Analysis of proportional odds models with censoring and errors-in-covariates

Samiran Sinha

Texas A&M University sinha@stat.tamu.edu

Newest Developments and Urgent Issues in Measurement Error and Latent Variable Problems Banff, Canada

This is a joint work with Yanyuan Ma

August 18, 2016

- Preliminaries
- Problem statement
- Method without errors in covariates
- Method with errors in covariates
- Simulation study
- Application to a real data set
- Summary

• T: Time-to-event, X: a scalar continuous covariate, **Z**: p-vector of covariates

• Under the PO model:
$$pr(T \le t | X, Z) = \frac{\Lambda(t) \exp(\beta_1^T \mathbf{Z} + \beta_2 X)}{1 + \Lambda(t) \exp(\beta_1^T \mathbf{Z} + \beta_2 X)}$$

• The hazard function:

$$\lambda(t|X, \mathbf{Z}) = \frac{\Lambda(t) \exp(\beta_1^T \mathbf{Z} + \beta_2 X)}{1 + \Lambda(t) \exp(\beta_1^T \mathbf{Z} + \beta_2 X)} \times \frac{\partial \Lambda(t)}{\partial t}$$

- Important point that unlike the proportional hazard model, here the ratio of two hazards corresponding to two sets of covariates at time *t* is not free from *t*
- Right censored data: Murphy et al. (1997); Current status data: Rossini & Tsiatis (1996);

	Proportional hazard	Proportional odds
Dist. Func.	$1 - \exp\{-\Lambda(t)\exp(\boldsymbol{\beta}_1^{T}\mathbf{Z} + \boldsymbol{\beta}_2 X)\}$	$\frac{\Lambda(t)\exp(\boldsymbol{\beta}_{1}^{T}\mathbf{Z}+\beta_{2}X)\}}{1+\Lambda(t)\exp(\boldsymbol{\beta}_{1}^{T}\mathbf{Z}+\beta_{2}X)\}}$
Hazard Func.	$\frac{\partial \Lambda(t)}{\partial t} \exp(\beta_1^T \mathbf{Z} + \beta_2 X)$	$\frac{\mathbf{A}(t)\exp(\boldsymbol{\beta}_{1}^{T}\mathbf{Z}+\boldsymbol{\beta}_{2}X)}{1+\mathbf{A}(t)\exp(\boldsymbol{\beta}_{1}^{T}\mathbf{Z}+\boldsymbol{\beta}_{2}X)}\times\frac{\partial\mathbf{A}(t)}{\partial t}$
Interpretation of $\Lambda(t)$	Cumulative hazard when $X = 0$, $\mathbf{Z} = 0$	Odds of the event when $X = 0$, $\mathbf{Z} = 0$

- T is subject to right censoring
- Assumption: censoring time C is independent of T conditional on X and Z
- Here we do not observe X, rather W_1^*, \ldots, W_m^* are observed
- Assume that $W_j^* = X + U_j^*$ (additive measurement errors), $U_j^* \sim$ a symmetric distribution
- Goal is consistent estimation of $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^T, \boldsymbol{\beta}_2)^T$, and $\boldsymbol{\Lambda}$ while
 - no distributional assumption will be made on X
 - except symmetry, no other assumption will be made on the distribution of U^\ast

- Errors in covariates, proportional hazard model: Prentice (1982), Nakamura (1992), Zhou and Wang (2000), Huang and Wang (2000), Hu and Lin (2002), Zhuker (2005), and others
- Some important points about Huang and Wang (2000)
 - no distributional assumption on X and U^* (not even symmetry)
 - made a clever use of the partial likelihood function that allowed them to estimate the finite dimensional parameters and infinite dimensional parameters separately

- Cheng and Wang (2001) considered errors in covariate in the linear transformation model (it includes the proportional odds model as a special case)
 - parametrically modeled $U_i^* U_{i'}^*$ by a symmetric distribution (such as normal)
 - parametrically modeled $X_i X_{i'}$ by a symmetric distribution (such as normal)
 - generally produces biased results if the support of C is significantly shorter than that of T

