Nonlinear Random Coefficients

Arthur Lewbel
Boston College

2016

Notes on Contents

Talk is based on two papers:
Lewbel, A., (2016) "Nonlinear Random Coefficients," Working paper in progress.

Lewbel, A., and K. Pendakur, (2016) "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," forthcoming, Journal of Political Economy.

Introduction

Standard Linear Random Coefficients are

$$
Y=\sum_{k=1}^{K} X_{k} U_{k}+U_{0}
$$

for regressors $X=\left(X_{1}, \ldots, X_{K}\right)$ and unobserved errors (random coefficients) $U=\left(U_{0}, U_{1}, \ldots, U_{K}\right)$.

Standard Assumptions: i) IID observations of Y, X. ii) U is independent of X. iii) X continuous.

Popular extension: $Y=g\left(\sum_{k=1}^{K} X_{k} U_{k}+U_{0}\right)$ for known g, e.g., discrete choice models like BLP.

Typical applications assume $F_{U}(U)$ is normal.
But for above models linear in X and linear in U, is known can nonparametrically identify and estimate $F_{U}(U)$.

This paper: Consider Nonlinear Random Coefficients:

$$
Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)+U_{0}
$$

Identify parameter vector θ and nonparametric joint distribution F_{U} with known G.

Caveat: will add the strong restriction that U_{0} is independent of $\left(U_{1}, \ldots, U_{K}\right)$, or that U_{0} is not present. Price we pay for general nonlinearity.

EXAMPLE: Let $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ and g is any known, strictly monotonic function.

$$
\begin{equation*}
Y=g\left[\theta_{1} X_{1} U_{1} X_{2} U_{2}+\theta_{2} \ln \left(X_{2} U_{2}\right)+\theta_{3} X_{1} U_{1}+\theta_{4}\right] \tag{1}
\end{equation*}
$$

Not chosen for behavioral meaning. Illustrates multiple types of nonlinearities: a transformation function g, an interaction term between $X_{1} U_{1}$ and $X_{2} U_{2}$, a linear term $X_{1} U_{1}$, and a nonlinear transformation of $X_{2} U_{2}$.

Motivating Examples

1. Additive indirect utility functions with unobserved preference heterogeneity - random Barten (1964) scales. Yields budget share $Y=G\left(X_{1} U_{1}, X_{2} U_{2}\right)$ where X_{j} are prices divided by total expenditures. Also add an independent U_{0} corresponding to measurement error in Y.
2. Production function $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)$. $Y=$ output.
$X_{k}=$ quantity of input or factor of production k (e.g., labor, capital). $U_{k}=$ unobserved quality of input k, or technology. Varies across firms. Generalizes Matzkin (1994) who considers a single random component.

Allow for nonlinear utility in random coefficient discrete choice models like Berry, Levinsohn, and Pakes (1995). X_{k} can be prices, income, characteristics. BLP assumes utility of each choice is linear in X, making market shares $Y=g\left(\sum_{k=1}^{K} X_{k} U_{k}\right)$. for logistic g. But No economic rationale exists for utility linear in X.

Outline

1. Literature Review.
2. Identify F_{U} in $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)$ for known G.
3. Identify θ and F_{U} in $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)$
4. Do example: $Y=g\left[\theta_{1} X_{1} U_{1} X_{2} U_{2}+\theta_{2} \ln \left(X_{2} U_{2}\right)+\theta_{3} X_{1} U_{1}+\theta_{4}\right]$
5. Extensions: append U_{0}, discrete choice
$D=I\left[V+G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)+U_{0} \geq 0\right]$
6. Empirical application: Random Barten Scales (preference heterogeneity) in Energy Demand.

Literature Review

Nonparametric identification and estimation of random coefficients: Beran and Hall (1992), Beran, Feuerverger, and Hall, (1996) and Hoderlein, Klemelae, and Mammen (2010).

Recent generalizations include linear systems of equations with random coefficients: Masten (2015), Hoderlein, Holzmann, and Meister (2015); random coefficient linear index models in binary choice: Ichimura and Thompson (1998), Gautier and Kitamura (2010); and semiparametric extensions of McFadden (1974) and Berry, Levinsohn, and Pakes (1995) type models, e.g., Berry and Haile (2009).

Matzkin (2003) in an appendix gives some generic identifying conditions for additive models with unobserved heterogeneity. Hoderlein, Nesheim, and Simoni (2011) give high level conditions for identification and estimation of parametric models containing a vector of random parameters.

Structural unobserved heterogeneity: Heckman and Singer (1984) and Lewbel (2001). Recent general nonseparable identification and estimation: Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and Mammen (2007), Matzkin (2007a, 2008), and Imbens and Newey (2009).

Preference heterogeneity in continuous demand systems: Engel (1895), Sydenstricker and King (1921), Rothbarth (1943), Prais and Houthakker (1955), Barten (1964), Pollak and Wales (1981), Ray (1992), Brown and Walker (1989), McFadden and Richter (1991) Hildenbrand (1994), Lewbel (1997, 2001, 2007, 2008), Comon and Calvet (2003), McFadden (2004) Beckert (2006) Matzkin (2007, 2010), Beckert and Blundell (2008), Blundell, Kristensen and Matzkin (2011), Blundell and Matzkin (2011), Hoderlein and Stoye (2014), and Kitamura and Stoye (2014).

Additive separability and nonparametric additive regression: Gorman (1976), Blackorby, Primont, and Russell (1978), Hastie and Tibshirani (1990), Linton (2000), and Wood (2006).

