Bayesian analysis of pair-matched case-control studies subject to outcome misclassification

Tanja Högg ${ }^{1}$ Paul Gustafson ${ }^{1}$ Yinshan Zhao ${ }^{2,3}$ John Petkau ${ }^{1}$ Helen Tremlett ${ }^{2}$
${ }^{1}$ Department of Statistics, University of British Columbia
${ }^{2}$ Department of Medicine, University of British Columbia
${ }^{3}$ BC Centre for Improved Cardiovascular Health

Banff International Research Station
18.08.2013

Prodromal Multiple Sclerosis: the ProMS study

- Ongoing Canada-wide study (BC, NS, MA, SK) investigating the existence of a prodrome in multiple sclerosis (MS).
- Prevalence in Canada about .3\%, one of the highest in the world.
- No definite diagnostic test and highly heterogeneous symptoms lead to diagnostic delays.
- Focus lies on five years prior to the first recognized symptom of MS.
- Among others, presence of 14 morbidities in prodromal phase (e.g. hypertension, depression).
- Study data extracted from provincial administrative health databases.

Health administrative databases of British Columbia

- Medical Services Plan (MSP) Database
- claim information of fee-for-service practitioners in BC
- since 1991, includes one to five ICD codes for reason of visit (e.g. 340 for MS)
- Canadian Discharge Abstract Database
- captures administrative records for all hospital discharges
- includes a maximum of 25 ICD codes per discharge
- PharmaNet
- prescription medication dispensed by pharmacies across BC
- includes information on drug type, quantity, directions for use

Databases are linkable, giving near-universal coverage of healthcare contacts for British Columbians.

ProMS study design

- Matched case-control study
- MS cases identified from admin data using case definition of ≥ 3 MS-specific records, i.e.
- ICD 340 in MSP or hospital discharge files
- MS-specific prescription drugs in PharmaNet
- Date of first MS-specific claim (index date) marks end of five-year prodromal phase.
- Matched controls selected from peers without MS-related records.
- Matching variables are sex, postal code and age at index date.
- Linkage with British Columbia Multiple Sclerosis (BC MS) database.

Quality issues for administrative data

- ICD codes do not guarantee presence of a disease
- ICD coding errors
- Lack of specificity (e.g. ICD 780 - general symptoms)
- High misdiagnosis rate for multiple sclerosis (false positive rate of 35% reported by Poser [3])
- Possibility of misclassified disease status in ProMS, leading to
- apparent cases that are in fact controls
- apparent controls that are in fact MS cases
- Analysis must take potentially imperfect MS status of study subjects into account

Preliminaries

- Suppose interest lies in the odds ratio $O R$ between a binary exposure E and outcome D.
- D is unobserved and only available via surrogate D^{*} produced by a non-differential classifier.
- "Apparent" cases with $D^{*}=1$ are matched to "apparent" controls with $D^{*}=0$ on a set of confounders.
- Let $\left(E_{1 k}, E_{2 k}\right),\left(D_{1 k}, D_{2 k}\right)$ and $\left(D_{1 k}^{*}, D_{2 k}^{*}\right)$ denote the exposure, true and observed outcome of the apparent case and control in the k th of n pairs.
- Cell counts (probabilities):

Analysis of matched case-control data under perfect outcome classification

- Consider the exposure risk model

$$
\operatorname{logit}\left(P\left(E_{i k}=1\right)\right)=\beta_{k}+\delta I(i=1), \quad i=1,2
$$

where β_{k} is a pair-specific random effect.

- Assuming $E_{1 k}$ and $E_{2 k}$ are independent given β_{k}, Prescott et al. (2005) show that

$$
\begin{equation*}
O R=\exp (\delta)=\frac{P\left(E_{1}=1, E_{2}=0\right)}{P\left(E_{1}=0, E_{2}=1\right)}=\frac{\theta_{10}}{\theta_{01}} \tag{1}
\end{equation*}
$$

- This gives

$$
\begin{equation*}
\widehat{O R}=\frac{n_{10}}{n_{01}} \tag{2}
\end{equation*}
$$

- How do $\theta_{10} / \theta_{01}$ and $O R$ relate under outcome misclassification?

