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The concept of heritability  

Heritability summarizes how much of the variation in a trait 
(e.g. height, diabetes, Alzheimer disease) is due to 
variation in genetic factors. 
 
Broad-sense heritability: includes also dominance and 
epistasis effects. 
 
 
Narrow-sense heritability: additive genetic variation. 
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The mystery of missing heritability  

Heritability estimated by family data 
 

is much higher then 
 

overall heritability estimated by GWAS data of non-related 
individuals using all significant SNPs’ effects 

 
 

Examples: height, Alzheimer disease, diabetes, among 
many others.  
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genome-wide association 
study – examination of 
many (e.g. 500K) genetic 
variants in different 
individuals to study the 
association between the 
variants and the trait 



Example: colorectal cancer (CRC) 

•  CRC is one of the most common diagnosed cancers in development countries. In USA: 
5.2% for men, 4.8% for women.  

•  Heritability estimate ranging 12-35% from twins and family data. 

•  31 SNPs were identified as associated with CRC risk.  

•  The Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) including 
over 40,000 participants. 3 platforms: 300K, 550K and 730K. Of the 31 known CRC 
susceptibility SNPs, 18, 30, 26 of the SNPs or proxies (r2>0.8) were available on the 
300K, 550K and 730K, respectively. 

•  GECCO data: heritability estimate based on the 31 identified CRC SNPs (or their 
proxies) = 0.65% (SE=0.18%). 
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Possible reasons for the missing heritability  
•  Unidentified variants with small effect size. 

•  Some mutations causing variation are not in perfect LD with any of 
the SNPs. 

•  Rare variants not captured by current genotyping platforms. 

•  Missing epistatic interaction in the model. 

•  Missing gene-environment interaction in the model. 

•  Inflated heritability estimates based on twins studies. 
 
Hill et al. (2008); Manolio et al. (2009); Eichler et al. (2010);  Dickson et al. (2010); Gibson (2011); 
Wray et al. (2011); Visscher et al. (2012); Zuk et al. (2012);  Zaitlen et al. (2013);  
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GCTA – State of the art heritability estimator 
 
Mixed effects models were applied in quantitative genetics by animal 
breeders decades ago. 
 
Yang et al. (2010) introduced the mixed effects approach for heritability 
estimation using GWAS data of apparently unrelated individuals. 
 
Their method is applied by the GCTA software. 
 
The key advantage: estimating heritability of a trait without 
explicitly identifying the causal genetic loci. 
 
     

BIRS 2016 6 



Outline 
 
GCTA & LDAK : model, estimation procedure, properties 
 
HERRA: model, estimation procedure, properties 
 
GCTA & LDAK vs HERRA: simulation results 
 
Real data analysis: CRC of GECCO data 
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GCTA  model 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

total number of latent trait 
associated variants 

additive coding of 
genotype j of subject i  

the j-th variant 
regression coefficient  

environmental  
random effect 

 
uj ∼ N 0,σ u

2( )    j = 1,...,P  
ei ∼ N 0,σ e

2( )    i = 1,...,N

# of individuals 



GCTA  model – cont. 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

 
uj ∼ N 0,σ u

2( )    j = 1,...,P

 
ei ∼ N 0,σ e

2( )    i = 1,...,N

standardized 0,1 or 2 
for genotype qq, Qq or 
QQ, respectively 

total additive genetic 
effects of subject i 

gi = xiju jj=1

P∑    ⇒    E g i( ) = 0    Var gi( ) = Pσ u
2 =σ g

2

total variance of 
additive genetic effects 



GCTA  model – cont. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 

G and Y are required for MLE of the narrow-sense  
heritability parameter, but G is unknown. 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

 
uj ∼ N 0,σ u

2( )    j = 1,...,P

 
ei ∼ N 0,σ e

2( )    i = 1,...,N

gi = xiju jj=1

P∑    Var gi( ) = Pσ u
2 =σ g

2

h2 =
σ g
2

σ g
2 +σ e

2

NxN genetic 
relationship 
matrix 

narrow-sense 
heritability 

 
Y1,...,YN( )′ X ∼ MVN µ,Gσ g

2 + Iσ e
2( )      G = 1

P
X ′X

Var Y1( ) =σ g
2 +σ e

2



GCTA  model – cont. 
 
 
  
Instead of the unknown G, GCTA uses a matrix that consists of: 
 
1.  Genetic correlation matrix computed on the entire genotyped 

data (e.g. using 10^6*0.5 SNPs instead of only hundreds 
causal SNPs). 

