Least product relative error criterion based estimating equation approaches for the error-in-covariables multiplicative regression models

Qihua Wang

Academy of Mathematics and Systems Science, CAS (Joint work with: Dahai Hu, University of Science and Technology of China)

Outline

1 Introduction

- 2 Measurement Error Model
- 3 Conditional Mean Score Based Estimating Equation Approach
- 4 Corrected estimating equation method
- 5 Simulation Studies
- 6 Real Data Analysis

- 2 Measurement Error Model
- 3 Conditional Mean Score Based Estimating Equation Approach
- 4 Corrected estimating equation method
- 5 Simulation Studies
- 6 Real Data Analysis

To handle the positive response, it is natural to consider the following multiplicative regression model,

$$Y_i = \exp(Z_i^T \beta_0) \varepsilon_i, \quad i = 1, \dots, n,$$
(1)

where Y_i is a scalar response variable, Z_i is a random covariate vector with the first component being 1 (intercept), β_0 is the true regression parametric vector, and the error term ε is strictly positive. Chen et al. (2010, JASA) consider the following two types of relative errors:

- $|Y_i \exp(Z_i^T \beta)| / Y_i;$
- $|Y_i \exp(Z_i^T \beta)| / \exp(Z_i^T \beta).$

They proposed LARE criteria is to minimize

$$LARE_n(\beta) = \sum_{i=1}^n \left\{ \left| \frac{Y_i - \exp(Z_i^T \beta)}{Y_i} \right| + \left| \frac{Y_i - \exp(Z_i^T \beta)}{\exp(Z_i^T \beta)} \right| \right\}.$$

Denote the minimizer of $LARE_n(\beta)$ as $\hat{\beta}_{n,LARE}$.

Least Absolute Relative Errors (LARE)

Advantage

- Scale free and Robust ;
- Relative error is concerned;
- $LARE_n(\beta)$ is strictly convex in β under some regular conditions;

Disadvantage

- Nonsmooth;
- Computation is complicated;
- ▶ the limiting variance of $\hat{\beta}_{n,LARE}$ involves the density of the error

To overcome the disadvantage of the LARE criteria, the product of the above two type relative errors are considered, namely,

$$\left|\frac{Y_i - \exp(Z_i^T \beta)}{Y_i}\right| \times \left|\frac{Y_i - \exp(Z_i^T \beta)}{\exp(Z_i^T \beta)}\right|$$

- Wang et al. (2015, Test) developed a testing procedure to detect existence of the unknown change point and discussed a relative-based estimation of the change point.
- Chen et al.(2016, JMVA) study the least product relative error (LPRE) estimator.

Least Product Relative Errors (LPRE)

Advantage

- Smooth
- Convex

Existing Question:

- The aforementioned LPRE methods commonly assume that covariates are observed precisely.
- We usually encounter corrupted data in practice, where the covariates are measured with error.

- 3 Conditional Mean Score Based Estimating Equation Approach
- 4 Corrected estimating equation method
- 5 Simulation Studies
- 6 Real Data Analysis

Measurement Error Model

• $Z_i = (V_i^T, X_i^T)^T$

► V_i : q × 1 vector of explanatory variables that are precisely measured with the first component being 1 (intercept),

- X_i : $p \times 1$ vector of error-prone explanatory variable
- Classical additive measurement error model:

$$W_{i,j} = X_i + U_{i,j}, \quad j = 1, \dots, n_i, i = 1, \dots, n,$$

- ▶ U and -U comes the same distribution
- ▶ U is independent of (Z, ε)

4 Corrected estimating equation method

5 Simulation Studies

When Z_i 's are precisely measured, minimizing $LPRE_n(\beta)$ is equivalent to solving the following estimating equation

$$U_n(\beta) = \sum_{i=1}^n \psi(Z_i, Y_i, \beta) = 0$$
⁽²⁾

where $\psi(Z_i, Y_i, \beta) = \left\{ Y_i^{-1} \exp(Z_i^T \beta) - Y_i \exp(-Z_i^T \beta) \right\} Z_i.$

With the assumption $E[\varepsilon - 1/\varepsilon | Z] = 0$, it's easy to see that $E[\psi(Z_i,Y_i,\beta_0)] = 0.$

For simplification, denote the observed data $\mathcal{O}_{i,r} = (Y_i, V_i, W_{i,r})$ and let $\mathcal{U}_i = (Y_i, V_i, X_i)$ for i = 1, ..., n and $r = 1, ..., n_i$. The key point is to find a function $T^*(\mathcal{O}_{i,r}, \beta)$ such that $E[T^*(\mathcal{O}_{i,r}, \beta)|\mathcal{U}_i] = \psi(Z_i, Y_i, \beta).$

If so, this leads to the following unbiased estimating equation,

$$\sum_{i=1}^{n} \left[\frac{1}{n_i} \sum_{r=1}^{n_i} T^*(\mathcal{O}_{i,r}, \beta) \right] = \mathbf{0}.$$
 (3)

This general idea has also been used in Hu and Lin (2004, JASA) and Wu et al.(2015, JASA).