Joint Distribution Identification

Drop U_{0} for now. Later extensions bring U_{0} back, and allow for control function type endogeneity.

First consider identification of the joint distribution $F_{U}(U)$ for $U=\left(U_{1}, \ldots, U_{K}\right)$ with known G, so

$$
Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)
$$

ASSUMPTION A1: $F_{Y \mid X}(y \mid x)$ is identified (e.g., could have IID observations of $Y, X) . G$ is continuous. U is independent of X.

Continuity of X and U is not required. X cannot be discrete, but its distribution can, e.g., contain mass points. U can be continuous, discrete, continuous with mass points, etc.

Side Note: Why not look at the conditional distribution function or characteristic function?

$$
F_{Y \mid X}(y \mid x)=\int_{U \in \operatorname{supp}(U)} G\left(x_{1} U_{1}, \ldots, x_{K} U_{K}\right) d F_{U}(U) d x_{1} d x_{2}
$$

If this integral equation has a unique solution for F_{U} given known G, then F_{U} is identified.

If identified, estimators could be based on this equation (or the conditional characteristic function).

The identification problem: find restrictions on G that suffice to ensure a unique F_{U}.

Accomplished by devising easier to solve alternative expressions for (features of) F_{U}.

$$
Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)
$$

ASSUMPTION A2: $\operatorname{supp}(X)$ is rectangular. The closure of $\operatorname{supp}(X)$ equals the closure of $\operatorname{supp}\left(U_{1} X_{1}, \ldots, U_{K} X_{K} \mid U\right)$. The Moment Generating Function of $\left(U_{1}^{-1}, \ldots, U_{K}^{-1}\right)$ exists.

Sufficient for Assumption A2 is supp $(X)=\mathbb{R}_{+}^{K}$ and $\operatorname{supp}(U) \subseteq \mathbb{R}_{+}^{K}$. Alternatively, could have supp $(X)=\mathbb{R}^{K}$ and U has any support, but the density of U must shrink quickly to zero as any element of U goes to zero.

We identify F_{U} by identifying moments of the distribution of $\left(U_{1}^{-1}, \ldots, U_{K}^{-1}\right)$. Necessary and sufficient conditions for integer moments to identify a distribution are known. Can replace existence of the MGF with, e.g., Assumption 7 of Fox, Kim, Ryan, and Bajari (2012).

Let $t=\left(t_{1}, \ldots, t_{K}\right)$ denote a K vector of positive integers. For a given function h and vector t, define κ_{t} by

$$
\begin{equation*}
\kappa_{t}=\int_{\operatorname{supp}(X)} h\left[G\left(s_{1}, \ldots s_{K}\right), t\right] s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} \ldots s_{K}^{t_{K}-1} d s_{1} d s_{2} \ldots d s_{K} \tag{2}
\end{equation*}
$$

ASSUMPTION A3: Given G, for any K vector of positive integers t we can find a nonnegative, bounded function h such that $h\left[G\left(s_{1}, \ldots s_{K}\right), t\right] s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} \ldots s_{K}^{t_{K}-1}$ is absolutely integrable in s, and κ_{t} is convergent and nonzero.

Restricts G, but note h is chosen knowing G and t.
When does an h exist? How to find it? If G grows relatively quickly in its arguments, then h should look like a thin tailed density.

Can show an h exists for any additive G that grows faster than linearly:
LEMMA 1: If $\operatorname{supp}(X)=\mathbb{R}_{+}^{K}, Y=\sum_{k=1}^{K} G_{k}\left(U_{k} X_{k}\right)$, and there exist positive constants c_{k} such that $G_{k}\left(s_{k}\right) \geq c_{k} s_{k}$ for $k=1, \ldots, K$. Then Assumption A3 holds.

PROOF of Lemma 1: Let $h(G, t)=e^{-\rho G}$ for any $\rho>0$. Then

$$
\begin{aligned}
\kappa_{t} & =\prod_{k=1}^{K} \int_{0}^{\infty} e^{-\rho G_{k}\left(s_{k}\right)} s_{k}^{t_{k}-1} d s_{k} \leq \prod_{k=1}^{K} \int_{0}^{\infty} e^{-\rho c_{k} s_{k}} s_{k}^{t_{k}-1} d s_{k} \\
& =\prod_{k=1}^{K}\left(\rho c_{k}\right)^{-t_{k}} \int_{0}^{\infty} e^{-r_{k}} r_{k}^{t_{k}-1} d r_{k}=\prod_{k=1}^{K}\left(\rho c_{k}\right)^{-t_{k}} \Gamma\left(t_{k}\right)
\end{aligned}
$$

which is finite and positive, because the gamma function $\Gamma\left(t_{k}\right)$ is finite and positive.

An example that is not identified, an h does not exist:
If $G\left(X_{1}, X_{2}\right)=\ln \left(X_{1}\right)+\ln \left(X_{2}\right)$
then $G\left(U_{1} X_{1}, U_{2} X_{2}\right)=\left[\ln \left(U_{1}\right)+\ln \left(U_{2}\right)\right]+\ln \left(X_{1}\right)+\ln \left(X_{2}\right)$.
$F_{U}(U)$ can't be identified because can't separate U_{1} from U_{2}
Lemma 2: An h does not exist for $G\left(X_{1}, X_{2}\right)=\ln \left(X_{1}\right)+\ln \left(X_{2}\right)$. PROOF of Lemma 2: For any function h, change variables replacing s_{2} with $r=s_{1} s_{2}$ to get

$$
\begin{aligned}
\kappa_{t}= & \int_{0}^{\infty} \int_{0}^{\infty} h\left[\ln \left(s_{1}\right)+\ln \left(s_{2}\right), t\right] s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} d s_{1} d s_{2} \\
= & \int_{0}^{\infty} \int_{0}^{\infty} h[\ln (r), t] s_{1}^{t_{1}-t_{2}-1} r^{t_{2}-1} d s_{1} d r \\
& \left(\int_{0}^{\infty} h[\ln (r), t] r^{t_{2}-1} d r\right) \int_{0}^{\infty} s_{1}^{t_{1}-t_{2}-1} d s_{1}
\end{aligned}
$$

and the second integral is not convergent for $t_{1}>t_{2}-1$.

