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Consider first the simple case of deterministic frontier models.
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Outputs ∈ R+
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Goal : To estimate the boundary of the

support, i.e. the (production) frontier ϕ

Some examples :

⋆ Family farms :

Input : Number of cows, hectars of land, ...

Output : Liters of milk

⋆ Productivity of universities :

Input : Human and financial capital

Output : Number of publications, PhDs, ...

ϕ



Typically,

⋄ Input = labor, energy, capital, . . .

⋄ Output = amount of goods produced

Other areas of application :

Industry, hospitals, transportation, schools, banks, public

services, . . .

Nonparametric estimators of the frontier :

⋄ DEA (Data Envelopment Analysis) : Farrell (1957)

⋄ FDH (Free Disposal Hull) : Deprins, Simar, Tulkens (1984)

Output oriented versus input oriented frontiers



We now add some noise to the outputs, i.e. we consider stochastic

frontier models.
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We restrict attention for the moment to the one-dimensional case (i.e.

no inputs).



Consider the model

Y = X · Z or equivalently Y ∗ = X ∗ + Z ∗,

where Y ∗ = log Y , X ∗ = log X , Z ∗ = log Z

Y is observed

X is the true unobserved variable of interest

Z is the noise, supposed to be independent of X

the distribution (or variance) of Z is unknown

We suppose that X lives on (0, τ ] (or X ∗ lives on (−∞, log τ ]).

Goal : Estimation of τ

Two cases :

⋄ Z ∗ ∼ N(0, σ2) with σ unknown

⋄ density of Z ∗ is symmetric around 0

Data : Y1, . . . ,Yn ∼ Y i.i.d.



Literature :

⋄ σ known : extensive literature, see e.g.

* Goldenshluger and Tsybakov (2004)

* Delaigle and Gijbels (2006)

* Meister (2006)

* Aarts, Groeneboom and Jongbloed (2007), among many others

⋄ σ unknown : Hall and Simar (2002) :

* density of Z ∗ unknown but symmetric

* σ = σn → 0



Related research : Estimation of f when f is smooth on (0,∞)

⋄ Butucea and Matias (2005)

⋄ Meister (2006, 2007)

⋄ Butucea, Matias and Pouet (2008)

⋄ Schwarz and Van Bellegem (2010)

⋄ Delaigle and Hall (2016)
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We suppose for case 1 that

log Z ∼ N(0, σ2) with σ unknown.

Note that the density of Z is then given by (for z > 0)

1

σz
φ
( log z

σ

)
.

Let Y ∼ g and X ∼ f . A subindex 0 will be added to indicate the true

quantities (like f0,g0, τ0, ...).

It can be shown that for all y > 0 :

g0(y) =
1

σ0y

∫ 1

0

h0(t)φ

(
1

σ0
log

y

tτ0

)
dt , (1)

where h0(t) = τ0f0(tτ0) for 0 ≤ t ≤ 1.



Theorem

There exists a unique σ0 > 0, a unique τ0 > 0 and a unique density h0

such that (1) holds true, i.e. such that the model is identifiable.

Remark. The proof follows from Schwarz and Van Bellegem (2010),

who prove the identifiability for any PX belonging to

{P ∈ P|∃A ∈ B(IR) : |A| > 0 and P(A) = 0},

where B(IR) = set of Borel sets in IR

P = set of all probability distributions on IR

|A| = Lebesgue measure of A.

Other error densities that allow to identify the model :

⋄ Cauchy

⋄ stable, ...

(see Schwarz and Van Bellegem, 2010).



We use penalized profile likelihood maximization to estimate τ :

Define

gh,τ,σ(y) :=
1

σy

∫ 1

0

h(t)φ

(
1

σ
log

y

tτ

)
dt .

Obviously, g0 = gh0,τ0,σ0
. Let

Γ =
{
γ = (γ1, . . . , γM ) : γk > 0 for all k and

∑M
k=1 γk = M

}
,

for some M <∞, and define

hγ(t) = γ1I(t = 0) +
∑M

k=1 γk I(qk−1 < t ≤ qk )

for 0 ≤ t ≤ 1, where qk = k/M (k = 0,1, . . . ,M). Then,

ghγ ,τ,σ(y) =
1

σy

M∑

k=1

γk

∫ qk

qk−1

φ

(
1

σ
log

y

tτ

)
dt .



Let

(τ̂ , σ̂, γ̂) = argmaxτ>0,σ>0,γ∈Γ

{
n−1

n∑

i=1

log ghγ ,τ,σ(Yi)− λpen(ghγ ,τ,σ)
}
,

where λ ≥ 0 is a fixed value independent of n, and where

pen(ghγ ,τ,σ) = max
3≤j≤M

|γj − 2γj−1 + γj−2|.

Moreover, ĥ := ĥγ̂ estimates h0, and ĝ := g
ĥ,τ̂ ,σ̂

estimates g0.

Note :

⋄ λ can be taken equal to 0

⇒ Both penalized and non-penalized estimators are considered

But : penalized estimator attains better rate of convergence.

⋄ λ is chosen independent of n



Asymptotic results

Assume that

(A1) For some 0 < σl < σu <∞, 0 < τl < τu <∞, 0 < hl < hu <∞
and 0 < δ < 1, the estimators (ĝ, τ̂ , σ̂) are determined by

minimizing over all

(hγ , τ, σ) ∈ Hn × [τl , τu]× [σl , σu],

where Hn ⊂ Hhl ,hu,δ, and

Hhl ,hu,δ = {h|h is square integrable density with support [0,1]

satisfying sup
t

h(t) ≤ hu and inf
1−δ≤t≤1

h(t) ≥ hl}.