Construct $T^*(\mathcal{O}_{i,r},\beta)$

Notation

- Take $\hat{Z}_{i,r} = (V_i^T, W_{i,r}^T)^T$ and $J = (0_{p \times q}, I_{p \times p})^T$. Then $\hat{Z}_{i,r} = Z_i + JU_{i,r}$.
- Denote $\varphi_0(\gamma) = E[\exp(U^T \gamma)]$ and $\varphi_1(\gamma) = E[U \exp(U^T \gamma)].$

Take

$$\begin{aligned} R_{i,r}^{(0)}(\beta) &= \varphi_0^{-1}(\gamma) \exp(\hat{Z}_{i,r}^T \beta), \\ R_{i,r}^{(1)}(\beta) &= \varphi_0^{-1}(\gamma) \exp(\hat{Z}_{i,r}^T \beta) \{ \hat{Z}_{i,r} - J \varphi_0^{-1}(\gamma) \varphi_1(\gamma) \}. \end{aligned}$$

A simple algebraic manipulation yields

$$\exp(Z_i^T \beta) Z_i = E\left[R_{i,r}^{(1)}(\beta) | \mathcal{U}_i\right],$$
$$\exp(Z_i^T \beta) = E\left[R_{i,r}^{(0)}(\beta) | \mathcal{U}_i\right].$$

Thus, the desired function $T^*(\mathcal{O}_{i,r},\beta)$ can be defined as

$$T^*(\mathcal{O}_{i,r},\beta) = Y_i^{-1} R_{i,r}^{(1)}(\beta) - Y_i R_{i,r}^{(1)}(-\beta).$$

However, $\varphi_0(\gamma)$ and $\varphi_1(\gamma)$ in $T^*(\mathcal{O}_{i,r},\beta)$ are unknown.

(4)

(5)

$\hat{\varphi}_0(\gamma)$ & $\hat{\varphi}_1(\gamma)$

Denote $\xi_i = I(n_i > 1)$ and $\tilde{n} = \sum_{i=1}^n \xi_i$. Then, $\varphi_k(\gamma), (k = 0, 1)$ can be estimated by

$$\hat{\varphi}_0(\gamma) = \left[\frac{1}{\tilde{n}} \sum_{i=1}^n \frac{\xi_i}{n_i(n_i-1)} \sum_{r \neq s} \exp(\gamma^T (W_{i,r} - W_{i,s}))\right]^{1/2},$$

$$\hat{\varphi}_{1}(\gamma) = \frac{1}{2\tilde{n}\hat{\varphi}_{0}(\gamma)} \sum_{i=1}^{n} \left\{ \frac{\xi_{i}}{n_{i}(n_{i}-1)} \sum_{r \neq s} (W_{i,r} - W_{i,s}) \exp(\gamma^{T}(W_{i,r} - W_{i,s})) \right\}$$

Substituting $\varphi_0(\gamma)$ and $\varphi_1(\gamma)$ in $R_{i,r}^{(0)}(\beta)$ and $R_{i,r}^{(1)}(\beta)$ with $\hat{\varphi}_0(\gamma)$ and $\hat{\varphi}_1(\gamma)$ yields $\hat{R}_{i,r}^{(0)}(\beta)$ and $\hat{R}_{i,r}^{(1)}(\beta)$. Thereafter, the resulting estimating equation is given by

$$\sum_{i=1}^{n} \left[\frac{1}{n_i} \sum_{r=1}^{n_i} \hat{T}^*(\mathcal{O}_{i,r}, \beta) \right] = \mathbf{0},$$

where $\hat{T}^*(\mathcal{O}_{i,r},\beta) = Y_i^{-1}\hat{R}_{i,r}^{(1)}(\beta) - Y_i\hat{R}_{i,r}^{(1)}(-\beta)$. The solution of the above equation, $\hat{\beta}_{CMS}$ say, can be defined as estimator of β .