Main Identification Theorem

ASSUMPTION A1: $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right) . F_{Y \mid X}(y \mid x)$ is identified (e.g., could have IID observations of Y, X). G is continuous. $U \perp X . U$ is independent of X.

ASSUMPTION A2: $\operatorname{supp}(X)$ is rectangular. The closure of $\operatorname{supp}(X)$ equals the closure of $\operatorname{supp}\left(U_{1} X_{1}, \ldots, U_{K} X_{K} \mid U\right)$. The Moment Generating Function of $\left(U_{1}^{-1}, \ldots, U_{K}^{-1}\right)$ exists.

ASSUMPTION A3: Given G, for any K vector of positive integers t we can find a nonnegative, bounded function h such that

$$
\kappa_{t}=\int_{\text {supp }(X)} h\left[G\left(s_{1}, \ldots s_{K}\right), t\right] s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} \ldots s_{K}^{t_{K}-1} d s_{1} d s_{2} \ldots d s_{K}
$$

is absolutely integrable, convergent, and nonzero.
THEOREM 1: Let Assumptions A1, A2, and A3 hold. If G is known or identified, then $F_{U}\left(U_{1}, \ldots, U_{K}\right)$ is identified.

Proof sketch for $K=2$. Define the identified term
$\lambda_{t}=\int_{X \in \operatorname{supp}(X)} E\left[h(Y, t) \mid X_{1}, X_{2}\right] X_{1}^{t_{1}-1} X_{2}^{t_{2}-1} d X_{1} d X_{2}=$
$\int_{X \in \operatorname{supp}(X)} \int_{U \in \operatorname{supp}(U)} h\left(G\left(X_{1} U_{1}, X_{2} U_{2}\right), t\right) d F\left(U_{1}, U_{2}\right) X_{1}^{t_{1}-1} X_{2}^{t_{2}-1} d X_{1} d X_{2}$
$\int_{U \in \operatorname{supp}(U)} \int_{X \in \operatorname{supp}(X)} h\left(G\left(X_{1} U_{1}, X_{2} U_{2}\right), t\right) X_{1}^{t_{1}-1} X_{2}^{t_{2}-1} d X_{1} d X_{2} d F\left(U_{1}, U_{2}\right)$
Change variables on the inner integral, letting $s_{k}=X_{k} U_{k}$:
$\int_{U \in \operatorname{supp}(U)} \int_{s \in \operatorname{supp}\left(X_{1} U_{1}, X_{2} U_{2} \mid U\right)} h\left(G\left(s_{1}, s_{2}\right), t\right) s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} U_{1}^{-t_{1}} U_{2}^{-t_{2}} d s_{1} d s_{2} d F($
$\int_{U \in \operatorname{supp}(U)} \int_{s \in \operatorname{supp}(X)} h\left(G\left(s_{1}, s_{2}\right), t\right) s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} d s_{1} d s_{2} U_{1}^{-t_{1}} U_{2}^{-t_{2}} d F\left(U_{1}, U_{2}\right)$
$\int_{U \in \operatorname{supp}(U)} \kappa_{t} U_{1}^{-t_{1}} U_{2}^{-t_{2}} d F\left(U_{1}, U_{2}\right)=\kappa_{t} E\left(U_{1}^{-t_{1}} U_{2}^{-t_{2}}\right)$
So $E\left(U_{1}^{-t_{1}} U_{2}^{-t_{2}}\right)=\lambda_{t} / \kappa_{t}$ identifies the moments of $\left(U_{1}^{-1}, U_{2}^{-1}\right)$, which by existence of MGF identifies $F_{U}\left(U_{1}, U_{2}\right)$.

EXTENSION 1: Satisfying Assumption A3 when some elements of t equal zero is difficult. Can instead partition X into two subvectors X^{P} and X^{-P}, and apply theorem conditioning on $X^{-P}=0$ instead of integrating over X^{-P}.

Example: With $X=\left(X_{1}, X_{2}\right)$ let $X_{2}=0$ to get $E\left(U_{1}^{-t_{1}}\right)=\lambda_{P t} / \kappa_{P t}$

EXTENSION 2: Replace $h(Y, t)$ with $h_{j}(Y, t)$ for different h_{j} functions.
Let $\mu_{t}=E\left(U_{1}^{-t_{1}} U_{2}^{-t_{2}} \ldots U_{2}^{-t_{K}}\right)$. For each t (including partition P) and each j, will now get

$$
\lambda_{P t j} / \kappa_{P t j}=\mu_{t}
$$

Can apply with multiple j to get multiple expressions for μ_{t}.

