Analysis of proportional odds models with censoring and errors-in-covariates

Samiran Sinha
Texas A\&M University
sinha@stat.tamu.edu
Newest Developments and Urgent Issues in Measurement Error and Latent Variable Problems
Banff, Canada

This is a joint work with Yanyuan Ma
August 18, 2016

Overview

- Preliminaries
- Problem statement
- Method without errors in covariates
- Method with errors in covariates
- Simulation study
- Application to a real data set
- Summary

Basics of the proportional odds model

- T: Time-to-event, X : a scalar continuous covariate, \mathbf{Z} : p-vector of covariates
- Under the PO model: $\operatorname{pr}(T \leq t \mid X, Z)=\frac{\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{+\beta_{2} X}\right)}{1+\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{+\beta_{2} X}\right)}$
- The hazard function:

$$
\lambda(t \mid X, \mathbf{Z})=\frac{\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}+\beta_{2} X\right)}{1+\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}+\beta_{2} X\right)} \times \frac{\partial \Lambda(t)}{\partial t}
$$

- Important point that unlike the proportional hazard model, here the ratio of two hazards corresponding to two sets of covariates at time t is not free from t
- Right censored data: Murphy et al. (1997); Current status data: Rossini \& Tsiatis (1996);

Quick comparison between two semiparametric models

	Proportional hazard	Proportional odds
Dist. Func.	$1-\exp \left\{-\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}+\beta_{2} X\right)\right\}$	$\frac{\left.\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{+\beta_{2} X} X\right)\right\}}{\left.1+\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{+\beta_{2} X}\right)\right\}}$
Hazard Func.	$\frac{\partial \Lambda(t)}{\partial t} \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}+\beta_{2} X\right)$	$\frac{\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{\left.+\beta_{2} X\right)}\right.}{1+\Lambda(t) \exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{\left.+\beta_{2} X\right)}\right.} \times \frac{\partial \Lambda(t)}{\partial t}$
		Odds of the event when Interpretation of $\Lambda(t)$

Problem statement

- T is subject to right censoring
- Assumption: censoring time C is independent of T conditional on X and \mathbf{Z}
- Here we do not observe X, rather $W_{1}^{*}, \ldots, W_{m}^{*}$ are observed
- Assume that $W_{j}^{*}=X+U_{j}^{*}$ (additive measurement errors), $U_{j}^{*} \sim$ a symmetric distribution
- Goal is consistent estimation of $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{T}, \beta_{2}\right)^{T}$, and Λ while
- no distributional assumption will be made on X
- except symmetry, no other assumption will be made on the distribution of U^{*}

Literature review

- Errors in covariates, proportional hazard model: Prentice (1982), Nakamura (1992), Zhou and Wang (2000), Huang and Wang (2000), Hu and Lin (2002), Zhuker (2005), and others
- Some important points about Huang and Wang (2000)
- no distributional assumption on X and U^{*} (not even symmetry)
- made a clever use of the partial likelihood function that allowed them to estimate the finite dimensional parameters and infinite dimensional parameters separately

Literature review

- Cheng and Wang (2001) considered errors in covariate in the linear transformation model (it includes the proportional odds model as a special case)
- parametrically modeled $U_{i}^{*}-U_{i}^{*}$, by a symmetric distribution (such as normal)
- parametrically modeled $X_{i}-X_{i^{\prime}}$ by a symmetric distribution (such as normal)
- generally produces biased results if the support of C is significantly shorter than that of T

Literature review

- Sinha and Ma (2014) considered errors in covariate in the linear transformation model (it includes the proportional odds model as a special case)
- assumed the distribution of U^{*} to be symmetric, but did not model it parametrically
- modeled the distribution of X parametrically