\sqrt{n} -consistency

Define
$$R_i^{(0)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} R_{i,r}^{(0)}(\beta)$$
, $\hat{R}_i^{(0)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} \hat{R}_{i,r}^{(0)}(\beta)$,
 $R_i^{(1)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} R_{i,r}^{(1)}(\beta)$ and $\hat{R}_i^{(1)}(\beta) = n_i^{-1} \sum_{r=1}^{n_i} \hat{R}_{i,r}^{(1)}(\beta)$. Define
 $\mathcal{A}_k = \{i : n_i = k, i = 1, \dots, n\}, \ k = 1, \dots m$.
Take

$$v_{i} = Y_{i}^{-1} R_{i}^{(1)}(\beta_{0}) - Y_{i} R_{i}^{(1)}(-\beta_{0}),$$

$$r_{i} = \frac{E(1/\varepsilon + \varepsilon)}{2(1 - \rho_{1})\varphi_{0}^{2}(\gamma_{0})} \{h_{i}^{(1)}(\gamma_{0}) - 2\varphi_{0}^{-1}(\gamma_{0})\varphi_{1}(\gamma_{0})h_{i}^{(0)}(\gamma_{0})\},$$

where
$$\rho_1 = \lim |\mathcal{A}_1|/n$$
, $h_i^{(0)}(\gamma) = \frac{1}{n_i(n_i-1)} \sum_{r \neq s} \exp\{\gamma^T (W_{i,r} - W_{i,s})\}$
and $h_i^{(1)}(\gamma) = \frac{1}{n_i(n_i-1)} \sum_{r \neq s} (W_{i,r} - W_{i,s}) \exp\{\gamma^T (W_{i,r} - W_{i,s})\}.$
Furthermore, define $V_0 = E[(1/\varepsilon + \varepsilon)ZZ^T].$

Theorem 1

Under Regularity Conditions, $\hat{\beta}_{CMS}$ exists and is unique in a neighbourhood of β_0 with probability converging to 1 as $n \to \infty$, and $\hat{\beta}_{CMS} \xrightarrow{p} \beta_0$. In addition,

$$\sqrt{n}(\hat{\beta}_{CMS} - \beta_0) \xrightarrow{D} N(0, \Gamma_{CMS}),$$

where $\Gamma_{CMS} = V_0^{-1} \Sigma_{CMS} V_0^{-1}$ and $\Sigma_{CMS} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} E(v_i - \xi_i J r_i)^{\otimes 2}$. Γ_{CMS} can be estimated by plug-in method.

- 2 Measurement Error Model
- 3 Conditional Mean Score Based Estimating Equation Approach

4 Corrected estimating equation method

5 Simulation Studies

Define $\bar{W}_{i,\cdot} = \frac{1}{n_i} \sum_{r=1}^{n_i} W_{i,r}$, and $\hat{Z}_i = (V_i^T, \bar{W}_{i,\cdot}^T)^T = Z_i + J\bar{U}_{i,\cdot}$, where $\bar{U}_{i\cdot} = \frac{1}{n_i} \sum_{r=1}^{n_i} U_{i,r}$. A naive computable estimating function $U_{nv}(\beta)$ can be obtained as follow

$$U_{nv}(\beta) = \sum_{i=1}^{n} \left\{ Y_i^{-1} \exp(\hat{Z}_i^T \beta) - Y_i \exp(-\hat{Z}_i^T \beta) \right\} \hat{Z}_i = \sum_{i=1}^{n} \psi(\hat{Z}_i, Y_i, \beta)$$
(6)

by replacing Z_i in (2) with \hat{Z}_i . Let β_{Naive} be the solution of $U_{nv}(\beta) = 0_{(p+q)\times 1}$. β_{Naive} is then the naive-LPRE estimator.

A simple algebraic manipulation leads to

$$E[\psi(\hat{Z}_i, Y_i, \beta)|Y_i, Z_i]$$

$$=\varphi_0^{n_i}(\frac{\gamma}{n_i})\psi(Z_i, Y_i, \beta) + J\left\{Y_i^{-1}\exp(Z_i^T\beta) + Y_i\exp(-Z_i^T\beta)\right\}\varphi_0^{n_i-1}(\frac{\gamma}{n_i})\varphi_1(\frac{\gamma}{n_i}) \quad (7)$$

$$:=I_{1n}(\beta) + I_{2n}(\beta).$$

- Bias: $E[\psi(\hat{Z}_i, Y_i, \beta_0)] = E[I_{2n}(\beta_0)]$, which might not **0**, resulting in an biased estimating function;
- loss of efficiency: The factor $\varphi_0^{n_i}(\frac{\gamma}{n_i})$ in $I_{1n}(\beta)$.

In view of the bias and the loss of efficiency, we can construct an unbiased estimating function as

$$U^*(\beta) = \sum_{i=1}^n \tilde{\psi}_i$$

where

$$\tilde{\psi}_i = \{\varphi_0^{n_i}(\frac{\gamma}{n_i})\}^{-1} \Big\{\psi(\hat{Z}_i, Y_i, \beta) - I_{2n}(\beta)\Big\}.$$

However, X_i in $I_{2n}(\beta)$ can not be observed.