EXTENSION 3: Unknown parameter vector θ. Model is now:

$$
Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)
$$

for known G, unknown vector θ.
Given a vector $t \in T$, partition $P \in \mathcal{P}$, and function h_{j} for $j \in J$, construct

$$
\begin{aligned}
\lambda_{P t j}= & \int_{x^{P} \in \operatorname{supp}\left(X^{P}\right)} E\left[h_{j}(Y) \mid X^{P}=x^{P}, X^{-P}=0, t\right] \\
K_{P_{t j}}(\theta)= & \left.\int_{s^{P} \in \operatorname{supp}\left(X^{P}\right)} h_{j}\left(G^{t_{2}-1} \ldots s^{t_{K^{P}}-1} d s_{1}^{P}, \theta\right), t\right) \\
& s_{1}^{t_{1}-1} s_{2}^{t_{2}-1} \ldots x_{2} \ldots d x_{K^{P}}^{t_{K} P^{P}-1} d s_{1} d s_{2} \ldots d s_{K^{P}}
\end{aligned}
$$

By Theorem

$$
\frac{\lambda_{P t j_{1}}}{\kappa_{P t j_{1}}(\theta)}=E\left(U_{1}^{-t_{1}} U_{2}^{-t_{2}} \ldots U_{2}^{-t_{K}}\right)
$$

right side only depends on $F_{U}(U)$ and t, not on θ.

$$
\text { Have } \frac{\lambda_{P t j_{1}}}{\kappa_{P t j_{1}}(\theta)}=E\left(U_{1}^{-t_{1}} U_{2}^{-t_{2}} \ldots U_{2}^{-t_{K}}\right)
$$

Therefore, available equations for identifying θ include:

1. $\frac{\lambda_{P t j_{1}}}{\kappa_{P t j_{1}}(\theta)}=\frac{\lambda_{P t j_{2}}}{\kappa_{P t j_{2}}(\theta)} \quad$ for all $P \in \mathcal{P}, t \in T, j_{1} \in J$, and $j_{2} \in J$
2. $\quad \kappa_{P t j}(\theta)\left(\frac{\partial \lambda_{P t j}}{\partial j}\right)=\left(\frac{\partial \kappa_{P t j}(\theta)}{\partial j}\right) \lambda_{P t j} \quad$ for all $P \in \mathcal{P}, t \in T$, and $j \in$

$$
\text { 3. } \quad \lambda_{P 0 j}=\kappa_{P 0 j}(\theta) \quad \text { for all } P \in \mathcal{P} \text { and } j \in J . \text { Here } t=0 \text {. }
$$

First use any combination of these to identify θ, then apply Theorem 1 to identify F_{U}.

Notes on Possible Estimators

1. Construct $\kappa_{P_{t j}}(\theta)$ for each choice of j, P, t.
2. Replace $E\left[h_{j}(Y) \mid X^{P}=x^{P}, X^{-P}=0, t\right]$ with nonparametric regression in $\lambda_{P t j}$ to get $\hat{\lambda}_{P t j}$.
3. Use minimum distance estimate θ, e.g.,

$$
\widehat{\theta}=\arg \min \sum_{P \in \mathcal{P}, t \in T} \sum_{j_{1} \in J} \sum_{j_{2} \in J}\left[\left(\widehat{\lambda}_{P t j_{1}} / \kappa_{P t j_{1}}(\theta)\right)-\left(\widehat{\lambda}_{P t j_{2}} / \kappa_{P t j_{2}}(\theta)\right)\right]^{2}
$$

4. Given $\widehat{\theta}$, estimate random coefficient moments μ_{t} of the U distribution for each $t \in T$ using

$$
\widehat{\mu}_{t}=\sum_{j \in J} w_{j t} \widehat{\lambda}_{j t} / \kappa_{j t}(\widehat{\theta})
$$

with weights $w_{j t}$ chosen such that $\sum_{j \in J} w_{j}$.
These are essentially semiparametric two step estimators with nonparametric first step.

Alternatives: If partitions of X are not needed, can rewrite the $\lambda_{P t j}$ equation as

$$
\lambda_{P t j}=E\left(\frac{h_{j}(Y, t) x_{1}^{t_{1}-1} x_{2}^{t_{2}-1} \ldots x_{K}^{t_{K}-1}}{f_{x}(X)}\right)
$$

So the integral of a nonparametric regression can be replaced by estimation of the density of $X, f_{X}(X)$, and a simple average.

If the density of X is finitely parameterized, and we only want a finite number of moments μ_{t} of the U distribution, then all of the estimation steps can be combined into an ordinary GMM.

Alternative to all of the above might be sieve maximum likelihood. Assume U is continuous, write the likelihood function for the model $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)$ in terms of the density of U, and approximate the density with basis functions (e.g. mixtures of normals or Hermite polynomial expansions).

Example

$$
Y=g\left[\theta_{1} X_{1} U_{1} X_{2} U_{2}+\theta_{2} \ln \left(X_{2} U_{2}\right)+\theta_{3} X_{1} U_{1}+\theta_{4}\right]
$$

To satisfy assumptions, assume g is known and monotonic, $\operatorname{supp}(X)=\mathbb{R}_{+}^{K}, \operatorname{supp}(U) \subseteq \mathbb{R}_{+}^{K}$, and $\theta_{1}>0$.

Wlog, can choose scale normalizations for U_{1} and U_{2} to make $\theta_{3}=1$ and $\theta_{4}=0$.

Goal: identify θ_{1}, θ_{2} and joint distribution of U_{1} and U_{2}.
For this application, a convenient h_{j} (one that yields simple expressions for θ) is

$$
h_{j}(y)=\widetilde{h}_{j}\left(g^{-1}(Y)\right)=\frac{\exp \left(-j g^{-1}(y)\right)}{\left(\exp \left(-j g^{-1}(y)\right)+1\right)^{2} / j}
$$

here \widetilde{h}_{j} is the logistic pdf, evaluated at the inverse of the g function.