Proposed method

- Observed data on the ith subject, $\left(V_{i}, \Delta_{i}, \mathbf{Z}_{i}, W_{i 1}, \ldots, W_{i m}\right)$, $V_{i}=\min \left(T_{i}, C_{i}\right), \Delta_{i}=I\left(T_{i} \leq C_{i}\right)$,
- Define $N_{i}(u)=I\left(V_{i} \leq u, \Delta_{i}=1\right), Y_{i}(u)=I\left(V_{i} \geq u\right)$, $\eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)=\exp \left(\boldsymbol{\beta}_{1}^{T} \mathbf{Z}_{i}+\beta_{2} X_{i}\right)$
- Then,

$$
M(t)=N(t)-\int_{0}^{t} Y(u) \frac{\lambda(u) \eta(X, \mathbf{Z}, \boldsymbol{\beta})}{1+\Lambda(u) \eta(X, \mathbf{Z}, \boldsymbol{\beta})} d u
$$

is a martingale with respect to filtration $\left\{\mathcal{F}_{t}: t \geq 0\right\}$, where $\mathcal{F}_{t}=\sigma\{Y(u), N(u), X, \mathbf{Z}, u \leq t\}$

- Think $M(t)$ as a mean zero random variable conditional on X and \mathbf{Z}

Formation of estimating equations when X is observed

$$
\begin{aligned}
S_{\beta_{1}}= & \sum_{i=1}^{n} \int_{0}^{\tau} \underbrace{\mathbf{Z}_{i}\left\{1+\Lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} f\left\{\Lambda(u), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}}_{\text {predicatble }} \\
& \times \underbrace{\left\{d N_{i}(u)-\frac{Y_{i}(u) \lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right) d u}{1+\Lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}\right\}}_{d M_{i}(u)} \\
= & \sum_{i=1}^{n}\left(\mathbf{Z}_{i} \Delta_{i}\left\{1+\Lambda\left(V_{i}\right) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} f\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}\right. \\
& \left.-\mathbf{Z}_{i} \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right)\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{\beta_{2}}= & \sum_{i=1}^{n}\left(X_{i} \Delta_{i}\left\{1+\Lambda\left(V_{i}\right) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} f\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}\right. \\
& \left.-X_{i} \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right)\right]\right),
\end{aligned}
$$

- Here $F(\Lambda, \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha})$ satisfies $\partial F(\Lambda, \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}) / \partial \Lambda=f(\Lambda, \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha})$
- The resulting estimating equations do not have X in the denominator that will allow us to do easy moment calculations

Estimation of \wedge

$$
\begin{aligned}
S_{\Lambda}(u) & =\sum_{i=1}^{n}\left\{1+\Lambda(u) \eta\left(X_{i}, Z_{i}, \boldsymbol{\beta}\right)\right\}\left\{d N_{i}(u)-Y_{i}(u) \frac{\lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right) d u}{1+\Lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}\right\} \\
& =\sum_{i=1}^{n}\left[\left\{1+\Lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} d N_{i}(u)-Y_{i}(u) \lambda(u) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right) d u\right], \text { for all } u>0
\end{aligned}
$$

- To simplify the computation we did not include $f\{\Lambda(u), \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\}$ in $S_{\wedge}(u)$
- Let the observed failure times be $0<t_{n_{1}}<\cdots<t_{n_{k}}$
- Then

$$
\widehat{\Lambda}\left(t_{n_{1}}\right)=\frac{\sum_{i=1}^{n} d N_{i}\left(t_{n_{1}}\right)}{\sum_{i=1}^{n} \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left\{Y_{i}\left(t_{n_{1}}\right)-d N_{i}\left(t_{n_{1}}\right)\right\}}
$$

- Other $\Lambda\left(t_{n_{j}}\right)$'s can be estimated recursively as

$$
\widehat{\Lambda}\left(t_{n_{j}}\right)=\frac{\sum_{i=1}^{n} d N_{i}\left(t_{n_{j}}\right)+\widehat{\Lambda}\left(t_{n_{(j-1)}}\right) \sum_{i=1}^{n} Y_{i}\left(t_{n_{j}}\right) \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}{\sum_{i=1}^{n}\left\{Y_{i}\left(t_{n_{j}}\right)-d N_{i}\left(t_{n_{j}}\right)\right\} \eta\left(X_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}, \text { for } j=1, \cdots, k
$$

- When the last observation happens to be an event, we replace $\widehat{\Lambda}\left(t_{n_{k}}\right)$ with a large value, larger than $\widehat{\Lambda}\left(t_{n_{k-1}}\right)$, to facilitate further analysis