Bias under outcome misclassification

- Denote

$$
\theta_{l m \mid j j}=P\left(E_{1}=I, E_{2}=m \mid D_{1}=i, D_{2}=j\right), \quad i, j, I, m=0,1
$$

- Under non-differential misclassification, the numerator of (1) is

$$
\begin{aligned}
\theta_{10} & =\sum_{i, j \in\{0,1\}} \theta_{10 \mid i j} P\left(D_{1}=i, D_{2}=j \mid D_{1}^{*}=1, D_{2}^{*}=0\right) \\
& =\sum_{i, j \in\{0,1\}} \theta_{10 \mid i j} P\left(D_{1}=i \mid D_{1}^{*}=1\right) P\left(D_{2}=j \mid D_{2}^{*}=0\right)
\end{aligned}
$$

where

$$
p p=P\left(D_{1}=1 \mid D_{1}^{*}=1\right) \quad \text { and } \quad n p=P\left(D_{2}=0 \mid D_{2}^{*}=0\right)
$$

- Similarly for the denominator,

$$
\theta_{01}=\sum_{i, j \in\{0,1\}} \theta_{01 \mid i j} P\left(D_{1}=i \mid D_{1}^{*}=1\right) P\left(D_{2}=j \mid D_{2}^{*}=0\right)
$$

Bias under outcome misclassification (continued)

- Using

$$
\begin{array}{ll}
\theta_{01 \mid 10}=\theta_{10 \mid 01}, & \theta_{01 \mid 01}=O R \theta_{10 \mid 01} \tag{3}\\
\theta_{01 \mid 00}=\theta_{10 \mid 00}, & \theta_{01 \mid 11}=\theta_{10 \mid 11},
\end{array}
$$

manipulations yield

$$
\frac{\theta_{10}}{\theta_{01}}=O R \frac{1+\left(\frac{(1-n p)}{n p} a+\frac{(1-p p)}{p p} c\right)+\frac{(1-p p)(1-n p)}{p p n p} b}{1+O R\left(\frac{(1-n p)}{n p} a+\frac{(1-p p)}{p p} c\right)+O R^{2} \frac{(1-p p)(1-n p)}{p p n p} b}
$$

where

$$
a=\frac{\theta_{10 \mid 11}}{\theta_{10 \mid 10}}, \quad b=\frac{\theta_{10 \mid 01}}{\theta_{10 \mid 10}}, \quad c=\frac{\theta_{10 \mid 00}}{\theta_{10 \mid 10}} .
$$

- Therefore,

$$
\frac{\theta_{10}}{\theta_{01}} \leq O R \quad \text { if } \quad O R \geq 1 \quad \text { and } \quad \frac{\theta_{10}}{\theta_{01}}>O R \quad \text { if } \quad O R<1
$$

A Bayesian model for matched studies under outcome misclassification

- Assuming independence between pairs,

$$
\left(n_{11}+n_{00}, n_{10}, n_{01}\right) \sim \text { Multinomial }\left(n,\left(\theta_{11}+\theta_{00}, \theta_{10}, \theta_{01}\right)\right)
$$

where

$$
\begin{aligned}
& \theta_{10}=p p n p \theta_{01 \mid 10} O R+(1-p p)(1-n p) \theta_{01 \mid 10}+p p(1-n p) \theta_{10 \mid 00}+(1-p p) n p \theta_{10 \mid 11} \\
& \theta_{01}=p p n p \theta_{01 \mid 10}+(1-p p)(1-n p) \theta_{01 \mid 10} O R+p p(1-n p) \theta_{10 \mid 00}+(1-p p) n p \theta_{10 \mid 11}
\end{aligned}
$$

- Taking the difference between cell probabilities,

$$
\theta_{10}-\theta_{01}=\theta_{01 \mid 10}(O R-1)(p p n p-(1-p p)(1-n p))
$$

- Problem is non-identifiable when $p p, n p$ or $\theta_{01 \mid 10}$ are unknown.
- Needed: prior input to inform prior distributions of $p p, n p$ and $\theta_{01 \mid 10}$.

Prior distributions

- Six model parameters: $\left(p p, n p, O R, \theta_{01 \mid 10}, \theta_{01 \mid 00}, \theta_{01 \mid 11}\right)^{\prime}$
- Choose informed, independent priors for $p p, n p$ and $\theta_{01 \mid 10}$

$$
\begin{aligned}
p p & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
n p & \sim \operatorname{Beta}\left(\beta_{1}, \beta_{2}\right) \\
\theta_{01 \mid 10} & \sim \operatorname{Beta}\left(\gamma_{1}, \gamma_{2}\right)
\end{aligned}
$$

- Determine α_{j} and $\beta_{j, j=1,2}$ from previous estimates $\widehat{p p}, \widehat{n p}$ and $s e(\widehat{p p})$, se($\widehat{n p})$.
- Determine γ_{j} from validation data via

$$
\begin{aligned}
m_{01} \mid \theta_{01 \mid 10} & \sim \operatorname{Bin}\left(n_{v a l}, \theta_{01 \mid 10}\right) \\
\theta_{01 \mid 10} & \sim \operatorname{Unif}(0,1)
\end{aligned}
$$

where m_{01} is the number of case-control pairs with $\left(E_{1}=0, E_{2}=1\right)$.

- Implies $\gamma_{1}=m_{01}+1$ and $\gamma_{2}=n_{\text {val }}-m_{01}+1$.