Model:

$$
Y=g\left[\theta_{1} X_{1} U_{1} X_{2} U_{2}+\theta_{2} \ln \left(X_{2} U_{2}\right)+X_{1} U_{1}\right]
$$

First identify θ_{2}. Choose P where $X_{1}=0$ so t_{1} drops out and $X^{P}=\left(X_{2}\right)$. Let $t_{2}=0$. This gives

$$
\begin{gathered}
\lambda_{P 0 j}=\int_{0}^{\infty} E\left[h_{j}(Y) \mid X_{1}=0, X_{2}=x_{2}\right] x_{2}^{-1} d x_{2} \quad \text { corresponding to } \\
\kappa_{P 0 j}(\theta)=\int_{0}^{\infty} h_{j}\left[g\left(\theta_{2} \ln s_{2}\right)\right] s_{2}^{-1} d s_{2}=\int_{0}^{\infty} \frac{j \exp \left(j \theta_{2} \ln s_{2}\right)}{\left(\exp \left(j \theta_{2} \ln s_{2}\right)+1\right)^{2}} s_{2}^{-1} d s_{2}
\end{gathered}
$$

Do the change of variables $q=\theta_{2} \ln s_{2}$. Then

$$
\kappa_{P 0 j}(\theta)=\int_{-\infty}^{\infty} \frac{j e^{-j q}}{\left(e^{-j q}+1\right)^{2}} \frac{1}{\theta_{2}} d q=\frac{1}{\theta_{2}}
$$

Now $\lambda_{P 0 j}=\kappa_{P 0 j}(\theta)=1 / \theta_{2}$ so identified by $\theta_{2}=1 / \lambda_{P 0 j}$.

Model:

$$
Y=g\left[\theta_{1} X_{1} U_{1} X_{2} U_{2}+\theta_{2} \ln \left(X_{2} U_{2}\right)+X_{1} U_{1}\right]
$$

Next identify θ_{1}. Now use partition $X^{P}=X$, and let $t_{1}=t_{2}=1$. This gives

$$
\begin{gathered}
\lambda_{P t j}=\int_{0}^{\infty} \int_{0}^{\infty} E\left[h_{j}(Y) \mid X_{1}=x_{1}, X_{2}=x_{2}\right] d x_{1} d x_{2} \quad \text { and } \\
\kappa_{P t j}(\theta)=\int_{0}^{\infty} \int_{0}^{\infty} \widetilde{h}_{j}\left[\left(s_{1}+\theta_{1} s_{1} s_{2}+\theta_{2} \ln s_{2}\right)\right] d s_{1} d s_{2}
\end{gathered}
$$

Now do change in variables replace s_{1} with $r=s_{1}+\theta_{1} s_{1} s_{2}+\theta_{2} \ln s_{2}$ to get

$$
\kappa_{j t}(\theta)=\int_{0}^{\infty} \frac{\exp \left(-j \theta_{2} \ln s_{2}\right)}{1+\exp \left(-j \theta_{2} \ln s_{2}\right)} \frac{1}{\left(1+s_{2} \theta_{1}\right)} d s_{2}
$$

Let $j=1 / \theta_{2}$ to get

$$
\kappa_{j t}(\theta)=\frac{\ln \left(\theta_{1}\right)}{\theta_{1}-1} \quad \text { and } \quad \frac{\partial \kappa_{j_{1} t}(\theta)}{\partial j}=-\frac{\theta_{2}}{2}\left(\frac{\ln \left(\theta_{1}\right)}{\theta_{1}-1}\right)^{2}
$$

Plugging into $\kappa_{P t j}(\theta)\left(\partial \lambda_{P t j} / \partial j\right)-\left(\partial \kappa_{P t j}(\theta) / \partial j\right) \lambda_{P t j}$, can uniquely solve for θ_{1}.

Additive Model Identification

Additive Model: $\quad Y=c+\sum_{k=1}^{K} G_{k}\left(X_{k} U_{k}\right)$
Both the joint distribution of random coefficients $F_{U}(U)$ and the G_{k} functions are unknown, need to be nonparametrically identified.

Maintain assumptions A1, A2 and A3. Recall $G_{k}\left(s_{k}\right) \geq c_{k} s_{k}$ suffices for A3.

ASSUMPTION A4: U and X are continuously distributed. Each G_{k} is strictly monotonically increasing, wlog normalize $G_{k}(0)=0, G_{k}(1)=1$.

Extensions

1. $Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)+U_{0}=\widetilde{Y}+U_{0}$ for unobserved \widetilde{Y} Assume U_{0} independent of U_{1}, \ldots, U_{K}, and U_{0} has nonvanishing characteristic function. WLOG let $G(0)=0$.
$F_{Y \mid X}(y \mid 0)=F_{U_{0}}(y)$ identifies $F_{U_{0}}$. Deconvolution of $Y \mid X$ with U_{0} identifies $F_{\widetilde{Y} \mid X}$. Can then proceed as before.
2. Discrete choice. Assume for unobserved Y :
$D=I[Y-V \geq 0]=I\left[G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}\right)-V+U_{0} \geq 0\right]$
V is a special regressor (Lewbel 1998, 2000, 2015): linear, continuous, large support, independent of $U . E(1-D \mid V, X)=F_{Y \mid X}(V \mid X)$ identifies $F_{Y \mid X}$. Can then proceed as before.
3. Can replace $F_{U}(U)$ with $F_{U}(U \mid Z)$, let all assumptions hold conditional on covariates Z, observable characteristics. Allows for observable preference heterogeneity and/or control function type endogeneity.