Choice of f

- When there is no measurement error, the score functions for the maximum likelihood estimator (Murphy et al., 1997) are obtained if we replace $f\{\Lambda(u), \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\}$ by $1 /\{1+\Lambda(u) \eta(X, \mathbf{Z}, \boldsymbol{\beta})\}^{2}$ and multiply each summand of S_{Λ} by $1 /\{1+\Lambda(u) \eta(X, \mathbf{Z}, \boldsymbol{\beta})\}$
- However, the presence of \boldsymbol{X} in the expression $1 /\{1+\Lambda(u) \eta(X, \mathbf{Z}, \boldsymbol{\beta})\}^{2}$ will cause difficulties as soon as X becomes unobservable (keeping in mind that our goal is to find corrected estimating equations)
- To circumvent this issue we shall take f free-from X

Estimating equations when X is unobserved

$$
\begin{aligned}
S_{\beta_{1}}^{\mathrm{me}}= & \sum_{i=1}^{n}\left(\Delta_{i} \mathbf{Z}_{i}\left\{1+\Lambda\left(V_{i}\right) g_{1}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} f\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}\right. \\
& \left.-\mathbf{Z}_{i} g_{1}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right)\right]\right)=\mathbf{0}, \\
S_{\beta_{2}}^{\mathrm{me}}= & \sum_{i=1}^{n}\left(\Delta_{i}\left\{W_{i}+\Lambda\left(V_{i}\right) g_{2}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} f\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}\right. \\
& \left.-g_{2}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\Lambda\left(V_{i}\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right)\right]\right)=0, \\
S_{\Lambda}^{\mathrm{me}}= & \sum_{i=1}^{n}\left[\left\{1+\Lambda(u) g_{1}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\} d N_{i}(u)-Y_{i}(u) \lambda(u) g_{1}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right) d u\right]=0,
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)=\frac{\eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}{\gamma_{1}}, g_{2}\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)=\frac{\eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)}{\gamma_{1}^{2}}\left(\gamma_{1} W-\gamma_{2}\right), \\
\gamma_{1}=E\left\{\exp \left(\beta_{2} U_{i}\right)\right\}, \gamma_{2}=E\left\{U_{i} \exp \left(\beta_{2} U_{i}\right)\right\}, \text { and } U_{i}=\sum_{j=1}^{m} U_{i j}^{*} / m .
\end{aligned}
$$

- Good thing is that all three equations are free of unobserved X

Notion of corrected score

- It is important that $E\left(S_{\beta_{1}}^{\mathrm{me}} \mid V, \Delta, X, \mathbf{Z}\right)=S_{\beta_{1}}, E\left(S_{\beta_{2}}^{\mathrm{me}} \mid V, \Delta, X, \mathbf{Z}\right)=S_{\beta_{2}}$, and $E\left(S_{\Lambda}^{\mathrm{me}} \mid V, \Delta, X, \mathbf{Z}\right)=S_{\Lambda}$
- These are the "corrected scores" : the effect of the measurement error is corrected because the original "scores" are recovered via the intermediate conditional expectation step
- As a result, as long as the original "scores" have mean zero, the "corrected" ones will also yield a consistent estimator

Choice of f when X unobserved

- We take $f\{\Lambda(u), \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\}=1 /\left\{1+\Lambda(u) \eta\left(X^{*}, \mathbf{Z}, \boldsymbol{\beta}\right)\right\}^{2}$, where we take $X^{*}=E(X \mid \mathbf{Z})$ calculated using a proposed model for X given \mathbf{Z} (bearing similar spirit as the regression calibration)
- However, there is no harm for replacing X^{*} by $E^{*}(X \mid \mathbf{Z})$, a misspecified model for the conditional expectation of X given \mathbf{Z}
- Importantly, unlike in the classical regression calibration treatment, our estimator will remain consistent whether the proposed model is correct or incorrect
- Furthermore, one can simply bypass the specification of a model for the distribution of X given \mathbf{Z}, and directly assume a model $X^{*}=\mu(\mathbf{Z}, \boldsymbol{\alpha})$, where $\boldsymbol{\alpha}$, the additional parameter can be obtained through solving

$$
\sum_{i=1}^{n} \frac{\partial \mu\left(\mathbf{Z}_{i}, \boldsymbol{\alpha}\right)}{\partial \boldsymbol{\alpha}}\left\{W_{i}-\mu\left(\mathbf{Z}_{i}, \boldsymbol{\alpha}\right)\right\}=0
$$