2.  Correcting the genetic correlation matrix for sampling bias, taking 
into account the inbreeding coefficient. 

3.  Accounting for LD between causal variants and genotyped 
SNPs by using a simulation-based heuristic procedure with 
certain assumptions about the number of causal variants and 
their MAF. 
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Y = Y1,...,YN( )′ X ∼ MVN µ,Gσ g
2 + Iσ e

2( )      G = 1
P
X ′X

minor allele frequency 



Modification and Extensions of GCTA 
Golan and Rosset (2011): 
 
“Replacing the correct genetic correlation matrix by a different matrix estimated from the 
data as if the latter matrix were the correct matrix is unfounded statistically.” 

 
“The very large number of SNPs used for estimating the genetic correlations — most of 
them likely not causative  — masks out the correlations on the set of causal SNPs … this  
leads to inaccurate and suboptimal estimation of heritability.” 
 

Instead, they use the mixed model approach while 
•  treating the identity of causal SNPs as missing data 
•  finding the ML estimates based on intensive MCMC method.  

Unfortunately, this approach is not tractable for problems with, for 
example, half a million genotyped SNPs.  
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Modification and Extensions of GCTA - LDAK 
Speed et al. (2011): 
 
Uneven LD between SNPs can generate large bias in the heritability estimator based on 
the mixed model approach.  
 
Causal variants tend to be overestimated in regions of strong LD and underestimated in 
regions of low LD.  
 
In practice, if some of the causal variants being tagged by multiple genotyped SNPs more 
than others, it distorts their contributions to the heritability estimator.  
 

Instead, they use the mixed model approach, while replacing the 
observed correlation matrix by a weighted matrix consists of scaling 
SNP genotypes according to local patterns of LD.  
 
The weights are identified by linear programming procedure.  
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HERRA – the proposed approach 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

total number of latent trait 
associated variants 

additive coding of 
variant j of subject i  

the j-th variant fixed 
regression coefficient  

environmental  
random effect 

 
uj ∼ N 0,σ u

2( )    j = 1,...,P  
ei ∼ N 0,σ e

2( )    i = 1,...,N

Heritability 
Estimation using 

Regularized 
Regression 
Approach. 

Not a mixed model  
approach.  



 
 
 
 
 
Assuming the variants are independent for all i and j yields 
 
 
so 
 
 
 
 
The main idea:  estimate                  instead of                 . 
 
 
 

HERRA 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

σ g
2 = uj

2
j=1

P∑

σ Y
2 ,σ e

2( ) σ g
2,σ e

2( )

h2 =
σ g
2

σ g
2 +σ e

2 =
σ g
2

σ Y
2 = 1−

σ e
2

σ Y
2

E xij( ) = 0,     Var xij( ) = 1,
 
ei ∼ N 0,σ e

2( )    i = 1,...,N

These two options 
are not the same, 
since the identity of 
the causal SNPs is 
unknown and a 
working model is 
required 



 
 
 
 
 
 
 
Working model: 
 
 
 
By using high or ultrahigh dim. Approach, we can consistently 
estimate        , 
and estimate       by   
 
 
 
 
 
 
 
 

HERRA 
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Yi = µ + xiju jj=1

P∑ + ei        i = 1,...,N

 
ei ∼ N 0,σ e

2( )    i = 1,...,N

h2 = 1− σ e
2

σ Y
2

Yi = µ + ziju jj=1

M∑ + ei        i = 1,...,N

σ e
2

σ Y
2

(N −1)−1 Yi −Y( )2i=1

N∑

genotyped 
SNPs 



 
 
 
Estimator of         (in the spirit of Fan et al. 2012): 

I.  Apply a joint-type screening method (e.g. ITRRS, Fan & Lv, 2008) or a marginal-type 
sure independent screening (SIS, Fan & Lv, 2008), and reduce the ultra-high dim to 
a relatively large scale. This step is to filter out SNPs that are unlikely to be 
associated with the trait. 

II.  Use only the selected SNPs of Step I. Randomly split the sample into two equal 
subgroups. Apply a high-dim variable selection method (e.g. LASSO) to the 1st 
subset, and apply OLS to the 2nd subset using only those selected SNPs. Get an 
unbiased estimator of        . 

III.  Repeat Step II while switching the role of the 1st and 2nd datastes.  

IV.  The final estimator of         is defined as the mean of the above two estimators:        .  

 
 
 
 
 
 
 
 

HERRA 
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ei ∼ N 0,σ e
2( )Yi = µ + zijujj=1

M∑ + ei  

σ e
2

σ e
2

σ e
2

σ̂ e
2



Sure Independence Screening (SIS, Fan and Lv, 2008): 

•  Independence screening is used as a fast but crude method of reducing the dimensionality to a 
more moderate size (usually below the sample size). 