Barten Scales

Utility function $S\left(Q_{1} / U_{1}, \ldots, Q_{J} / U_{J}\right)$
Q_{1}, \ldots, Q_{J} are quantities of goods consumed
U_{1}, \ldots, U_{J} are Barten (1964) scales, reference values one.
Example: A couple rides together in their car 50% of the time. For quantity of gasoline Q_{j}, they get utility as if the quantity bought was $Q_{j} * 1.5=Q_{j} / U_{j}$ where Barten scale $U_{j}=2 / 3$.

If they did not share car at all, would have $U_{j}=1 / 2$. If they shared all the time $U_{j}=1$.

Barten scales can also reflect preference heterogeneity. If I need to eat more than you to get the same utility from $j=$ food, then I have a larger value of U_{j} in my utility function you have in yours.

Barten Scales

Let $W_{j}^{*}=Q_{j} P_{j} / M$ be the good j budget share and $X_{j}=P_{j} / M$. If max utility function $S\left(Q_{1} / U_{1}, \ldots, Q_{J} / U_{J}\right)$ given $\sum_{j=1}^{J} Q_{j} P_{j}=M$, get Marshallian demands (in budget share form):

$$
W_{j}^{*}=\omega_{j}\left(U_{1} X_{1}, \ldots, U_{J} X_{J}\right) \text { for each good } j
$$

Traditional Barten scales: $U_{j}=\alpha(Z, \theta), Z$ are observable household characteristics (age, family size, etc.), estimate parameters θ.

This paper's Barten scales: U_{j} are random utility parameters, reflecting unobserved preference heterogeneity. Each U_{j} has a conditional pdf $=f_{j}\left(U_{j} \mid Z\right)$.

The functional form of $\omega_{j}\left(X_{1}, \ldots, X_{J}\right)$ depends only on the functional form of $S\left(Q_{1}, \ldots, Q_{J}\right)$, so U_{1}, \ldots, U_{J} can vary independently of X_{1}, \ldots, X_{J}.

Empirical Demand Model Specification

Since identified, could consider nonparametric sieve estimation.
Due to sample size and curse of dimensionality, will instead do MLE with 'sieve inspired' model specification.

Specify indirect utility $V^{-1}=h_{1}\left(U_{1} X_{1}\right)+h_{2}\left(U_{2} X_{2}\right)$ where

$$
h_{k}\left(X_{k}\right)=\int_{\ln X_{k}}\left(\beta_{k 0}+\beta_{k 1} e^{r}+\beta_{k 2} e^{2 r}+\ldots+\beta_{k S} e^{S r}\right)^{2} d r
$$

Yielding Marshallian budget shares proportional to polynomials. Almost all standard demand models are proportional to polynomials. See, e.g., Lewbel (2008) and references therein.

Empirical Barten Scale Specification

Include observable taste shifters Z. Could identify nonparametric $F_{U}(U \mid Z)$, but to reduce dimensionality, let $U_{k}=\alpha_{k}(Z) \widetilde{U}_{k}$ where $\alpha_{k}(Z)=\exp \left(\theta_{1 k}^{\prime} Z+Z^{\prime} \theta_{2 k} Z\right)$ is a traditional deterministic Barten scale.

Remaining unobserved random component of the Barten scales $\widetilde{U}=\left(\widetilde{U}_{1}, \widetilde{U}_{2}\right)$ is specified as (trimmed) bivariate log normal density

$$
f_{\ln \tilde{U}}\left(\widetilde{U}_{1}, \widetilde{U}_{2}, \sigma, \rho\right)=\frac{\exp \left(\frac{\left(\frac{\ln \tilde{U}_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{\ln \tilde{U}_{2}}{\sigma_{2}}\right)\left(\frac{\ln \tilde{U}_{1}}{\sigma_{1}}\right)+\left(\frac{\ln \tilde{U}_{2}}{\sigma_{2}}\right)^{2}}{-2\left(1-\rho^{2}\right)}\right)}{2 \pi \sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)^{1 / 2}} I .
$$

The density is trimmed at $I= \pm 3 \sigma$, since Theorem 2 needs MGF.
Density f_{0} of error U_{0} is mean zero normal with variance σ_{0}^{2}.

Estimator

We later also consider hermite polynomial sieve expansion densities for the unobservables.

Assuming n iid households the resulting likelihood function is

$$
\sum_{i=1}^{n} \ln f_{W_{1} \mid X_{1}, X_{2}, Z}\left(w_{1 i} \mid x_{1 i}, x_{2 i}, z_{i} ; \alpha, \beta\right)
$$

where in Model 1 (standard deterministic Barten, $\widetilde{u}=1$)

$$
\begin{aligned}
& f_{W_{1} \mid x_{1}, x_{2}, z}\left(w_{1} \mid x_{1}, x_{2}, z ; \alpha, \beta\right) \\
= & \exp \left(\frac{-1}{2 \sigma_{0}^{2}}\left[\lambda\left(W_{1}\right)-\ln \left(\left(\frac{\beta_{10}+\sum_{s=1}^{S} \beta_{1 s}\left(\alpha_{1}(z) x_{1}\right)^{s}}{1+\sum_{s=1}^{S} \beta_{2 s}\left(\alpha_{2}(z) x_{2}\right)^{s}}\right)^{2}\right)\right]^{2}\right)
\end{aligned}
$$