- Sinha and Ma (2014) considered errors in covariate in the linear transformation model (it includes the proportional odds model as a special case)
 - assumed the distribution of U^* to be symmetric, but did not model it parametrically
 - modeled the distribution of X parametrically

- Observed data on the *i*th subject, $(V_i, \Delta_i, \mathbf{Z}_i, W_{i1}, \ldots, W_{im})$, $V_i = \min(T_i, C_i)$, $\Delta_i = I(T_i \leq C_i)$,
- Define $N_i(u) = I(V_i \leq u, \Delta_i = 1), Y_i(u) = I(V_i \geq u),$ $\eta(X_i, \mathbf{Z}_i, \beta) = \exp(\beta_1^T \mathbf{Z}_i + \beta_2 X_i)$
- Then,

$$M(t) = N(t) - \int_0^t Y(u) \frac{\lambda(u)\eta(X, \mathbf{Z}, \beta)}{1 + \Lambda(u)\eta(X, \mathbf{Z}, \beta)} du$$

is a martingale with respect to filtration $\{\mathcal{F}_t : t \ge 0\}$, where $\mathcal{F}_t = \sigma\{Y(u), N(u), X, \mathbf{Z}, u \le t\}$

• Think M(t) as a mean zero random variable conditional on X and Z

Formation of estimating equations when X is observed

$$S_{\beta_{1}} = \sum_{i=1}^{n} \int_{0}^{\tau} \underbrace{\mathsf{Z}_{i}\{1 + \Lambda(u)\eta(X_{i},\mathsf{Z}_{i},\beta)\}f\{\Lambda(u),\mathsf{Z}_{i},\beta,\alpha\}}_{\text{predicatble}} \\ \times \underbrace{\left\{ dN_{i}(u) - \frac{Y_{i}(u)\lambda(u)\eta(X_{i},\mathsf{Z}_{i},\beta)du}{1 + \Lambda(u)\eta(X_{i},\mathsf{Z}_{i},\beta)} \right\}}_{dM_{i}(u)} \\ = \sum_{i=1}^{n} \left(\mathsf{Z}_{i}\Delta_{i}\{1 + \Lambda(V_{i})\eta(X_{i},\mathsf{Z}_{i},\beta)\}f\{\Lambda(V_{i}),\mathsf{Z}_{i},\beta,\alpha\} \\ - \mathsf{Z}_{i}\eta(X_{i},\mathsf{Z}_{i},\beta)\left[F\{\Lambda(V_{i}),\mathsf{Z}_{i},\beta,\alpha\} - F(0,\mathsf{Z}_{i},\beta,\alpha)\right]\right),$$

$$\begin{split} S_{\beta_2} &= \sum_{i=1}^n \left(X_i \Delta_i \{ 1 + \Lambda(V_i) \eta(X_i, \mathbf{Z}_i, \beta) \} f\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} \\ &- X_i \eta(X_i, \mathbf{Z}_i, \beta) \left[F\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} - F(0, \mathbf{Z}_i, \beta, \alpha) \right] \right), \end{split}$$

- Here $F(\Lambda, \mathbf{Z}, \beta, \alpha)$ satisfies $\partial F(\Lambda, \mathbf{Z}, \beta, \alpha) / \partial \Lambda = f(\Lambda, \mathbf{Z}, \beta, \alpha)$
- The resulting estimating equations do not have X in the denominator that will allow us to do easy moment calculations

$$S_{\Lambda}(u) = \sum_{i=1}^{n} \{1 + \Lambda(u)\eta(X_i, Z_i, \beta)\} \left\{ dN_i(u) - Y_i(u) \frac{\lambda(u)\eta(X_i, \mathbf{Z}_i, \beta)du}{1 + \Lambda(u)\eta(X_i, \mathbf{Z}_i, \beta)} \right\}$$
$$= \sum_{i=1}^{n} \left[\{1 + \Lambda(u)\eta(X_i, \mathbf{Z}_i, \beta)\} dN_i(u) - Y_i(u)\lambda(u)\eta(X_i, \mathbf{Z}_i, \beta)du \right], \text{ for all } u > 0.$$

• To simplify the computation we did not include $f\{\Lambda(u), \mathbf{Z}, \beta, \alpha\}$ in $S_{\Lambda}(u)$