•  Then, variable selection can be accomplished by some refined lower dimensional method (e.g. 
lasso). 

•  Independence screening recruits those features having the best marginal utility, which corresponds 
to the largest marginal correlation with the response in the context of least-squares regression.  

•  This fast feature selection method has a sure screening property - with probability tending to 1, the 
independence screening technique retains all of the important features in the model. 

In our setting (with standardized predictors):  
 
and keep those c variables with the largest           .    
 

For unltrahigh-dimension data, we recommend on a joint-type screener 
such as the Iteratively Ridge Regression Screener (ITRRS, Fan and Lv, 
2008), so LD between SNPs is considered.   

 
 
 
 
 
 
 
 

Which screening method should be used? 

BIRS 2016 18 

ω = XTY design matrix 

ω j



 
 
 
 
 
 
 
 
Theorem – the oracle property: 
Under some regularity conditions and                 . If a procedure satisfies the sure 
screening property (with probability tending to 1, the independence screening technique 
retains all of the important features in the model), then,  

 
 
 

HERRA 
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ei ∼ N 0,σ e
2( )Yi = µ + zijujj=1

M∑ + ei  

E e4( ) < ∞

ĥ2 = 1− σ̂ e
2

σ̂ Y
2

N σ̂ e
2 −σ 2( )→D N 0,E e4( )−σ 4( )



 
 
 
 
 
 
 
By the delta method we get 
 
 
 
 
But we cannot use it for inference in practice! 
Alternatively, use weighted bootstrap. 

HERRA 
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ei ∼ N 0,σ e
2( )Yi = µ + zijujj=1

M∑ + ei  

ĥ2 = 1− σ̂ e
2

σ̂ Y
2

N ĥ2 − h2( )→D N 0,4h2 1− h2( )2( )



The known risk factors (e.g. smoking, dietary variables) are 
included in the model to account for the confounding effect and 
reduce the error variance.  
 
The risk factors W are included in the model, and are not subject 
to variable selection in any step. 
 
The heritability estimator: 
 
 
 
 
 
 
 
 

HERRA – accounting for known risk factors 
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known risk factors 

regression coefficient 
estimators for W 1− σ̂ e

2 + β̂ ' var W( )β̂
σ̂ Y
2



Assume a disease status outcome. The observed scale is 0/1. 
 
Variances and heritability calculated on the observed scale are function of the prevalence 
of the trait in the population. 

 
Liability model (Wright, 1934 ;Falconer, 1965): 
•  There is an underlying gradation of some attribute immediately related to the causation 

of the disease.  

•  If we could measure this attribute, it would give a graded scale of the degree of 
affectedness or of normality. 

•  All individuals above a certain value exhibited the disease and all below it did not. 
  
•  This hypothetical graded attribute will be referred as the individual liability to the 

disease. 

•  Liability is normally distributed. 
 

 
 
 

What about categorical traits? 
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Apply the Robertson transformation (Dempster and Lerner, 1950) and get 

GCTA with all-or-none traits 
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Di =α + xijvjj=1

P∑ + ε i        i = 1,...,N
binary outcome 

 
vj ∼ N 0,σ v

2( )    j = 1,...,P
 
ε i ∼ N 0,σε

2( )    i = 1,...,N

ho
2 =

σ g
2

σ g
2 +σε

2 =
Pσ v

2

Pσ v
2 +σε

2observed scale 
heritability 

hl
2 = ho

2K 1− K( ) / z2liability scale 
heritability normal density at 

the threshold 

trait prevalence in the population 



 
 
 
 
 
 
 
 
GCTA uses mixed model effects with the aforementioned calibration 
steps for estimating             , and then the Robertson transformation is 
recommended.       

GCTA with all-or-none trait – cont. 
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Di =α + xijvjj=1

P∑ + ε i        i = 1,...,N

hl
2 = ho

2K 1− K( ) / z2

σ g
2,σε

2( )

ho
2 =

σ g
2

σ g
2 +σε

2 =
Pσ v

2

Pσ v
2 +σε

2



 
 
 
 
 
 
 
 
 
HERRA estimates         by                  and         by           and then uses 
 
 
 
 
thus, it provides a consistent heritability estimator.     