Corrected estimating equation

Note that

$$E\left[Y_i^{-1}\exp(\hat{Z}_i^T\beta) + Y_i\exp(-\hat{Z}_i^T\beta)|\mathcal{U}_i\right] = \left\{Y_i^{-1}\exp(Z_i^T\beta) + Y_i\exp(-Z_i^T\beta)\right\}\varphi_0^{n_i}(\frac{\gamma}{n_i}).$$
(8)

From (8), we have

$$Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta)$$

$$= E \left[\varphi_0^{-n_i} \left(\frac{\gamma}{n_i} \right) \left\{ Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta) \right\} |\mathcal{U}_i \right].$$
(9)

Therefore, we can define ψ_i^* as follow,

$$\psi_i^* = \{\varphi_0^{n_i}(\frac{\gamma}{n_i})\}^{-1} \Big\{ \psi(\hat{Z}_i, Y_i, \beta) \\ -J \Big[Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta) \Big] \frac{\varphi_1(\gamma/n_i)}{\varphi_0(\gamma/n_i)} \Big\}$$

by replacing $Y_i^{-1} \exp(Z_i^T \beta) + Y_i \exp(-Z_i^T \beta)$ in $\tilde{\psi}_i$ with $\varphi_0^{-n_i} (\frac{\gamma}{n_i}) \{Y_i^{-1} \exp(\hat{Z}_i^T \beta) + Y_i \exp(-\hat{Z}_i^T \beta)\}.$

However, $\varphi_0(\gamma)$ and $\varphi_1(\gamma)$ in ψ_i^* are unknown. Define

$$\begin{split} \hat{\psi}_{i}^{*} = & \{ \hat{\varphi}_{0}^{n_{i}}(\frac{\gamma}{n_{i}}) \}^{-1} \Big\{ \psi(\hat{Z}_{i}, Y_{i}, \beta) \\ & - J \big[Y_{i}^{-1} \exp(\hat{Z}_{i}^{T}\beta) + Y_{i} \exp(-\hat{Z}_{i}^{T}\beta) \big] \frac{\hat{\varphi}_{1}(\gamma/n_{i})}{\hat{\varphi}_{0}(\gamma/n_{i})} \Big\}, \end{split}$$

by replacing $\varphi_0(\gamma/n_i)$ and $\varphi_1(\gamma/n_i)$ in ψ^* with $\hat{\varphi}_0(\gamma/n_i)$ and $\hat{\varphi}_1(\gamma/n_i)$ given in the previous section, and we obtain an resultant estimating equation for β_0 as follow

$$\sum_{i=1}^n \hat{\psi}_i^* = \mathbf{0}.$$

Let $\hat{\beta}_{CEE}$ be the solution to the above estimating equation.

Corrected estimating equation

Denote
$$\tilde{R}_i^{(1)}(\beta) = \varphi_0^{-n_i}(\gamma/n_i) \exp(\hat{Z}_i^T \beta) \{\hat{Z}_i - J \frac{\varphi_1(\gamma/n_i)}{\varphi_0(\gamma/n_i)}\}.$$

Let

$$\tilde{v}_{i} = Y_{i}^{-1} \tilde{R}_{i}^{(1)}(\beta_{0}) - Y_{i} \tilde{R}_{i}^{(1)}(-\beta_{0}),$$

$$\tilde{r}_{i,k} = \frac{E(1/\varepsilon + \varepsilon)}{2(1-\rho_{1})\varphi_{0}^{2}(\gamma_{0}/k)} \{h_{i}^{(1)}(\gamma_{0}/k) - 2\varphi_{0}^{-1}(\gamma_{0}/k)\varphi_{1}(\gamma_{0}/k)h_{i}^{(0)}(\gamma_{0}/k)\},$$

where $h_i^{(k)}(\gamma)(k=0,1)$ are defined as the above section. Let $\rho_k=\lim_{n\to\infty}|\mathcal{A}_k|/n.$

Theorem 2

Under regularity Conditions, $\hat{\beta}_{CEE}$ exists and is unique in a neighbourhood of β_0 with probability converging to 1 as $n \to \infty$, and $\hat{\beta}_{CEE} \xrightarrow{p} \beta_0$. In addition,

$$\sqrt{n}(\hat{\beta}_{CEE} - \beta_0) \xrightarrow{D} N(0, \Gamma_{CEE}),$$

where $\Gamma_{CEE} = V_0^{-1} \Sigma_{CEE} V_0^{-1}$ and $\Sigma_{CEE} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} E\{\tilde{v}_i - \xi_i J \sum_{k=1}^{m} \rho_k \tilde{r}_{i,k}\}^{\otimes 2}$. Furthermore, Γ_{CEE} can be estimated by plug-in method.

