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Setting 
 
 
Risk prediction model has first been developed based on  
error-free time to event data, and subsequently  
implemented in practical setting where time to event  
data can be error-prone. 
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Motivation I 
 
Mendelian risk prediction models in genetic counseling: 
 
•  Calculating the probability that an individual carries a cancer causing 

inherited mutation based on his/her family history. 
 
•  Predicting the absolute risk of developing the disease over time given 

his/her mutation-carrier status and family history.     
 
 
 
These models are in wide clinical use and web-based patient-
oriented tools: breast cancer, ovarian cancer, Lynch syndrome, 
pancreatic cancer, melanoma etc. 
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These models were developed based on error-free data. 
 
Studies about accuracy of self-reported family history show that sensitivity and 
specificity for reported disease status vary by degree of relative and cancer 
type. 
 
Breast cancer: 
Disease status, sensitivity 65% - 95%; specificity 98% - 99%.    
Age of diagnosis was misreported for 3.1% of relatives, average of 4.5 years 
between the true and misreported ages (Mai et al 2011; Ziogas and Anton-
Culver, 2003). 

  
Ovarian cancer: 
Age of diagnosis was misreported for 4.2% of relatives, average of 4.2 years 
between the true and misreported ages (Ziogas and Anton-Culver, 2003). 
  
Misreporting of family history, especially in disease status, leads 
to distortions in predictions (Katki, 2006). 
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2% of truly unaffected are 
reported as affected  

65% of truly affected are reported 
affected 



Q: Is it possible to develop prediction models based on 
error-prone data? 
 
A: Not in the context of Mendelian risk prediction models which relies 
on penetrance estimates from the literature, based on error-free data.  
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disease probability given carrier status 



Motivation II 
 
Survival prediction models: 
 
In some disease settings, such as cancer, TTP is one of the predictors 
for survival. 
 
Assume a model has been developed based on error-free TTP. 
 
In practice, TTP is error-prone: 
•  Tumor assessment is done using imaging, which varies by observers.  
•  Scans are taken at regularly intervals. 
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Time to progression – length of time 
until the disease gets worse or spread 



The current setting vs the common settings 
 
The usual measurement error setting: 
ü  Error-prone covariate observed in the main study. 
ü  The goal is estimating the relationship between the 
    outcome and the true covariate. 

Current setting: 
ü  The relationship between the outcome and the true    
    covariate is known. 
ü  The goal is to use this model for risk estimation based on 
    an error-prone covariate. 
 
Naïvely using the error-prone covariate will lead to biased results. 
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The data: 
 
     - outcome 
 
       - the true failure time 
 
      - the true right-censoring time 
 
Error-free predictor:                        (for simplicity, one relative) 
 
where 
   
 
Example:                       and          the mother’s age at onset.  
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Y

T o

 C

  H = T ,δ( )

  T = min T o ,C( )     δ = I T o ≤ C( )

  Y = 0  or  1 T o



 
Error-free predictor: 
 
Error-prone predictor:  
 
Example: the counselee doesn’t know that his/her relative had the 
disease, or the correct age at onset. 
 
Assumption: We have a validation study with 
 

and 
 

but no need for the outcome    . 
 
The risk prediction model: 
 
                       Our goal is estimating     
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  H = T ,δ( )

  H
* = T *,δ *( )

  H = T ,δ( )   H
* = T *,δ *( )

Y

  Pr Y | H( )

  Pr Y | H *( )



                       
  Our goal is estimating  

 
Main idea:  
 
 
 
 
 
 
 
 
Assumptions:  
 
•         contains no information on predicting      beyond     . 
•  The measurement error model                       is transportable.   
                      

BIRS  2016	 10	

  Pr Y | H *( )

  

P Y | H *( ) = P Y , H | H *( )dH
H
∫

      = P Y | H , H *( )P H | H *( )dH
H
∫

      = P Y | H( )P H | H *( )dH
H
∫

  H * H Y
  P H | H *( )

surrogacy assumption 



                      
              A non parametric estimator of 
 
 
 
Main idea:  
 
 
 
 
 
 
 
 
Assumptions:  
Conditional independence of event and censoring times given       . 
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Pr H |H *( )

  H *

  H = T ,δ( )   H
* = T *,δ *( )

P T ,δ |T *,δ *( )
   = λ T |T *,δ *( )δ S T |T *,δ *( )h T |T *,δ *( )1−δ G T |T *,δ *( )

Conditional hazard and 
survival of true failure time  

Conditional hazard and survival 
of true  censoring time 

Assume, for simplicity, 
one family member 

The distribution is 
left unspecified 



                      
               
 
 
 
These hazards and survival functions can be estimated non-
parametrically by using the validation data – a large study population 
that does not involve the counselee. 
 