HERRA with all-or-none traits 
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Di =α + xijvjj=1

P∑ + ε i        i = 1,...,N

vj ∼ N 0,σ v
2( )    j =1,...,P  

ε i ∼ N 0,σε
2( )    i = 1,...,N

hl
2 = ho

2K 1− K( ) / z2

ho
2 =

σ g
2

σ g
2 +σε

2 =
vj
2

j=1

P∑
vj
2

j=1

P∑ +σε
2
=1− σε

2

σ D
2

σ D
2

D 1− D( ) σε
2 σ̂ ε

2



 
 
Working model: 
 
 
 
 
 
 
By some algebra we get 
 
 
 
 
 
 
 
 

HERRA with all-or-none traits 
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Di = I Yi > c( ),    Di =α + xijvjj=1

P∑ + ε i     ε i ∼ N 0,σε
2( )    

 
E Yi( ) = 0,    var Yi( ) = 1,     Yi xi ∼ N γ T xi ,σ e

2( )    i = 1,…N

 
!σε
2 = 1

N − p
Di −α̂ − xT v̂( )2

i=1

N

∑
OLS 

α̂ → Pr D = 1( ) = K ,     v̂→ E xD( )

 
!σε
2 → K 1− K( )− E DxT( )E xD( )

E DxT( )E xD( ) = 1−σ e
2( ) φ c( ){ }2 = hl2z2

 

!ho
2 = 1−

!σε
2

σ̂ D
2 →1− K 1− K( )− hl2z2

K 1− K( ) = hl
2z2

K 1− K( ) = ho
2 Robertson 

transformation 



Consider a parametric accelerated failure time model 
 
 
 
 
 
 
 
 
 
 
The observed data:  
 
 
 

Age-at-onset outcome 
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Yi
o = µ + xijujj=1

P∑ + ei

 
Yi

o = logTi        ei ∼ N 0,σ e
2( )

failure time 

Yi = min Yi
o,Ci( )

observed time 
log-scale censoring time 

δ i = I Yi
o ≤Ci( )

 Yi ,Xi
' ,δ i{ }      i = 1,…,N



Our goal is estimating 
 
 
Let 
 
 
 
 
Then, the above variances are estimated by the IPCW approach. 
 
 

Age-at-onset outcome 
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h2 = 1− σ e
2

σ
Y o
2

Wi = δ i / ŜC Yi( ) KM estimator of 
the censoring 
survival 
distribution 



 
We phased chromosome 22 of a GWAS which included 6006 subjects. Random pairs of haplotypes 
generated the simulated data.  

 
 

Simulation Results – continuous trait 
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One chromosome, 5000 observations, 60 causal SNPs, theta = MAF of causal SNPs 
 
 

Simulation Results – continuous trait 
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causal SNPs are 
included in the 
analysis 

causal SNPs are NOT 
included in the 
analysis 



5 chromosome, 5000 observations, 250 causal SNPs, theta = MAF of causal SNPs, M=35760, 
N=10000 

 
 

Simulation Results – continuous trait 
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GECCO data 
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A consortium comprised of a coordinating center at the FHCRC and 
investigators from 16 cohort and case-control studies in North America, 
Australia and Europe. 
 
For illustration we focus on the largest subset of sample that are genotyped 
using illumina 300K: 4312 cases, 4356 controls, 248,977 SNPs with MAF > 
0.01. 
 
Results are adjusted for age, gender and study center. 
 
We first conducted ITRRS (6 iterations) for each chromosome, combined the 
selected SNPs, split the data and conducted two 10-fold lasso regressions. 
 
SE – by 100 weighted bootstrap samples. 



GECCO data – results (liability scale) 
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HERRA:  heritability = 0.110, SE = 0.00519 
 
GCTA: heritability = 0.068, SE = 0.017  
 
LDAK: heritability = 0.072, SE = 0.021 
 
Our estimate is larger than the GCTA or LDAK with smaller SE, and is 
closer to heritability estimates from twins and family data, which ranges 
from0.12 to 0.35. 
 
Heritability estimate based on the 31 identified CRC SNPs (or their 
proxies) = 0.0065 (SE=0.0018). 
 
 



GECCO data – results (liability scale) 
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Sensitivity Analysis 

 
 
 

 
 

5 Iterations 6 Iterations 
Shrinkage Observed Liability Observed Liability 

0.0060 0.201 0.091 0.207 0.094 
0.0080 0.256 0.116 0.236 0.107 
0.0100 0.265 0.120 0.244 0.110 
0.0102 0.221 0.100 0.218 0.099 
0.0104 0.253 0.114 0.257 0.116 



Open Questions 
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•  Variance estimation – weighted bootstrap 

•  How many ITRRS? 

•  Setting tuning parameters of the ridge regression 

•  How to apply with 8M SNPs? 

•  Should this model be adopted for risk prediction? 

•  Adding GxG or GxE interactions 
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END 


