamma_{GL} \mathbf{I}_s^{(2)} + \nabla_s \gamma_{GL} \mathbf{I}_s^{(2)} + \mu_{GL} \mathbf{d}_s + \gamma_{GL} \nabla_s \otimes \mathbf{u}; \qquad (2.14)$$

$$\varsigma_{GS} = \gamma_{LS} \mathbf{I}_s^{(2)} + \nabla_s \gamma_{GS} \mathbf{I}_s^{(2)} + \frac{\partial W_S}{\partial \epsilon_s} + \mu_{GS} \mathbf{d}_s + \gamma_{GS} \nabla_s \otimes \mathbf{u}; \qquad (2.15)$$

where u are three-dimensional the surface displacements; γ_{LS} , γ_{GL} and γ_{GS} are the surface tension in different interfaces; the operator \otimes is the standard notation for tensor

This equation can be derived from diffused interface theory

$$\nabla_{s}\varsigma_{\alpha\beta} + [\mathbf{t}_{\alpha}] = \bar{\rho}_{\alpha\beta}(\mathbf{v}_{\beta} - \mathbf{v}_{\alpha})v_{\alpha}^{intf}, \quad \forall \mathbf{x} \in \Gamma_{\alpha\beta}, \quad \alpha, \beta = G, L, S$$
$$\nabla_{s} := \nabla - \mathbf{n}_{\alpha}(\mathbf{n}_{\alpha} \cdot \nabla)$$

$$[\mathbf{t}_{\alpha}] = (\sigma_{\alpha} - \sigma_{\beta})\mathbf{n}_{\alpha} \approx (\sigma_{\alpha}^{adh} - \sigma_{\beta}^{adh})\mathbf{n}_{\alpha} = [\mathbf{t}^{adh}]$$

For finite deformation:

$$\begin{split} W_s &= \frac{1}{2} \epsilon_s : \mathbf{C}_s : \epsilon_s, \quad \mathbf{C}_s = C^s_{ijk\ell} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_\ell, \quad \text{where} \\ C^s_{ijk\ell} &= (\lambda_s + \gamma_s) \delta_{ij} \delta_{k\ell} + \mu_s (\delta_{ik} \delta_{j\ell} + \delta_{i\ell} \delta_{jk}), \quad i, j, k, \ell = 1, 2; \end{split}$$

Subsequently, one can readily derive the interface constitutive relation in terms of surface displacements and velocities, for instance,

$$\begin{split} \boldsymbol{\varsigma}_{LS} &= \gamma_{LS} \mathbf{I}_{s}^{(2)} + \nabla_{s} \gamma_{LS} \mathbf{I}_{s}^{(2)} + (\mu_{S} - \gamma_{S}) \mathbf{P} \Big(\nabla \otimes \mathbf{u} + (\nabla \otimes \mathbf{u})^{T} - (\nabla \otimes \mathbf{u})^{T} \nabla \otimes \mathbf{u} \Big) \mathbf{P} \\ &+ (\lambda_{S} + \gamma_{S}) \operatorname{Tr} \Big[\mathbf{P} \Big(\nabla \otimes \mathbf{u} + (\nabla \otimes \mathbf{u})^{T} - (\nabla \otimes \mathbf{u})^{T} \nabla \otimes \mathbf{u} \Big) \mathbf{P} \Big] \mathbf{I}_{s}^{(2)} \\ &+ \gamma_{LS} \nabla_{a} \otimes \mathbf{u} + \mu_{LS} \mathbf{P} \operatorname{Sym} \Big(\nabla \otimes \mathbf{v} \Big) \mathbf{P} \;. \end{split}$$

$$\epsilon = \frac{1}{2} (\mathbf{I} - \mathbf{b}^{-1}) \quad \text{and} \quad \mathbf{b} =: \mathbf{F} \cdot \mathbf{F}^{T} \qquad \epsilon_{s} := \mathbf{P} \cdot \epsilon \cdot \mathbf{P}$$

$$(2.19)$$

1. Monolithic solution

$$\nabla \cdot \boldsymbol{\sigma}_{\alpha} + \rho_{\alpha} \mathbf{b}_{\alpha} = \rho_{\alpha} \ddot{\mathbf{u}}_{\alpha}, \text{ and } \mathbf{t}_{\alpha} = \boldsymbol{\sigma}_{\alpha} \mathbf{n}_{\alpha}, \forall \mathbf{x} \in \partial \Omega_{\alpha t}, \\ \nabla_{s} \cdot \boldsymbol{\varsigma}_{\alpha\beta} + (\mathbf{t}_{\alpha} - \mathbf{t}_{\beta}) = \bar{\rho} v_{\alpha}^{inft} (\mathbf{v}_{\beta} - \mathbf{v}_{\alpha}); \forall \mathbf{x} \in \Gamma_{\alpha\beta} . \\ \nabla \cdot \boldsymbol{\sigma}_{\beta} + \rho_{\beta} \mathbf{b}_{\beta} = \rho_{\beta} \ddot{\mathbf{u}}_{\beta}, \text{ and } \mathbf{t}_{\beta} = \boldsymbol{\sigma}_{\beta} \mathbf{n}_{\beta}, \forall \mathbf{x} \in \partial \Omega_{\beta t} .$$