Estimation of γ_{1} and γ_{2}

- Note $\gamma_{1}=E\left\{\exp \left(\beta_{2} U_{i}\right)\right\}=\left\{\mathcal{M}\left(\beta_{2} / m\right)\right\}^{m}$, where $\mathcal{M}(\cdot)$ denotes the moment generating function of $U_{i j}^{*}, U_{i}=\sum_{j=1}^{m} U_{i j}^{*} / m$
- Making use of the symmetry assumption of the distribution of $U_{i j}^{*}$, we have $\mathcal{M}\left(\beta_{2} / m\right)=\left(2 \sum_{j, k=1, j<k}^{m} E\left[\exp \left\{\left(W_{i j}^{*}-W_{i k}^{*}\right) \beta_{2} / m\right\}\right] / m(m-1)\right)^{1 / 2}$.

$$
\widehat{\gamma}_{1}=\left[\frac{2}{n m(m-1)} \sum_{j, k=1, j<k}^{m} \sum_{i=1}^{n} \exp \left\{\left(W_{i j}^{*}-W_{i k}^{*}\right) \beta_{2} / m\right\}\right]^{m / 2}
$$

- Observe that $\gamma_{2}=E\left\{U_{i} \exp \left(\beta_{2} U_{i}\right)\right\}=\partial E\left\{\exp \left(\beta_{2} U_{i}\right)\right\} / \partial \beta_{2}$
- Then we can derive a consistent estimator of γ_{2}

$$
\begin{aligned}
\widehat{\gamma}_{2}= & \left(\widehat{\gamma}_{1}\right)^{(m-2) / m} \\
& \times \frac{1}{n m(m-1)} \sum_{j, k=1, j<k}^{m} \sum_{i=1}^{n}\left(W_{i j}^{*}-W_{i k}^{*}\right) \exp \left\{\left(W_{i j}^{*}-W_{i k}^{*}\right) \beta_{2} / m\right\}
\end{aligned}
$$

- Good thing is that both $\widehat{\gamma}_{1}$ and $\widehat{\gamma}_{2}$ are functions of observable random variables

Complete estimation procedure

Step 0. Form $W_{i}=m^{-1} \sum_{j=1}^{m} W_{i j}^{*}$ for $i=1, \ldots, n$. Obtain $\widehat{\boldsymbol{\alpha}}$
Step 1. Form $\widehat{\gamma}_{1}(\boldsymbol{\beta})$ and $\widehat{\gamma}_{2}(\boldsymbol{\beta})$, both are functions of $\boldsymbol{\beta}$
Step 2. For fixed $\boldsymbol{\beta}$ and $\widehat{\gamma}_{1}(\boldsymbol{\beta})$, form

$$
\widehat{\Lambda}\left\{t_{n_{1}} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right\}=\frac{\sum_{i=1}^{n} \widehat{\gamma}_{1}(\boldsymbol{\beta}) d N_{i}\left(t_{n_{1}}\right)}{\sum_{i=1}^{n} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left\{Y_{i}\left(t_{n_{1}}\right)-d N_{i}\left(t_{n_{1}}\right)\right\}}
$$

and

$$
\widehat{\Lambda}\left\{t_{n_{j}}, \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right\}=\frac{\sum_{i=1}^{n}\left\{\widehat{\gamma}_{1}(\boldsymbol{\beta}) d N_{i}\left(t_{n_{j}}\right)+Y_{i}\left(t_{n_{j}} \widehat{\wedge}\left\{t_{n_{j-1}}, \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right\} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right\}\right.}{\sum_{i=1}^{n} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left\{Y_{i}\left(t_{n_{j}}\right)-d N_{i}\left(t_{n_{j}}\right)\right\}}
$$

for $u=t_{n_{1}}, \ldots, t_{n_{k}}$.