- 2 Measurement Error Model
- 3 Conditional Mean Score Based Estimating Equation Approach
- 4 Corrected estimating equation method
- 5 Simulation Studies

- **CMS**:(Our proposal) Conditional Mean Score based estimating equation approach;
- CEE:(Our proposal) Corrected Estimating Equation approach;
- Full: LPRE with the true value of X;
- Naive: LPRE with the X replaced by the average of all the surrogate values

Simulation Models

• Model: $Y = \exp(c_0 + \alpha_0 V^* + \gamma_0 X)\varepsilon$.

•
$$(c_0, \alpha_0, \gamma_0) = (1, 1, 2)$$

▶ (V^*, X) : bivariate normal distribution with $Var(X) = Var(V^*) = 1$ and $\rho(X, V^*) = 0.5$

$$\triangleright$$
 ε : the log-standard normal distribution

- Replication: 1000 times.
- Each of sample size: n=200, 300 or 500.

- V^* : Measured precisely
- X : Classical additive model:

$$W_{i,j} = X_i + U_{i,j}, \quad i = 1, \dots, n; j = 1, \dots, n_i$$

- The distribution of \boldsymbol{U}
 - $\blacktriangleright \ U \sim N(0, \sigma_u^2)$
 - ► the standardized N(0,1) distribution truncated between −c and c and scaled to have standard deviation of σ_u

• $\sigma_u = 0.5$ or 0.75, inducing a signal-to-noise ratio of 0.8 or 0.64

• n_i

Case 1: $n_i = 3$ for all subjects

• Case 2: 1/3 of the population: $n_i = 1$;

1/3 of the population: $n_i = 2$;

1/3 of the population: $n_i = 3$;

- $n_i = 3$ for all the subjects
- $U \sim N(0,\sigma_u^2)$, $\sigma_u = 0.5 \text{ or } 0.75$

Scenario 1

n	σ_u	method		ĉ			$\hat{\alpha}$				
		_	Bias	SE	MSE	Bias	SE	MSE	Bias	SE	MSE
200	0.50	Full	-0.0031	0.0752	0.0057	-0.0011	0.0872	0.0076	-0.0010	0.0899	0.0081
		Naive	-0.0034	0.0874	0.0076	0.1003	0.1025	0.0206	-0.1988	0.0997	0.0495
		CMS	-0.0042	0.0948	0.0090	-0.0048	0.1178	0.0139	0.0148	0.1397	0.0197
		CEE	-0.0030	0.0894	0.0080	-0.0036	0.1091	0.0119	0.0119	0.1168	0.0138
	0.75	Full	0.0036	0.0759	0.0058	0.0031	0.0870	0.0076	0.0001	0.0879	0.0077
		Naive	0.0041	0.1039	0.0108	0.2034	0.1182	0.0553	-0.3967	0.1095	0.1694
		CMS	0.0034	0.1452	0.0211	-0.0261	0.2074	0.0437	0.0686	0.3243	0.1099
		CEE	0.0040	0.1127	0.0127	-0.0173	0.1405	0.0200	0.0424	0.1646	0.0289
300	0.50	Full	-0.0017	0.0643	0.0041	-0.0016	0.0718	0.0052	-0.0006	0.0711	0.0051
		Naive	-0.0008	0.0755	0.0057	0.0995	0.0837	0.0169	-0.2034	0.0812	0.0479
		CMS	-0.0016	0.0800	0.0064	-0.0042	0.0965	0.0093	0.0069	0.1126	0.0127
		CEE	-0.0011	0.0767	0.0059	-0.0047	0.0885	0.0079	0.0053	0.0966	0.0094
	0.75	Full	-0.0009	0.0607	0.0037	0.0010	0.0695	0.0048	0.0008	0.0702	0.0049
		Naive	-0.0044	0.0896	0.0080	0.1996	0.0940	0.0487	-0.3979	0.0883	0.1661
		CMS	-0.0059	0.1143	0.0131	-0.0166	0.1752	0.0310	0.0308	0.2581	0.0676
		CEE	-0.0040	0.0950	0.0090	-0.0142	0.1106	0.0124	0.0252	0.1327	0.0182
500	0.50	Full	-0.0001	0.0482	0.0023	-0.0019	0.0554	0.0031	0.0008	0.0568	0.0032
		Naive	0.0016	0.0571	0.0033	0.0997	0.0664	0.0143	-0.1986	0.0642	0.0436
		CMS	0.0025	0.0624	0.0039	-0.0024	0.0782	0.0061	0.0068	0.0939	0.0089
		CEE	0.0021	0.0592	0.0035	-0.0021	0.0698	0.0049	0.0046	0.0745	0.0056
	0.75	Full	-0.0013	0.0505	0.0026	-0.0022	0.0537	0.0029	0.0006	0.0551	0.0030
		Naive	-0.0015	0.0674	0.0045	0.1956	0.0738	0.0437	-0.3992	0.0705	0.1643
		CMS	-0.0028	0.0932	0.0087	-0.0250	0.1577	0.0255	0.0331	0.2451	0.0612
		CEE	-0.0024	0.0703	0.0049	-0.0119	0.0865	0.0076	0.0121	0.1041	0.0110