2. Iterative solution

$$\begin{aligned} \mathbf{t}_{\alpha} &= \bar{\rho} v_{\alpha}^{inf} (\mathbf{v}_{\alpha} - \mathbf{v}_{\beta}) - \nabla_{s} \cdot \boldsymbol{\varsigma}_{\alpha\beta} - \mathbf{t}_{\beta} \\ \boldsymbol{\beta} \to \alpha & \mathbf{t}_{\beta} \approx \mathbf{t}_{\beta}^{adh} \\ \mathbf{t}_{\alpha} &= -\nabla_{s} \cdot \boldsymbol{\varsigma}_{\alpha\beta} + \left(\beta_{\alpha}\beta_{\beta}\int_{\partial\Omega_{\alpha}}\mathbf{n}_{\alpha}\otimes\mathbf{s}_{\beta\alpha}v(s)dS_{\alpha}\right) \cdot \mathbf{n}_{\alpha}, \quad \forall \mathbf{x} \in \Gamma_{\alpha\beta}(\alpha) \ . \end{aligned}$$
$$\alpha \to \beta & \mathbf{t}_{\alpha} \approx \mathbf{t}_{\alpha}^{adh} = \sigma_{\alpha}^{adh} \cdot \mathbf{n}_{\alpha} = -\sigma_{\alpha}^{adh} \cdot \mathbf{n}_{\beta} & \sigma_{\alpha}^{adh} = \left(\beta_{\alpha}\beta_{\beta}\int_{\partial\Omega_{\beta}}\mathbf{n}_{\beta}\otimes\mathbf{s}_{\alpha\beta}v(s)dS_{\beta}\right) \\ \mathbf{t}_{\beta} &= -\nabla_{s} \cdot \boldsymbol{\varsigma}_{\alpha\beta} + \left(\beta_{\alpha}\beta_{\beta}\int_{\partial\Omega_{\beta}}\mathbf{n}_{\beta}\otimes\mathbf{s}_{\alpha\beta}v(s)dS_{\beta}\right) \cdot \mathbf{n}_{\beta}, \quad \forall \mathbf{x} \in \partial\Omega_{\beta} \end{aligned}$$

Li and Fan [2015], Proc. R. S.

For the constant surface stress,

$$\boldsymbol{\varsigma}^{LS} = \gamma_{LS} \mathbf{I}_s^{(LS)}, \ \boldsymbol{\varsigma}^{LG} = \gamma_{LG} \mathbf{I}_s^{(LG)}, \ \text{and} \ \boldsymbol{\varsigma}^{SG} = \gamma_{SG} \mathbf{I}_s^{(SG)}$$

where $\mathbf{I}_{s}^{(LS)}, \mathbf{I}_{s}^{(LG)}$, and $\gamma_{SG} \mathbf{I}_{s}^{(SG)}$ are the unit tensors on LS, LG, and SG interface.

Cell/Air boundary(surface tension)

The resulting traction,

$$\mathbf{t} = \boldsymbol{\sigma} \mathbf{n} = -\gamma_0 \kappa \mathbf{n}, \ \forall \mathbf{x} \in \Gamma_{\text{cell/ain}}$$

mean curvature,

 $\kappa = \operatorname{div}[\mathbf{n}]$

unit out-normal,

$$\mathbf{n} = \alpha \mathbf{F}^{-T} \mathbf{N}; \alpha = (\mathbf{N} \cdot \mathbf{C}^{-1} \mathbf{N})^{-\frac{1}{2}}$$

Pure Surface Tension Action

On Multiscale Moving Contact Line Theory

Time history of the simulation of a 3D ellipsoidal droplet embedded in atmosphere, driven by the surface tension effect.

Li and Fan [2015], Proc. R. S.

Comparison of dynamic contact angles between MMCL and MD

Orientation order parameter distribution during cell spreading on three different substraties

Fan and Li [2015] BMMB

(a) 100 Pa gel substrate

(b) Collagen coated glass (10 KPa)

(Ms. An-Chi Tsou and Dr. Song Li)

Direction of the Substrate Stiffness Increase