Image: Image:

э

- Let the observed failure times be $0 < t_{n_1} < \cdots < t_{n_k}$
- Then

$$\widehat{\Lambda}(t_{n_1}) = \frac{\sum_{i=1}^n dN_i(t_{n_1})}{\sum_{i=1}^n \eta(X_i, \mathbf{Z}_i, \beta) \{Y_i(t_{n_1}) - dN_i(t_{n_1})\}}$$

• Other $\Lambda(t_{n_i})$'s can be estimated recursively as

$$\widehat{\Lambda}(t_{n_j}) = \frac{\sum_{i=1}^n d\mathsf{N}_i(t_{n_j}) + \widehat{\Lambda}(t_{n_{(j-1)}}) \sum_{i=1}^n Y_i(t_{n_j}) \eta(X_i, \mathsf{Z}_i, \beta)}{\sum_{i=1}^n \{Y_i(t_{n_j}) - d\mathsf{N}_i(t_{n_j})\} \eta(X_i, \mathsf{Z}_i, \beta)}, \text{ for } j = 1, \cdots, k.$$

• When the last observation happens to be an event, we replace $\widehat{\Lambda}(t_{n_k})$ with a large value, larger than $\widehat{\Lambda}(t_{n_{k-1}})$, to facilitate further analysis

- When there is no measurement error, the score functions for the maximum likelihood estimator (Murphy et al., 1997) are obtained if we replace $f\{\Lambda(u), \mathbf{Z}, \beta, \alpha\}$ by $1/\{1 + \Lambda(u)\eta(X, \mathbf{Z}, \beta)\}^2$ and multiply each summand of S_{Λ} by $1/\{1 + \Lambda(u)\eta(X, \mathbf{Z}, \beta)\}$
- However, the presence of X in the expression $1/\{1 + \Lambda(u)\eta(X, \mathbf{Z}, \beta)\}^2$ will cause difficulties as soon as X becomes unobservable (keeping in mind that our goal is to find corrected estimating equations)
- To circumvent this issue we shall take f free-from X

Estimating equations when X is unobserved

$$\begin{split} S_{\beta_1}^{\text{me}} &= \sum_{i=1}^n \left(\Delta_i \mathbf{Z}_i \{ 1 + \Lambda(V_i) g_1(W_i, \mathbf{Z}_i, \beta) \} f\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} \\ &- \mathbf{Z}_i g_1(W_i, \mathbf{Z}_i, \beta) \left[F\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} - F(0, \mathbf{Z}_i, \beta, \alpha) \right] \right) = \mathbf{0}, \\ S_{\beta_2}^{\text{me}} &= \sum_{i=1}^n \left(\Delta_i \{ W_i + \Lambda(V_i) g_2(W_i, \mathbf{Z}_i, \beta) \} f\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} \\ &- g_2(W_i, \mathbf{Z}_i, \beta) \left[F\{\Lambda(V_i), \mathbf{Z}_i, \beta, \alpha \} - F(0, \mathbf{Z}_i, \beta, \alpha) \right] \right) = \mathbf{0}, \\ S_{\Lambda}^{\text{me}} &= \sum_{i=1}^n \left[\{ 1 + \Lambda(u) g_1(W_i, \mathbf{Z}_i, \beta) \} dN_i(u) - Y_i(u) \lambda(u) g_1(W_i, \mathbf{Z}_i, \beta) du \right] = \mathbf{0}, \end{split}$$

where

$$g_1(W_i, \mathsf{Z}_i, eta) = rac{\eta(W_i, \mathsf{Z}_i, eta)}{\gamma_1}, \; g_2(W_i, \mathsf{Z}_i, eta) = rac{\eta(W_i, \mathsf{Z}_i, eta)}{\gamma_1^2}(\gamma_1 W - \gamma_2),$$

 $\gamma_1 = E\{\exp(\beta_2 U_i)\}, \ \gamma_2 = E\{U_i \exp(\beta_2 U_i)\}, \ \text{and} \ U_i = \sum_{j=1}^m U_{ij}^*/m.$