Complete estimation procedure

Step 3. We obtain $\widehat{\boldsymbol{\beta}}$ through solving

$$
\sum_{i=1}^{n}\binom{\phi_{1, i}}{\phi_{2, i}}=0
$$

where

$$
\begin{aligned}
\phi_{1, i}= & \mathbf{Z}_{i} \Delta_{i} \widehat{\gamma}_{1}(\boldsymbol{\beta}) \widehat{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right) \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right) f\left\{\widehat{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right\} \\
& -\mathbf{Z}_{i} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\widehat{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right)\right], \\
\phi_{2, i}= & \Delta_{i}\left[W_{i} \widehat{\gamma}_{1}^{2}(\boldsymbol{\beta})+\widehat{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right)\left\{\widehat{\gamma}_{1}(\boldsymbol{\beta}) W_{i}-\widehat{\gamma}_{2}(\boldsymbol{\beta})\right\} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\right] \\
& \times f\left\{\widehat{\Lambda}_{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right\} \\
& -\left\{\widehat{\gamma}_{1}(\boldsymbol{\beta}) W_{i}-\widehat{\gamma}_{2}(\boldsymbol{\beta})\right\} \eta\left(W_{i}, \mathbf{Z}_{i}, \boldsymbol{\beta}\right)\left[F\left\{\widehat{\Lambda}\left(V_{i} ; \boldsymbol{\beta}, \widehat{\gamma}_{1}(\boldsymbol{\beta})\right), \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right\}-F\left(0, \mathbf{Z}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{\alpha}}\right)\right]
\end{aligned}
$$

Complete estimation procedure

Step 4. Go to Steps 1 and 2 to obtain $\widehat{\gamma}_{1}(\widehat{\boldsymbol{\beta}})$ and $\widehat{\Lambda}\left\{u, \widehat{\boldsymbol{\beta}}, \widehat{\gamma}_{1}(\widehat{\boldsymbol{\beta}})\right\}$ respectively.

- In Step 3, we used a standard Newton-Raphson procedure
- In both the simulation and the data example, we used the classical regression calibration estimates as the initial value
- We also experimented with using the naive estimator as the initial value and the results are identical.

Asymptotic properties

Theorem. Under some regularity conditions, when $n \rightarrow \infty$,
i) there exists an estimator $\widehat{\boldsymbol{\beta}}$ from the procedure described earlier so that $|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}| \rightarrow 0$ in probability and $\sup _{u \in[0, \tau]}\left|\widehat{\Lambda}\left\{u, \widehat{\boldsymbol{\beta}}, \widehat{\gamma_{1}}(\widehat{\boldsymbol{\beta}})\right\}-\Lambda(u)\right| \rightarrow 0$ in probability,
ii) $\sqrt{n}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \rightarrow \operatorname{Normal}\left(0, \Sigma_{H}^{-1} \Sigma_{M} \Sigma_{H}^{-T}\right)$ in distribution,
iii) $\sqrt{n}\left[\widehat{\Lambda}\left\{t, \widehat{\boldsymbol{\beta}}, \widehat{\gamma}_{1}(\widehat{\boldsymbol{\beta}})\right\}-\Lambda(t)\right]$ follows a zero-mean Gaussian process with a covariance kernel

The good news is that Σ_{M}, Σ_{H}, and the above referenced covariance kernel are all consistently estimable

Simulation design

- Simulated 1,000 data sets, and each data set consists of $n=500$ iid observations (the paper contains simulation studies for other n)
- $Z \sim \operatorname{Normal}(0,1)$,
- $X \sim$ a two-component mixture of normal distributions, $(1 / 3) \operatorname{Normal}\left(-0.6,0.5^{2}\right)+(2 / 3) \operatorname{Normal}\left(1.25,0.5^{2}\right)$ (for the purpose of showing that our method can handle any distribution for X)
- $T \sim$ the proportional odds model with $\Lambda(t)=t^{2}$, and $\beta_{1}=\beta_{2}=1$
- Censoring time
- $C \sim \operatorname{Exp}\left(e^{2.25-X-Z}\right)(20 \%$ censoring $)$
- $C \sim \operatorname{Exp}\left(e^{0.75-X-Z}\right)(50 \%$ censoring $)$
- $W_{i j}^{*}=X_{i}+U_{i j}^{*}, U_{i j}^{*} \sim \operatorname{Uniform}(-1.75,1.75), i=1, \ldots, n, j=1, \ldots, m$