Validation data 
 
 
 
 
 
Use kernel smoothed Kaplan-Meier estimator (Beran, 1981). 
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P T ,δ |T *,δ *( )
   = λ T |T *,δ *( )δ S T |T *,δ *( )h T |T *,δ *( )1−δ G T |T *,δ *( )

   Ti = min Ti
o ,Ci( )     δ i = I Ti

o ≤ Ci( )     i = 1,…,n

Hi = Ti ,δ i( )     Hi
* = Ti

*,δ i
*( )

dependent individuals 



Kernel smoothed Kaplan-Meier estimator (Beran, 1981): 
 
 
 
 
 
 
 
 
 
 
 
and we get                                        for                      .             
 
For estimating the survival function of the censoring time, apply 
the above while treating the censoring times as events and the 
event times as censoring.   
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Wi t;bnl ,l( ) = I δ i

* = l( )K
t −Ti

*

bnl

⎛

⎝⎜
⎞

⎠⎟
    i = 1,…,n  l = 0,1

Known kernel function 
Bandwidth sequences 

Nadaraya-Watson weight 

  

Ŝ t | t*,l( ) = 1−
Wi t*;bnl ,l( )
Wj t*;bnl ,l( )j=1,δ j

*=l

n∑ I Tj ≥ Ti( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟Ti≤t ,δ i=1,δ i

*=l
∏

  Ŝ t | t*,0( ),   Ŝ t | t*,1( )   t,t
* ∈(0,τ ]



Summary 
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provided 

  
P̂ Y | H *( ) = P Y | H( ) P̂ H | H *( )dH

H
∫

H = H1 ,…,HR( )
H ∗ = H1

∗,…,HR
∗( )

P H |H ∗( ) = P H j |H j
∗( )

j=1

R

∏

P̂ H |H ∗( ) = P̂ H j |H j
∗( )

j=1

R

∏

  

P̂ H j | H j
∗( ) = P̂ Tj ,δ j |Tj

∗,δ j
∗( )

   = λ̂ Tj |Tj
∗,δ j

∗( )δ j Ŝ Tj |Tj
∗,δ j

*( ) ĥ Tj |Tj
∗,δ j

∗( )1−δ j Ĝ Tj |Tj
∗,δ j

∗( )



 
 
 
 
 
In case integrating over all possible values of H is computational 
challenging, a Monte-Carlo estimator can be used, by sampling 
 
 
From                        and the final proposed estimator is given by 
 
 
 
 
 

BIRS  2016	 15	

provided 

   H
(1) ,…, H ( B)

  P̂ H | H *( )

  
P̂ Y | H *( ) = P Y | H( ) P̂ H | H *( )dH

H
∫

  
P̂ Y | H *( ) = 1

B
P̂ Y | H (b)( )

b=1

B

∑



Application: Mendelian Risk Prediction Model 
 
A counselee provides information on R relatives: 
 
 
 
Let  
 
 
 
 
 
Aims:    
o     Estimating 

o     Estimating                                         .  
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   Hi
* = Ti

*,δ i
*( )   instead of  Hi = Ti ,δ i( )       i = 1,…, R

   

γ i = γ i1,…,γ iM( ),   γ im = 0  or  1

γ im = 1 indicates carrying the genetic variant that confer disease risk

P γ 0 |H0 ,H1
*,…,HR

*( )
   P T0

o > t | H0 , H1
*,…, HR

*( )



Carrier probability 
 
Write 
 
 
 
 
 
 
 
 
 
and in practice 
 
is naively being used. We propose 
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P Y |H( ) = P γ 0 |H0 ,H1,…,HR( )

   

P γ 0 | H0 , H1,…, HR( ) =
P γ 0( ) P Hi |γ i( )P γ 1,…,γ R |γ 0( )i=0

R∏γ 1,…,γ R
∑

P γ 0( ) P Hi |γ i( )P γ 1,…,γ R |γ 0( )i=0

R∏γ 1,…,γ R
∑γ 0

∑

BRCAPRO estimate it via 
meta-analysis, and family 
history information is verified 
using medical records  

conditional 
independence of 
family members’ 
phenotype given their 
genotypes. 