• Good thing is that all three equations are free of unobserved X

- It is important that $E(S_{\beta_1}^{\text{me}}|V, \Delta, X, \mathbf{Z}) = S_{\beta_1}$, $E(S_{\beta_2}^{\text{me}}|V, \Delta, X, \mathbf{Z}) = S_{\beta_2}$, and $E(S_{\Lambda}^{\text{me}}|V, \Delta, X, \mathbf{Z}) = S_{\Lambda}$
- These are the "corrected scores": the effect of the measurement error is corrected because the original "scores" are recovered via the intermediate conditional expectation step
- As a result, as long as the original "scores" have mean zero, the "corrected" ones will also yield a consistent estimator

- We take f{Λ(u), Z, β, α} = 1/{1 + Λ(u)η(X*, Z, β)}², where we take X* = E(X|Z) calculated using a proposed model for X given Z (bearing similar spirit as the regression calibration)
- However, there is no harm for replacing X* by E*(X|Z), a misspecified model for the conditional expectation of X given Z
- Importantly, unlike in the classical regression calibration treatment, our estimator will remain consistent whether the proposed model is correct or incorrect

Furthermore, one can simply bypass the specification of a model for the distribution of X given Z, and directly assume a model X^{*} = μ(Z, α), where α, the additional parameter can be obtained through solving

$$\sum_{i=1}^{n} \frac{\partial \mu(\mathbf{Z}_{i}, \boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}} \{ W_{i} - \mu(\mathbf{Z}_{i}, \boldsymbol{\alpha}) \} = \mathbf{0}$$

Image: A matrix and a matrix

- Note $\gamma_1 = E\{\exp(\beta_2 U_i)\} = \{\mathcal{M}(\beta_2/m)\}^m$, where $\mathcal{M}(\cdot)$ denotes the moment generating function of U_{ij}^* , $U_i = \sum_{i=1}^m U_{ij}^*/m$
- Making use of the symmetry assumption of the distribution of U_{ij}^* , we have $\mathcal{M}(\beta_2/m) = (2\sum_{j,k=1,j< k}^m E\left[\exp\{(W_{ij}^* W_{ik}^*)\beta_2/m\}\right]/m(m-1))^{1/2}.$

$$\widehat{\gamma}_{1} = \left[\frac{2}{nm(m-1)}\sum_{j,k=1,j< k}^{m}\sum_{i=1}^{n}\exp\{(W_{ij}^{*} - W_{ik}^{*})\beta_{2}/m\}\right]^{m/2}$$

۲

. . .

- Observe that γ₂ = E{U_i exp(β₂U_i)} = ∂E{exp(β₂U_i)}/∂β₂
- Then we can derive a consistent estimator of γ_2

$$\widehat{\gamma}_{2} = \left(\widehat{\gamma}_{1}\right)^{(m-2)/m} \\ \times \frac{1}{nm(m-1)} \sum_{j,k=1,j< k}^{m} \sum_{i=1}^{n} (W_{ij}^{*} - W_{ik}^{*}) \exp\{(W_{ij}^{*} - W_{ik}^{*})\beta_{2}/m\}$$

• Good thing is that both $\widehat{\gamma}_1$ and $\widehat{\gamma}_2$ are functions of observable random variables

3

_ ► ∢

Step 0. Form $W_i = m^{-1} \sum_{j=1}^m W_{ij}^*$ for i = 1, ..., n. Obtain $\hat{\alpha}$ **Step 1.** Form $\hat{\gamma}_1(\beta)$ and $\hat{\gamma}_2(\beta)$, both are functions of β **Step 2.** For fixed β and $\hat{\gamma}_1(\beta)$, form

$$\widehat{\Lambda}\{t_{n_1};\boldsymbol{\beta},\widehat{\gamma}_1(\boldsymbol{\beta})\} = \frac{\sum_{i=1}^n \widehat{\gamma}_1(\boldsymbol{\beta}) dN_i(t_{n_1})}{\sum_{i=1}^n \eta(W_i,\boldsymbol{\mathsf{Z}}_i,\boldsymbol{\beta}) \left\{Y_i(t_{n_1}) - dN_i(t_{n_1})\right\}}$$

and

$$\widehat{\Lambda}\{t_{n_j}, \beta, \widehat{\gamma}_1(\beta)\} = \frac{\sum_{i=1}^n \{\widehat{\gamma}_1(\beta) dN_i(t_{n_j}) + Y_i(t_{n_j}) \widehat{\Lambda}\{t_{n_{j-1}}, \beta, \widehat{\gamma}_1(\beta)\} \eta(W_i, \mathbf{Z}_i, \beta)\}}{\sum_{i=1}^n \eta(W_i, \mathbf{Z}_i, \beta) \{Y_i(t_{n_j}) - dN_i(t_{n_j})\}}$$

for $u = t_{n_1}, \ldots, t_{n_k}$.