Prior distributions (continued)

Choose uniform priors for $O R, \theta_{01 \mid 00}$ and $\theta_{01 \mid 11}$ as

$$
\begin{gathered}
O R \mid p p, n p, \theta_{01 \mid 10} \sim \operatorname{Unif}\left(0, t_{1}\right) \\
\theta_{01 \mid 00} \mid O R, p p, n p, \theta_{01 \mid 10} \sim \operatorname{Unif}\left(0, t_{2}\right) \\
\theta_{01 \mid 11} \mid O R, p p, n p, \theta_{01 \mid 10}, \theta_{01 \mid 00} \sim \operatorname{Unif}\left(0, t_{3}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& t_{1}=\min \left(\frac{1}{\theta_{01 \mid 10}}, \frac{1}{\theta_{01 \mid 10}(p p n p+(1-p p)(1-n p))}-1\right) \\
& t_{2}=\min \left(1, \frac{1-(O R+1) \theta_{01 \mid 10}(p p n p+(1-p p)(1-n p))}{2 p p(1-n p)}\right) \\
& t_{3}=\min \left(1, \frac{1-(O R+1) \theta_{01 \mid 10}(p p n p+(1-p p)(1-n p))-2 p p(1-n p) \theta_{01 \mid 00}}{2(1-p p) n p}\right)
\end{aligned}
$$

to ensure that $\theta_{10}+\theta_{01} \leq 1$ and $\theta_{i j \mid / m} \leq 1$.

Simulation study

- Generate
- n apparent case-control pairs
- $n_{\text {val }}$ true case-control pairs, matched on a binary confounder U with $D-E$ association $O R$.
- Evaluate

1. posterior median of $O R$,
2. length and coverage of 95% posterior credible interval of $O R$,
3. empirical size and power of the hypothesis test $H_{0}: O R=1$ for naive and proposed analysis.

- Examine different settings of
- disease-exposure association $O R$,
- cohort sizes n and $n_{\text {val }}$,
- misclassification (SN, SP),
- prior uncertainty about $p p$ and $n p$.
- deviations of $\widehat{p p}, \widehat{n p}$ from true $p p, n p$

Results: Median, length and coverage

Median of posterior distribution of $O R$, coverage and length of 95% posterior credible interval, averaged over 1000 runs:

		naive					adjusted		
$S N$	$S P$	median	coverage	length		median	coverage	length	
0.7	0.7	1.29	0.00	0.47		2.00	0.96	1.72	
	0.9	1.53	0.15	0.56		1.97	0.95	1.11	
	1.0	1.84	0.83	0.68		2.05	0.96	0.92	
0.9	0.7	1.44	0.06	0.53		2.00	0.96	1.26	
	0.9	1.70	0.53	0.63		2.03	0.97	1.01	
	1.0	1.94	0.92	0.73		2.04	0.97	0.82	
1	0.7	1.53	0.16	0.57		1.99	0.96	1.10	
	0.9	1.78	0.71	0.67		2.01	0.96	0.93	
	1.0	2.00	0.95	0.75		2.00	0.95	0.70	

Application - Morbidities in MS prodrome

- Estimate odds ratio of MS and presence of 14 morbidities in the prodromal phase.
- Study cohort of 7250 apparent case-control pairs.
- Determine presence of morbidities via case definitions of Marrie et al. [1].
- E.g. hypertension is considered prevalent if ≥ 4 disease-related records within 2 years.
- Assume $n p=1$ and use $\widehat{p p}=0.83, \operatorname{se}(\widehat{p p})=0.02$ based on Marrie et al. [2] for prior input on pp.
- Validation cohort defined as subset with $\geq 20 \mathrm{MS}$-specific ICD codes $\left(n_{\text {val }}=929\right)$.

Results

Acknowledgements

All inferences, opinions, and conclusions drawn in this presentation are those of the authors, and do not reflect the opinions or policies of the Data Steward(s).

References

Thank you.

[1] Marrie, R. A., J. D. Fisk, K. J. Stadnyk, H. Tremlett, C. Wolfson, S. Warren, V. Bhan, B. N. Yu, and CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis (2014). Performance of administrative case definitions for comorbidity in multiple sclerosis in Manitoba and Nova Scotia. Chronic Diseases and Injuries in Canada 34(2-3), 145-53.
[2] Marrie, R. A., J. D. Fisk, K. J. Stadnyk, B. N. Yu, H. Tremlett, C. Wolfson, S. Warren, and V. Bhan (2013). The incidence and prevalence of multiple sclerosis in Nova Scotia, Canada. The Canadian Journal of Neurological Sciences 40(06), 824-831.
[3] Poser, C. M. (1997). Misdiagnosis of multiple sclerosis and β-interferon. The Lancet 349(9069), 1916.
[4] Prescott, G. J. and P. H. Garthwaite (2005). Bayesian analysis of misclassified binary data from a matched case-control study with a validation sub-study. Statistics in Medicine 24(3), 379-401.