Methods used for comparison

- Naive (NV): Use MLE approach where X_{i} is replaced by $\bar{W}_{i}=\left(W_{i 1}^{*}+W_{i 2}^{*}\right) / 2$
- Regression calibration (RC): Use MLE approach where X_{i} is being replaced by

$$
\left(1 / \widehat{\sigma}^{2}+1 / \widehat{\sigma}_{U}^{2}\right)\left\{\bar{W}_{i} / \widehat{\sigma}_{U}^{2}+\left(\widehat{\zeta}_{0}+\widehat{\zeta}_{1}^{\mathrm{T}} Z_{i}\right) / \widehat{\sigma}^{2}\right\}
$$

with $\widehat{\sigma}^{2}, \widehat{\sigma}_{U}^{2}, \widehat{\zeta}_{0}$ and $\widehat{\zeta}_{1}$ being the estimators of $\sigma^{2}=\operatorname{var}(X \mid Z), \sigma_{U}^{2}=\operatorname{var}(U)$, and ζ_{0} and ζ_{1} are the coefficients of the linear regression of X on Z

- Cheng and Wang (2001): took normal model for $X_{i}-X_{i^{\prime}}$ and $U_{i j}^{*}-U_{i^{\prime} j}^{*}$
- The proposed method: took $f\{\Lambda(t), Z, \boldsymbol{\beta}, \boldsymbol{\alpha}\}=\left\{1+\Lambda(t) \exp \left(Z \beta_{1}+X^{*} \beta_{2}\right)\right\}^{-2}$, where $X^{*}=\widehat{\alpha}_{0}+\widehat{\boldsymbol{\alpha}}_{1}^{T} \mathbf{Z}$ with $\widehat{\alpha}_{0}$ and $\widehat{\boldsymbol{\alpha}}_{1}$ being the estimate of the coefficients of the linear model $\bar{W}=X+U=\alpha_{0}+\boldsymbol{\alpha}_{1}^{T} \mathbf{Z}+\epsilon$,

Simulation results for $n=500$

	$n=500$							
	NV		RC		CW		COR	
	β_{1}	β_{2}	β_{1}	β_{2}	β_{1}	β_{2}	β_{1}	β_{2}
	Censoring depends on X and Z 20\% Censoring							
Bias	-0.78	-3.79	-0.79	-1.69	-1.46	-0.72	0.22	0.37
SD	0.90	0.73	0.90	0.98	0.99	1.40	1.33	2.34
MAD	0.89	0.72	0.91	1.00	1.01	1.38	1.30	2.26
ESE							1.21	2.40
CP							9.42	9.59
	50\% Censoring							
Bias	-1.26	-3.94	-1.26	-1.89	-3.60	-2.32	0.35	0.54
SD	1.10	0.89	1.11	1.14	1.05	1.51	1.68	2.62
MAD	1.09	0.89	1.07	1.21	1.05	1.56	1.56	2.43
ESE							1.65	2.54
CP							9.68	9.43

[^0]
Simulation results for $n=1000$

	NV		RC		CW		COR	
	β_{1}	β_{2}	β_{1}	β_{2}	β_{1}	β_{2}	β_{1}	β_{2}
	Censoring depends on X and Z 20\% Censoring							
Bias	-0.81	-3.79	-0.82	-1.70	-1.53	-0.77	0.08	0.27
SD	0.63	0.49	0.63	0.69	0.69	0.99	0.97	1.60
MAD	0.62	0.51	0.62	0.71	0.67	1.04	0.95	1.59
ESE							0.84	1.72
CP							9.43	9.69
	50\% Censoring							
Bias	-1.29	-3.95	-1.29	-1.90	-3.63	-2.33	0.19	0.40
SD	0.75	0.57	0.76	0.78	0.72	1.08	1.18	1.76
MAD	0.72	0.58	0.71	0.80	0.73	1.12	1.12	1.67
ESE							1.11	1.76
CP							9.62	9.65