Step 3. We obtain $\widehat{\boldsymbol{\beta}}$ through solving

$$\sum_{i=1}^n \begin{pmatrix} \phi_{1,i} \\ \phi_{2,i} \end{pmatrix} = 0,$$

where

$$\phi_{1,i} = \mathbf{Z}_i \Delta_i \widehat{\gamma}_1(\beta) \widehat{\Lambda}(V_i; \beta, \widehat{\gamma}_1(\beta)) \eta(W_i, \mathbf{Z}_i, \beta) f\{\widehat{\Lambda}(V_i; \beta, \widehat{\gamma}_1(\beta)), \mathbf{Z}_i, \beta, \widehat{\alpha}\} - \mathbf{Z}_i \eta(W_i, \mathbf{Z}_i, \beta) [F\{\widehat{\Lambda}(V_i; \beta, \widehat{\gamma}_1(\beta)), \mathbf{Z}_i, \beta, \widehat{\alpha}\} - F(0, \mathbf{Z}_i, \beta, \widehat{\alpha})],$$

$$\phi_{2,i} = \Delta_i [W_i \widehat{\gamma}_1^2(\beta) + \Lambda(V_i; \beta, \widehat{\gamma}_1(\beta)) \{ \widehat{\gamma}_1(\beta) W_i - \widehat{\gamma}_2(\beta) \} \eta(W_i, \mathsf{Z}_i, \beta)]$$

$$\times f \{ \widehat{\Lambda}(V_i; \beta, \widehat{\gamma}_1(\beta)), \mathsf{Z}_i, \beta, \widehat{\alpha} \}$$

$$(\widehat{\alpha}, (2)) W_i = \widehat{\alpha}, (2) [\widehat{\alpha}, (2), \widehat{\alpha}, \widehat{\alpha}] = \widehat{\alpha} [\widehat{\alpha}, (2), \widehat{\alpha}, \widehat{\alpha}]$$

 $-\{\widehat{\gamma}_{1}(\boldsymbol{\beta})W_{i}-\widehat{\gamma}_{2}(\boldsymbol{\beta})\}\eta(W_{i},\mathsf{Z}_{i},\boldsymbol{\beta})[\mathsf{F}\{\widehat{\Lambda}(V_{i};\boldsymbol{\beta},\widehat{\gamma}_{1}(\boldsymbol{\beta})),\mathsf{Z}_{i},\boldsymbol{\beta},\widehat{\alpha}\}-\mathsf{F}(0,\mathsf{Z}_{i},\boldsymbol{\beta},\widehat{\alpha})]$

Step 4. Go to Steps 1 and 2 to obtain $\widehat{\gamma}_1(\widehat{\beta})$ and $\widehat{\Lambda}\{u, \widehat{\beta}, \widehat{\gamma}_1(\widehat{\beta})\}$ respectively.

- In Step 3, we used a standard Newton-Raphson procedure
- In both the simulation and the data example, we used the classical regression calibration estimates as the initial value
- We also experimented with using the naive estimator as the initial value and the results are identical.