P Y |H *( ) = P γ 0 |H0 ,H1
*,…,HR

*( )

  
P̂ γ 0 | H *( ) = P γ 0 | H( ) P̂ H | H *( )dH

H
∫



Survival probability 
 
Write 
 
 
 
 
 
 
 
 
 
and in practice 
 
is naively being used. We propose 
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   P Y | H *( ) = P γ 0 | H0 , H1
*,…, HR

*( )

   

P T0
o > t | H0 , H1,…, HR ,γ 0( )

      =
P T0

o > t |γ 0( ) P Hi |γ i( )P γ 1,…,γ R |γ 0( )i=1

R∏γ 1,…,γ R
∑

P Hi |γ i( )P γ 1,…,γ R |γ 0( )i=0

R∏γ 1,…,γ R
∑

   P Y | H( ) = P T0
o > t | H0 , H1 ,…, HR ,γ 0( )

  
P̂ T0

o > t | H *( ) = P T0
o > t | H( ) P̂ H | H *( )dH

H
∫



Simulation Study 
 
•  Setting:                                                                with single gene BRCA1 

•  Two datasets were generated, one to model the measurement error 
distribution, and the other represents the counselees. 

•  The BRCA1 carrier probability 0.006098. 

•  The penetrance function                   from BRCAPRO version 2.08. 

•  Normal censoring, mean 55, SD 10. 

•  Measurement error in disease status: sen=0.954, spec=0.974; 
sen=0.649 and spec=0.990. 
 
•  Measurement error in age:   
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P Y |H( ) = P γ 0 |H0 ,H1,…,HR( )

100,000 families, each with 5 
members (mother, father, 3 
daughters) 

  P H |γ( )

   T
* = T + ε     ε ∼ N 0,σ 2( )      σ =1,3,5

   T
* = TU      U ∼ Exp 1( )

50,000 counselees 



Results 
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O/E = I γ 0i = 1( ) /
i∑ P̂ii∑

MSEP = n−1 P̂i − P̂i γ 0 | H( ){ }2

i∑



Summary of simulation results 
 
•  We are able to eliminate almost all the bias induced by ME in 

histories (O/E). 

•  We are able to improve accuracy (MSEP). 

•  We are able to improve discrimination (ROC-AUC) only to 
some degree. 
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Survival prediction - summary of simulation results (multip.) 
 
 
 
 
 

BIRS  2016	 22	



Survival prediction - summary of simulation results (multip.) 
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Survival prediction - summary of simulation results (multip.) 
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Concluding remarks 
 
ü A non-parametric adjustment is provided, for measurement error in 

time to event predictor.  

ü Ignoring the measurement error, provides miscalibrated models. 

ü The proposed adjustment improves calibration and total accuracy.  
 
ü The proposed method can be easily incorporated in BayesMendel R 

package for direct clinical use. 

Model discrimination only partially improved. 
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END 
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Example – misreporting breast cancer 
 
Counselees:  
•  Data from the Cancer Genetics Network (CGN) Model Evaluation 

Study, with known carrier status.  
•  2038 families, 34310 relatives.  
•  9.2% of the relatives have breast cancer. 
•  Only error-prone self-reported family history is available. 
 
Validation data: 
•  Data from U of California at Irvine (UCI). 
•  719 cancer affected counselees (breast, ovarian or colon cancer). 
•  1521 female relatives, 19.3% with breast cancer. 
•  Error-prone and error-free family history are available. 

 
 

BIRS  2016	 27	



Example – misreporting breast cancer 
Log of O/E and 95% confidence intervals for being a BRCA carrier for counselees in CGN 
dataset, stratified by risk decile: 
 
 
•  Transportability? 
•  Small sample? 

Very small improvement in 
Brier score and ROC-AUC.  
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