Application to an AIDS clinical trial data

- A randomized double-blinded study to investigate the effect of a single nucleoside or two nucleosides (different drugs) among HIV-1 infected adults (Hammer et al., 1996)
- Considered only $n=1,036$ subjects who did not have antiretroviral treatment before this trial
- Treatment groups
- 600 mg of zidovudine: $n_{1}=262$
- 600 mg of zidovudine plus 400 mg of didanosine: $n_{2}=257$
- 600 mg of zidovudine plus 2.25 mg of zalcitabine : $n_{3}=260$
- 400 mg of didanosine: $n_{4}=257$
- T : the time to AIDs or death from the date the treatment started
- The average follow-up time was 32 months
- Only 85 subjects experienced the events during the follow-up time
- Two $(m=2)$ baseline CD4 measurements that were taken prior to the treatment started, were available
- CD4 cells help to fight infection; therefore, low CD4 counts indicates weak immune system and it is used as a marker of the stage of HIV disease
- Treatments were considered as \mathbf{Z} with 600 mg of zidovudine being the reference category
- $W_{i 1}^{*} W_{i 2}^{*}$: logarithm of the two CD4 count at the baseline minus 5.89 for the $i^{\text {th }}$ subject

Table for the data example

Covariates	NV		RC		CW		COR	
	Est.	SE	Est.	SE	Est.	SE	Est.	SE
Z+D (Ref: Z)	-0.78	0.33	-0.76	0.33	-0.16	0.13	-0.80	0.34
Z+Z (Ref: Z)	-1.00	0.34	-0.99	0.34	-0.27	0.10	-0.99	0.36
D (Ref: Z)	-0.75	0.31	-0.75	0.31	-0.22	0.11	-0.81	0.34
$\log ($ CD4)	-2.19	0.40	-2.58	0.48	-0.85	0.19	-2.70	0.57
2								

[^1]
Results with different choices of f

$$
f\{\Lambda(u), \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\}=\left\{1+\Lambda(u) \eta\left(X^{*}, \mathbf{Z}, \boldsymbol{\beta}, \boldsymbol{\alpha}\right)\right\}^{-r}
$$

Covariates		$r=0$	$r=1$	$r=2$	$r=5$	$r=10$	$r=15$
Z+D (Ref: Z)	Est.	-0.78	-0.79	-0.80	-0.83	-0.87	-0.90
	SE	0.36	0.36	0.36	0.35	0.34	0.34
Z+Z (Ref: Z)	Est.	-0.98	-0.99	-1.00	-1.03	-1.08	-1.12
	SE	0.37	0.36	0.36	0.35	0.35	0.35
D (Ref: Z)	Est.	-0.79	-0.81	-0.82	-0.84	-0.88	-0.91
	SE	0.34	0.34	0.33	0.33	0.33	0.33
\log (CD4)	Est.	-2.69	-2.69	-2.70	-2.71	-2.70	-2.68
	SE	0.57	0.56	0.56	0.55	0.56	0.58

Summary

- We proposed a consistent functional method to analyze proportional odds models in the presence of errors in covariates
- We do not make any distributional assumption on the unobserved covariate X
- Other than symmetry, no assumption is made on the distribution of the measurement error
- Like other estimating equation based approaches, the proposed method is not guaranteed to produce unique solution in the small or large sample
- There is no fixed remedy to handle this situation in the errors in covariates context. If there are multiple solutions,
- usually the solution close to the regression calibration approach can be reported as the estimate
- alternatively, one can compute the approximate likelihood function after discretizing X, and then the solution that maximizes the likelihood can be taken be reported as the estimate
- No method is available to check goodness-of-fit in the errors-in-covariates case (not for any model, Cox, Proportional odds, AFT)
- We have developed an approximate graphical approach, but a theoretically sound goodness-of-fit test (or a diagnostic tool) is worth investigating

Thank you all and thanks to Banff, Canada!

[^0]: ${ }^{1}$ All entries are multiplied by 10 , Bootstrap approach was used for calculating the SE of the CW method

[^1]: ${ }^{2} Z: z i d o v u d i n e, Z+D:$ zidovudine plus didanosine, $Z+Z$: zidovudine plus zalcitabine, and D:didanosine