Simulation Results for Scenario 1

- The naive estimators for γ_0 and α_0 are always seriously biased. Furthermore, the bias of the naive estimator is larger as σ_u becomes larger.
- The two proposed estimators $\hat{\beta}_{CMS}$ and $\hat{\beta}_{CEE}$ can effectively correct the biases caused by measurement error.
- The SE of $\hat{\beta}_{CMS}$ and $\hat{\beta}_{CEE}$ become smaller as the sample size n increases.
- The SE of $\hat{\beta}_{CMS}$ is larger than that of $\hat{\beta}_{CEE}$.

- $n_i = 3$ for all the subjects
- U: the standardized N(0,1) distribution truncated between -c and cand scaled to have standard deviation of σ_u , where c = 2, $\sigma_u = 0.5$ or 0.75

Scenario 2

n	σ_u	method		ĉ		â			γ		
		_	Bias	SE	MSE	Bias	SE	MSE	Bias	SE	MSE
200	0.50	Full	0.0019	0.0764	0.0058	-0.0007	0.0862	0.0074	0.0032	0.0866	0.0075
		Naive	0.0036	0.0898	0.0081	0.1006	0.0992	0.0199	-0.1984	0.0943	0.0483
		CMS	0.0021	0.0910	0.0083	-0.0015	0.1054	0.0111	0.0058	0.1101	0.0122
		CEE	0.0028	0.0902	0.0081	-0.0026	0.1053	0.0111	0.0082	0.1097	0.0121
	0.75	Full	0.0025	0.0760	0.0058	0.0016	0.0894	0.0080	-0.0019	0.0879	0.0077
		Naive	0.0047	0.0979	0.0096	0.2001	0.1178	0.0539	-0.4018	0.1068	0.1728
		CMS	0.0004	0.1031	0.0106	-0.0005	0.1298	0.0168	0.0087	0.1460	0.0214
		CEE	0.0036	0.1015	0.0103	-0.0096	0.1355	0.0184	0.0199	0.1561	0.0248
300	0.50	Full	-0.0011	0.0627	0.0039	-0.0004	0.0716	0.0051	-0.0011	0.0696	0.0048
		Naive	-0.0014	0.0713	0.0051	0.0972	0.0837	0.0165	-0.1988	0.0789	0.0457
		CMS	-0.0013	0.0729	0.0053	-0.0038	0.0861	0.0074	0.0045	0.0898	0.0081
		CEE	-0.0013	0.0726	0.0053	-0.0048	0.0861	0.0074	0.0063	0.0910	0.0083
	0.75	Full	0.0003	0.0634	0.0040	0.0035	0.0734	0.0054	0.0021	0.0732	0.0054
		Naive	0.0008	0.0859	0.0074	0.2038	0.0959	0.0507	-0.3941	0.0856	0.1627
		CMS	0.0009	0.0903	0.0082	-0.0009	0.1072	0.0115	0.0119	0.1199	0.0145
		CEE	0.0023	0.0890	0.0079	-0.0037	0.1099	0.0121	0.0206	0.1216	0.0152
500	0.50	Full	0.0005	0.0476	0.0023	0.0020	0.0540	0.0029	-0.0008	0.0553	0.0031
		Naive	0.0007	0.0555	0.0031	0.0999	0.0644	0.0141	-0.1978	0.0622	0.0430
		CMS	0.0003	0.0557	0.0031	-0.0024	0.0669	0.0045	0.0047	0.0702	0.0050
		CEE	0.0005	0.0559	0.0031	-0.0020	0.0680	0.0046	0.0048	0.0709	0.0050
	0.75	Full	-0.0001	0.0487	0.0024	-0.0034	0.0560	0.0032	0.0032	0.0562	0.0032
		Naive	-0.0030	0.0658	0.0043	0.1961	0.0700	0.0434	-0.3942	0.0653	0.1596
		CMS	-0.0024	0.0670	0.0045	-0.0065	0.0804	0.0065	0.0141	0.0928	0.0088
		CEE	-0.0023	0.0682	0.0047	-0.0083	0.0811	0.0066	0.0148	0.0954	0.0093

Simulation Results for Scenario 2

• Results for Scenario 2 shows similar patterns as results for Scenario 1 except that the SE of $\hat{\beta}_{CEE}$ is a little larger than that of $\hat{\beta}_{CMS}$.