While in Model 2 (random Barten scales, \widetilde{u} density $f_{\text {In }} \widetilde{U}$ is trimmed log normal) the likelihood function is

$$
\sum_{i=1}^{n} \ln f_{W_{1} \mid x_{1}, x_{2}, z}\left(w_{1 i} \mid x_{1 i}, x_{2 i}, z_{i} ; \alpha, \beta, \sigma, \rho\right)
$$

where

$$
\begin{aligned}
& f_{W_{1} \mid x_{1}, x_{2}, z}\left(w_{1} \mid x_{1}, x_{2}, z ; \alpha, \beta, \sigma, \rho\right) \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f_{\ln \widetilde{U}}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, \sigma, \rho\right)}{(2 \pi)^{1 / 2} \sigma_{0}} \\
& \exp \left(\frac{-1}{2 \sigma_{0}^{2}}\left[\lambda\left(W_{1}\right)-\ln \left(\left(\frac{\beta_{10}+\sum_{s=1}^{S} \beta_{1 s}\left(\widetilde{u}_{1} \alpha_{1}(z) x_{1}\right)^{s}}{1+\sum_{s=1}^{S} \beta_{2 s}\left(\widetilde{u}_{2} \alpha_{2}(z) x_{2}\right)^{s}}\right)^{2}\right)\right]^{2}\right) \\
& \quad d \ln \widetilde{u}_{1} d \ln \widetilde{u}_{2}
\end{aligned}
$$

Note numerical integration over the $\widetilde{U}_{1}, \widetilde{U}_{2}$ distribution.

Data

1997 to 2008 Canadian Survey of Household Spending, urban working age singles, trimmed.
$M=$ total nondurable expenditures: sum of household spending on food, clothing, health care, alcohol and tobacco, public transportation, private transportation operation, and personal care, plus the energy goods fuel oil, electricity, natural gas and gasoline.
$W_{1}=$ energy share of total nondurable expenditures. P_{1} and P_{2} are household specific within group budget share weighted Stone Indices of energy and non-energy goods, respectively, normalised to 1 in Ontario in 2002.
$Z=$ characteristics: dummy for female; age (by 5 year age groups); calendar year; dummy for in Quebec; Number of days requiring heating and cooling in each province in each year (normalized as z-scores); dummy for renter; dummy for more than 10% of gross income from government transfers.

Data - continued

Table 1: Summary Statistics				
9971 Observations	mean	std dev	min	max
logit energy share, Y	-1.949	0.766	-7.140	1.005
energy share, W	0.146	0.085	0.001	0.732
nondurable expenditure, M	15.661	7.104	2.064	41.245
energy price, P_{1}	1.039	0.230	0.426	1.896
non-energy price, P_{2}	0.965	0.075	0.755	1.284
female indicator	0.482	0.500	0.000	1.000
age group-4	0.549	2.262	-3.000	4.000
year-2002	0.363	3.339	-5.000	6.000
Quebec resident	0.168	0.374	0.000	1.000
heat days, normalized	-0.102	0.990	-2.507	2.253
cooling days, normalized	0.014	1.007	-1.729	4.013
renter indicator	0.512	0.500	0.000	1.000
transfer income indicator	0.184	0.387	0.000	1.000

Empirical Example - Energy Demand Estimates

$S=3$ third order polynomial in each $\ln X_{j}$. Model 1 deterministic Barten, Model 2 random Barten. Model 2 has generally smaller standard errors, roughly analogous to how generalized least squares lowers standard errors by modeling the heteroskedasticity.

Table 2: Estimated Parameters - part 1				
	Model 1 IIf=-10043.1		Model 2 Ilf=-9706.9	
Parameter	Estimate	Std Err	Estimate	Std Err
β_{10}	0.145	0.010	0.185	0.007
β_{11}	8.113	0.487	7.623	0.287
β_{12}	-37.563	2.924	-32.871	2.147
β_{13}	51.576	5.650	40.630	4.390
β_{21}	2.484	0.568	1.805	0.266
β_{22}	-1.743	0.663	1.053	0.314
β_{23}	0.152	0.141	-0.996	0.139

Table 2: Estimated Parameters - part 2

		Model 1		Model 2	
		Estimate	Std Err	Estimate	Std Err
	female	-0.214	0.031	-0.228	0.015
	agegp	0.002	0.009	0.013	0.004
	time	-0.013	0.004	-0.003	0.002
	PQ	0.085	0.043	0.043	0.021
	heat	0.036	0.016	0.026	0.008
	cool	-0.062	0.015	-0.035	0.007
	renter	-0.292	0.058	-0.440	0.026
	social	0.034	0.038	0.054	0.020
α_{2}	female	-0.130	0.076	-0.117	0.010
	agegp	-0.068	0.023	-0.038	0.002
	time	0.018	0.010	0.044	0.001
	PQ	0.402	0.100	0.217	0.017
	heat	0.015	0.040	-0.021	0.008
	cool	-0.077	0.043	-0.014	0.006
	renter	0.943	0.155	0.605	0.008
	social	-0.085	0.091	-0.110	0.011

Barten summary terms. Note $\ln \alpha_{j}(z)$ is deterministic component, σ_{j} is standard deviation of random component $\widetilde{U}_{j}, \ln U_{j}=\ln \widetilde{U}_{j}+\ln \alpha_{j}(z)$.