Theorem. Under some regularity conditions, when $n \to \infty$,

i) there exists an estimator $\widehat{\beta}$ from the procedure described earlier so that $|\widehat{\beta} - \beta| \to 0$ in probability and $\sup_{u \in [0,\tau]} |\widehat{\Lambda}\{u, \widehat{\beta}, \widehat{\gamma}_1(\widehat{\beta})\} - \Lambda(u)| \to 0$ in probability,

ii)
$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \rightarrow \operatorname{Normal}(0, \Sigma_{H}^{-1} \Sigma_{M} \Sigma_{H}^{-T})$$
 in distribution,

iii) $\sqrt{n}[\widehat{\Lambda}\{t, \widehat{\beta}, \widehat{\gamma}_1(\widehat{\beta})\} - \Lambda(t)]$ follows a zero-mean Gaussian process with a covariance kernel

The good news is that Σ_M , Σ_H , and the above referenced covariance kernel are all consistently estimable

- Simulated 1,000 data sets, and each data set consists of n = 500 iid observations (the paper contains simulation studies for other n)
- $Z \sim \text{Normal}(0, 1)$,
- X ∼a two-component mixture of normal distributions, (1/3)Normal(-0.6, 0.5²) + (2/3)Normal(1.25, 0.5²) (for the purpose of showing that our method can handle any distribution for X)
- T ~the proportional odds model with $\Lambda(t) = t^2$, and $\beta_1 = \beta_2 = 1$
- Censoring time

•
$$W_{ij}^* = X_i + U_{ij}^*$$
, $U_{ij}^* \sim \text{Uniform}(-1.75, 1.75)$, $i = 1, \dots, n$, $j = 1, \dots, m$

- Naive (NV): Use MLE approach where X_i is replaced by $\overline{W}_i = (W_{i1}^* + W_{i2}^*)/2$
- Regression calibration (RC): Use MLE approach where X_i is being replaced by

$$(1/\widehat{\sigma}^2 + 1/\widehat{\sigma}_U^2) \{ \overline{W}_i / \widehat{\sigma}_U^2 + (\widehat{\zeta}_0 + \widehat{\zeta}_1^{\mathrm{T}} Z_i) / \widehat{\sigma}^2 \}$$

with $\hat{\sigma}^2$, $\hat{\sigma}_U^2$, $\hat{\zeta}_0$ and $\hat{\zeta}_1$ being the estimators of $\sigma^2 = \text{var}(X|Z)$, $\sigma_U^2 = \text{var}(U)$, and ζ_0 and ζ_1 are the coefficients of the linear regression of X on Z

- Cheng and Wang (2001): took normal model for $X_i X_{i'}$ and $U_{ij}^* U_{i'i}^*$
- The proposed method: took f{Λ(t), Z, β, α} = {1 + Λ(t) exp(Zβ₁ + X*β₂)}⁻², where X* = â₀ + â₁^TZ with â₀ and â₁ being the estimate of the coefficients of the linear model W = X + U = α₀ + α₁^TZ + ε,

Simulation results for n = 500

	<i>n</i> = 500								-
	NV		RC		C	W	COR		
	β_1	β_2	β_1	β_2	β_1	β_2	β_1	β_2	
			Censorin	ng depend	s on X a	nd Z			_
	20% Censoring								
Bias	-0.78	-3.79	-0.79	-1.69	-1.46	-0.72	0.22	0.37	
SD	0.90	0.73	0.90	0.98	0.99	1.40	1.33	2.34	
MAD	0.89	0.72	0.91	1.00	1.01	1.38	1.30	2.26	1
ESE							1.21	2.40	
CP							9.42	9.59	
	50% Censoring								
Bias	-1.26	-3.94	-1.26	-1.89	-3.60	-2.32	0.35	0.54	
SD	1.10	0.89	1.11	1.14	1.05	1.51	1.68	2.62	
MAD	1.09	0.89	1.07	1.21	1.05	1.56	1.56	2.43	
ESE							1.65	2.54	
CP							9.68	9.43	

Samiran Sinha (TAMU)

	NV		R	C	C	W	COR			
	β_1	β_2	β_1	β_2	β_1	β_2	β_1	β_2		
	Censoring depends on X and Z									
		20% Censoring								
Bias	-0.81	-3.79	-0.82	-1.70	-1.53	-0.77	0.08	0.27		
SD	0.63	0.49	0.63	0.69	0.69	0.99	0.97	1.60		
MAD	0.62	0.51	0.62	0.71	0.67	1.04	0.95	1.59		
ESE							0.84	1.72		
CP							9.43	9.69		
				50% Cen	soring					
Bias	-1.29	-3.95	-1.29	-1.90	-3.63	-2.33	0.19	0.40		
SD	0.75	0.57	0.76	0.78	0.72	1.08	1.18	1.76		
MAD	0.72	0.58	0.71	0.80	0.73	1.12	1.12	1.67		
ESE							1.11	1.76		
CP							9.62	9.65		