• 1/3 of the population: $n_i = 1$; 1/3 of the population: $n_i = 2$; 1/3 of the population: $n_i = 3$;

•
$$U \sim N(0, \sigma_u^2)$$
, $\sigma_u = 0.5$ or 0.75

Scenario 3

n	σ_u	method	ĉ			$\hat{\alpha}$			γ		
		Bias	SE	MSE	Bias	SE	MSE	Bias	SE	MSE	
200	0.50	Full -0.0031	0.0752	0.0057	-0.0011	0.0872	0.0076	-0.0010	0.0899	0.0081	
		Naive -0.0062	0.0993	0.0099	0.1702	0.1165	0.0426	-0.3440	0.1091	0.1302	
		CMS -0.0058	0.1084	0.0118	-0.0140	0.1461	0.0215	0.0287	0.1855	0.0352	
		CEE -0.0050	0.1036	0.0108	-0.0112	0.1341	0.0181	0.0227	0.1519	0.0236	
	0.75	Full 0.0036	0.0759	0.0058	0.0031	0.0870	0.0076	0.0001	0.0879	0.0077	
		Naive 0.0041	0.1271	0.0162	0.3300	0.1396	0.1283	-0.6454	0.1212	0.4312	
		CMS 0.0064	0.1656	0.0275	-0.0119	0.2363	0.0560	0.0415	0.3422	0.1188	
		CEE 0.0081	0.1500	0.0226	-0.0230	0.2000	0.0405	0.0640	0.2849	0.0853	
300	0.50	Full -0.0017	0.0643	0.0041	-0.0016	0.0718	0.0052	-0.0006	0.0711	0.0051	
		Naive -0.0001	0.0851	0.0072	0.1747	0.0932	0.0392	-0.3543	0.0885	0.1334	
		CMS -0.0029	0.0902	0.0082	-0.0136	0.1305	0.0172	0.0232	0.1803	0.0331	
		CEE -0.0011	0.0872	0.0076	-0.0092	0.1091	0.0120	0.0136	0.1286	0.0167	
	0.75	Full -0.0009	0.0607	0.0037	0.0010	0.0695	0.0048	0.0008	0.0702	0.0049	
		Naive -0.0036	0.1073	0.0115	0.3258	0.1088	0.1180	-0.6485	0.0969	0.4299	
		CMS -0.0068	0.1340	0.0180	-0.0155	0.2016	0.0409	0.0334	0.3147	0.1001	
		CEE -0.0031	0.1196	0.0143	-0.0253	0.1551	0.0247	0.0485	0.2265	0.0536	
500	0.50	Full -0.0001	0.0482	0.0023	-0.0019	0.0554	0.0031	0.0008	0.0568	0.0032	
		Naive 0.0010	0.0651	0.0042	0.1756	0.0756	0.0366	-0.3479	0.0724	0.1263	
		CMS 0.0016	0.0718	0.0052	-0.0046	0.1004	0.0101	0.0133	0.1443	0.0210	
		CEE 0.0018	0.0692	0.0048	-0.0025	0.0847	0.0072	0.0087	0.1024	0.0106	
	0.75	Full -0.0013	0.0505	0.0026	-0.0022	0.0537	0.0029	0.0006	0.0551	0.0030	
		Naive -0.0041	0.0837	0.0070	0.3225	0.0876	0.1117	-0.6490	0.0804	0.4277	
		CMS -0.0022	0.1092	0.0119	-0.0245	0.1826	0.0340	0.0389	0.3002	0.0916	
		CEE -0.0048	0.0945	0.0090	-0.0205	0.1293	0.0171	0.0294	0.1875	0.0360	

Simulation Results for Scenario 3

- Results for Scenario 3 shows similar patterns as results for Scenario 1.
- The SE of Scenario 3 is a litter larger than that of Scenario 1. The reason is that 1/3 of the population has only one surrogate.