Table 2: Estimated Parameters - part 3					
		Model 1		Model 2	
σ_{0}		0.663	0.005	0.469	
0.009					
σ_{1}			0.165	0.036	
σ_{2}			1.336	0.011	
ρ			0.883	0.100	
std dev	$\ln \left(\alpha_{1}\right)$	0.197	0.252		
	$\ln \left(\alpha_{2}\right)$	0.568	0.380		
correlation	$\ln \left(\alpha_{1}\right), \ln \left(\alpha_{2}\right)$	-0.479	-0.700		
(all obs)	$\ln U_{1}, \ln U_{2}$		0.293		
correlation	$\ln \left(\alpha_{1}\right), \ln \left(\alpha_{2}\right)$	0.426	0.105		
(renter=0)	$\ln U_{1}, \ln U_{2}$		0.699		
correlation	$\ln \left(\alpha_{1}\right), \ln \left(\alpha_{2}\right)$	0.420	0.087		
(renter=1)	$\ln U_{1}, \ln U_{2}$		0.691		

Log Barten Scale Distributions

Next two slides show contour plots of estimated joint density of log Barten Scales.

First is Model 1 Joint density of $\ln \alpha_{1}(Z), \ln \alpha_{2}(Z)$. These are traditional deterministic log Barten scales.

Second is Model 2 Joint density of our random Barten scales $\ln U_{1}$, $\ln U_{2}$ where, $\ln U_{j}=\ln \alpha_{j}(z)+\ln \widetilde{U}_{j}$.

Two modes correspond to separate mean energy expenditures of renters vs owners.

In Model 2, after controlling for renter vs owners, $\operatorname{var}\left(\ln U_{2}\right)$ is a little higher than var $\left(\ln U_{1}\right)$, correlation about 0.7

Estimated Distribution of \ln ($\left.\alpha_{1}\right), \ln \left(\alpha_{2}\right): \operatorname{Mod}$

Estimated Distribution of $\ln (\mathrm{U}$
$\left.{ }_{1}\right), \ln \left(\begin{array}{ll}\mathrm{U}_{2}\end{array}\right): \operatorname{Moc}$

Budget Shares - Engel Curves

Engel curve: energy budget share W_{1} as a function of log total expenditures, $\ln M$, evaluated at $P_{1}=P_{2}=1$, at quartiles of the distributions of U_{1}, U_{2}. For comparison, model 1 is gray line and model 2 without random \widetilde{U}_{1} and \widetilde{U}_{2} is thick black line.

Density of $\ln M$ also shown; upward sloping portion of Engel curves are only in the lower tail of $\ln M$ distribution.

Estimated Budget Shares, Models 1 and 2
Model 2 at quartiles of U
${ }_{1}, \mathrm{U}_{2} ;$ evaluated at base prices and mean

Price effects, Consumer Surplus

We have a closed form expression for indirect utility. Therefore can compute cost of living consumer surplus without Vartia (1984) type approximations. Would otherwise need a numeric differential equation solution for every value U_{1}, U_{2} can take on.

To show price effects clearly, consider a large price change: a 50% increase in the price of energy at $P_{1}=P_{2}=1$ (approximating the effect of a $\$ 300$ per ton CO2 tax,see, e.g., Rhodes and Jaccard 2014). The cost-of-living impact, $\pi\left(U_{1}, U_{2}, M\right)$ is defined as the solution to

$$
V\left(\frac{U_{1} P_{1}}{M}, \frac{U_{2} P_{2}}{M}\right)=V\left(\frac{1.5 U_{1} P_{1}}{\pi M}, \frac{U_{2} P_{2}}{\pi M}\right)
$$

Next slide shows joint density (contour plot) of π and $\ln M$, variation from $U_{1}, U_{2} . \bar{W}_{1}=0.146$, so 50% energy tax without substitution effects would increase costs by 7.3%. Most mass is below .073 horizontal line from substitution effects. Low M households have higher mean and variance of harm.

Distribution of Log Cost of Living Impacts, Model 2 ven base prices, 50\% increase in Energy Price, and estimated

Table 4: Cost of Living Impacts: 50\% Energy Price Increase

Per Cent Increase		Model 1		Model 2	
$\pi-1$, per cent		Estimate	Std Err	Estimate	Std Err
$\alpha_{j}=\bar{\alpha}_{j}, \widetilde{U}_{j}=1$	Mean	5.34	0.22	5.66	0.17
	Std Dev	1.26	0.06	1.30	0.05
$\alpha_{j}, \widetilde{U}_{j}=1$	Mean	$\mathbf{5 . 3 1}$	0.24	5.64	0.17
	Std Dev	$\mathbf{1 . 8 5}$	0.21	1.69	0.08
$\alpha_{j}, \widetilde{U}_{j}$	Mean			$\mathbf{5 . 3 7}$	0.20
	Std Dev			$\mathbf{4 . 3 1}$	0.46

If had no substitution effects the mean effect above would be 7.3%.
Comparing first 2 and second 2 rows shows allowing for observed heterogeneity in U has little effect on COLI $\pi-1$.

Comparing models 1 and 2 shows allowing for unobserved heterogeneity in U has little effect on mean COLI but more than doubles(!) its standard deviation, from 1.85 to 4.31 . As previous graph shows, wider variation particularly impacts the poor.

Conclusions

Have shown identification of generalized random coefficients models.

$$
Y=G\left(X_{1} U_{1}, \ldots, X_{K} U_{K}, \theta\right)+U_{0}
$$

Potential applications:
Production functions with unobserved qualities U_{k} of inputs X_{k} Discrete choice and BLP type models without artificial restriction of linearity in covariates
Polynomial instead of linear random coefficients.
Empirical application: Extend existing observed heterogeneity in demand model (Barten scales) to unobserved heterogeneity - highly relevant for distribution of welfare effects of an energy tax.

Ongoing work: Estimation asymptotics, characterizations of feasible g functions, multiple equation systems.