3

- A randomized double-blinded study to investigate the effect of a single nucleoside or two nucleosides (different drugs) among HIV-1 infected adults (Hammer et al., 1996)
- Considered only n = 1,036 subjects who did not have antiretroviral treatment before this trial
- Treatment groups
 - 600 mg of zidovudine: $n_1 = 262$
 - 600 mg of zidovudine plus 400 mg of didanosine: $n_2 = 257$
 - 600 mg of zidovudine plus 2.25 mg of zalcitabine : $n_3 = 260$
 - 400 mg of didanosine: $n_4 = 257$

- T : the time to AIDs or death from the date the treatment started
- The average follow-up time was 32 months
- Only 85 subjects experienced the events during the follow-up time
- Two (m = 2) baseline CD4 measurements that were taken prior to the treatment started, were available
- CD4 cells help to fight infection; therefore, low CD4 counts indicates weak immune system and it is used as a marker of the stage of HIV disease

- Treatments were considered as **Z** with 600 mg of zidovudine being the reference category
- $W_{i1}^*W_{i2}^*$: logarithm of the two CD4 count at the baseline minus 5.89 for the $i^{\rm th}$ subject

Image: A matrix and a matrix

3

Covariates	NV		RC		CW		COR	
	Est.	SE	Est.	SE	Est.	SE	Est.	SE
Z+D (Ref: Z)	-0.78	0.33	-0.76	0.33	-0.16	0.13	-0.80	0.34
Z+Z (Ref: Z)	-1.00	0.34	-0.99	0.34	-0.27	0.10	-0.99	0.36
D (Ref: Z)	-0.75	0.31	-0.75	0.31	-0.22	0.11	-0.81	0.34
log(CD4)	-2.19	0.40	-2.58	0.48	-0.85	0.19	-2.70	0.57
2	•							

Samiran Sinha (TAMU)

$f\{\Lambda(u), \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\} = \langle$	$1 + \Lambda(u)\eta(X^*, \mathbf{Z}, \boldsymbol{eta}, \boldsymbol{lpha})$	- <i>r</i>

Covariates		<i>r</i> = 0	<i>r</i> = 1	<i>r</i> = 2	<i>r</i> = 5	<i>r</i> = 10	<i>r</i> = 15
Z+D (Ref: Z)	Est.	-0.78	-0.79	-0.80	-0.83	-0.87	-0.90
	SE	0.36	0.36	0.36	0.35	0.34	0.34
Z+Z (Ref: Z)	Est.	-0.98	-0.99	-1.00	-1.03	-1.08	-1.12
	SE	0.37	0.36	0.36	0.35	0.35	0.35
D (Ref: Z)	Est.	-0.79	-0.81	-0.82	-0.84	-0.88	-0.91
	SE	0.34	0.34	0.33	0.33	0.33	0.33
log(CD4)	Est.	-2.69	-2.69	-2.70	-2.71	-2.70	-2.68
	SE	0.57	0.56	0.56	0.55	0.56	0.58

Image: A matrix and a matrix

3

- We proposed a consistent *functional* method to analyze proportional odds models in the presence of errors in covariates
- We do not make any distributional assumption on the unobserved covariate X
- Other than symmetry, no assumption is made on the distribution of the measurement error

- Like other estimating equation based approaches, the proposed method is not guaranteed to produce unique solution in the small or large sample
- There is no fixed remedy to handle this situation in the errors in covariates context. If there are multiple solutions,
 - usually the solution close to the regression calibration approach can be reported as the estimate
 - alternatively, one can compute the approximate likelihood function after discretizing X, and then the solution that maximizes the likelihood can be taken be reported as the estimate

- No method is available to check goodness-of-fit in the errors-in-covariates case (not for any model, Cox, Proportional odds, AFT)
- We have developed an approximate graphical approach, but a theoretically sound goodness-of-fit test (or a diagnostic tool) is worth investigating

Thank you all and thanks to Banff, Canada!