- 1/3 of the population: $n_i = 1$;
 - 1/3 of the population: $n_i = 2$;
 - 1/3 of the population: $n_i = 3$;
- U: the standardized N(0,1) distribution truncated between -c and cand scaled to have standard deviation of σ_u , where c = 2, $\sigma_u = 0.5$ or 0.75

Scenario 4

n	σ_u	method		ĉ		$\hat{\alpha}$			Ŷ		
		_	Bias	SE	MSE	Bias	SE	MSE	Bias	SE	MSE
200	0.50	Full	0.0019	0.0764	0.0058	-0.0007	0.0862	0.0074	0.0032	0.0866	0.0075
		Naive	0.0045	0.1002	0.0101	0.1688	0.1100	0.0406	-0.3356	0.1026	0.1231
		CMS	0.0026	0.1009	0.0102	-0.0053	0.1180	0.0140	0.0128	0.1283	0.0166
		CEE	0.0027	0.1006	0.0101	-0.0063	0.1188	0.0142	0.0148	0.1287	0.0168
	0.75	Full	0.0025	0.0760	0.0058	0.0016	0.0894	0.0080	-0.0019	0.0879	0.0077
		Naive	0.0021	0.1185	0.0141	0.3150	0.1334	0.1170	-0.6320	0.1130	0.4122
		CMS	0.0002	0.1236	0.0153	-0.0053	0.1604	0.0257	0.0166	0.1919	0.0371
		CEE	0.0007	0.1250	0.0156	-0.0123	0.1596	0.0256	0.0272	0.1910	0.0372
300	0.50	Full	-0.0011	0.0627	0.0039	-0.0004	0.0716	0.0051	-0.0011	0.0696	0.0048
		Naive	-0.0015	0.0810	0.0066	0.1674	0.0931	0.0367	-0.3378	0.0871	0.1217
		CMS	-0.0010	0.0831	0.0069	-0.0063	0.0966	0.0094	0.0102	0.1091	0.0120
		CEE	-0.0010	0.0829	0.0069	-0.0071	0.0979	0.0096	0.0123	0.1105	0.0124
	0.75	Full	0.0003	0.0634	0.0040	0.0035	0.0734	0.0054	0.0021	0.0732	0.0054
		Naive	-0.0050	0.1041	0.0109	0.3191	0.1065	0.1131	-0.6278	0.0913	0.4024
		CMS	-0.0026	0.1072	0.0115	-0.0051	0.1292	0.0167	0.0170	0.1581	0.0253
		CEE	-0.0030	0.1100	0.0121	-0.0094	0.1300	0.0170	0.0269	0.1575	0.0255
500	0.50	Full	0.0005	0.0476	0.0023	0.0020	0.0540	0.0029	-0.0008	0.0553	0.0031
		Naive	0.0026	0.0631	0.0040	0.1706	0.0731	0.0345	-0.3383	0.0670	0.1190
		CMS	0.0020	0.0631	0.0040	-0.0013	0.0793	0.0063	0.0032	0.0848	0.0072
		CEE	0.0026	0.0636	0.0040	-0.0021	0.0798	0.0064	0.0045	0.0837	0.0070
	0.75	Full	-0.0001	0.0487	0.0024	-0.0034	0.0560	0.0032	0.0032	0.0562	0.0032
		Naive	-0.0035	0.0799	0.0064	0.3123	0.0835	0.1045	-0.6264	0.0720	0.3975
		CMS	-0.0004	0.0790	0.0062	-0.0065	0.1013	0.0103	0.0147	0.1225	0.0152
		CEE	-0.0003	0.0808	0.0065	-0.0099	0.1013	0.0104	0.0203	0.1203	0.0149

Simulation Results for Scenario 4

- Results for Scenario 4 shows similar patterns as results for Scenario 2.
- The SE of Scenario 4 is a litter larger than that of Scenario 2. The reason is that 1/3 of the population has only one surrogate.

- 2 Measurement Error Model
- 3 Conditional Mean Score Based Estimating Equation Approach
- 4 Corrected estimating equation method
- 5 Simulation Studies

- Data: ACTG315 data, which is available at https://www.urmc.rochester.edu/biostat/people/faculty/ wusite/datasets/ACTG315LongitudinalDataViralLoad.cfm
- Aim: The relationship between viral load and CD4+ cell counts of the first two days of treatment.
- **Response Y:** The average load of viral load of the first two days of treatment
- **Predictor X:** The average counts of CD4+ cell counts of the first two days of treatment.

• Measurement Error Model:

$$W_{i,r} = X_i + U_{i,r}, \quad r = 1, \dots, n_i, \quad i = 1, \dots, 45$$

• Model:

$$Y_i = \exp(c_0 + \gamma_0 X_i)\varepsilon_i$$

Table: Analysis of the ACTG315 data with LS(Least Square), CMS, and CEE

	LS		CMS		CEE	
	Est	p-value	Est	p-value	Est	p-value
c_0	12.217(0.436)	0	12.383(0.401)	0	12.424(0.416)	0
γ_0	-0.377(0.216)	0.040	-0.491(0.212)	0.010	-0.514(0.220)	0.010

Thank you!