(A2) h0 ∈ Hhl ,hu,δ and is twice continuously differentiable, τ0 ∈ [τl , τu ],

and σ0 ∈ [σl , σu].

(A3) For some 0 < β < 1/5, M = Mn ∼ nβ as n tends to ∞.



(A4) For some A >
√

2, P
(

log Y < −A(log n)1/2σ0

)
= o(n−1).

Remark. Note that (A4) holds if e.g. h0 ≡ 0 on [0, ǫ] for some ǫ > 0.

For two arbitrary densities g1 and g2, let

H2(g1,g2) =
1

2

∫ (√
g1(y) −

√
g2(y)

)2
dy

be the Hellinger distance between g1 and g2.

Theorem 1. Assume (A1)-(A4). Then, if λ ≥ 0,

H(ĝ,g0) = OP(M
−2
n ),

and if λ > 0,

pen(ĝ) = OP(M
−2
n ).



Theorem 2. Assume (A1)-(A4). Then,

a) If λ = 0 (i.e. without penalization),

σ̂ − σ0 = OP

(
(log n)−1

)
,

τ̂ − τ0 = OP

(
(log n)−

1
2

)
.

b) If λ > 0 (i.e. with penalization),

σ̂ − σ0 = OP

(
(log n)−2

)
,

τ̂ − τ0 = OP

(
(log n)−

3
2

)
,

ĥ(1)− h0(1) = OP

(
(log n)−1

)
.



Remark. Instead of using a histogram estimator for h0, one could use

suitable spline estimators to approximate h0.

We have shown that if h0 is m-times continuously differentiable for

some m > 2, then

σ̂ − σ0 = OP

(
(log n)−(1+m

2
)
)
,

τ̂ − τ0 = OP

(
(log n)−

m+1
2

)
,

ĥ(1)− h0(1) = OP

(
(log n)−

m
2

)
.

as long as ĝ = g
ĥ,τ̂ ,σ̂

(obtained with splines or another approximation

method) satisfies

H(ĝ,g0) = OP(n
−κ) for some κ > 0.



Extension to covariates (inputs)

Consider the model

Y = ϕ(W )exp(−U)exp(V ), (2)

where V ∼ N(0, σ2(W ))

U > 0 has a jump at the origin

U and V are independent given W

only W and Y are observed.

Equivalently, log Y = logϕ(W ) − U + V .

Note that

⋄ If ϕ ≡ τ is constant, then the model can be written as Y = X · Z ,

where X = τ exp(−U) and Z = exp(V )

⇒ Model (2) extends our previous model to covariates.

⋄ U represents the inefficiency, V represents the error.



References :

⋄ Fully parametric approach (ϕ, fU and fV parametric) :

many papers; see Greene (2008) for a survey

⋄ Semiparametric approach (ϕ nonpar., fU and fV param.) :

see e.g. Fan et al (1996), Kumbhakar et al (2007)

Our goal :

ϕ and fU nonparametric, fV normal but with unknown variance.

But :

Dropping parametric assumptions on the distribution of U greatly

complicates the problem and enforces to develop completely

new methods.



Suppose that dim(W ) = d .

Let (W1,Y1), . . . , (Wn,Yn) ∼ (W ,Y ) i.i.d.

Fix w0 in the support of W and define

(τ̂(w0), σ̂(w0), γ̂(w0))

= argmaxτ>0,σ>0,γ∈Γ

{
n−1

b

∑

i :‖Wi−w0‖2≤b

log ghγ ,τ,σ(Yi)− λ pen(ghγ ,τ,σ)
}
,

where b is a bandwidth, nb :=
∑n

i=1 I{‖Wi − w0‖2 ≤ b}, and

pen(ghγ ,τ,σ) = max
3≤j≤M

|γj − 2γj−1 + γj−2|.

This ‘local constant’ estimator can be improved to a ‘local linear’

estimator (details omitted).
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Recall that Y = X · Z , or equivalently,

log Y = log X + log Z

= log τ − U + log Z ,

where U > 0 and log Z ∼ N(0, σ2).

Suppose that U ∼ Exp(β). Then, the density of X can be written as

f (x) =
β

τβ
xβ−1I(0 ≤ x ≤ τ).

Let

⋄ β = 1 and β = 2

⋄ τ = 1

⋄ σ = σlog Z = ρσU with ρ = 0,0.05,0.25,0.75.

⋄ n = 100



Density of X when U ∼ Exp(β)
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Consider

⋄ 500 replications of each experiment

⋄ Choice of λ : minimization of

RMSE(τ̂) + RMSE(σ̂)

for log10 λ = −4,−3,−2,−1,0,1,2,3,4

⋄ Choice of M : let

M = max
(
3, c × round(n1/5)

)

(rule of thumb).

We fix c = 2. Very similar results were obtained with c = 3 (and

even with c = 1 but here the number of bins was very small).

For n = 100 we have M = 5.



Case 1 : β = 1

ρ log10 λ τ̂ σ̂

0 -3 RMSE 0.0138 0.39e-04

BIAS -0.0098 0.13e-04

STD 0.0098 0.37e-04

0.05 -2 RMSE 0.0370 0.0350

BIAS -0.0067 -0.0121

STD 0.0365 0.0328

0.25 -1 RMSE 0.0988 0.0840

BIAS -0.0251 0.0182

STD 0.0956 0.0821

0.75 1 RMSE 0.0872 0.1495

BIAS -0.0460 0.1153

STD 0.0742 0.0952



Case 2 : β = 2

ρ log10 λ τ̂ σ̂

0 1 RMSE 0.0066 0.45e-03

BIAS -0.0042 0.42e-03

STD 0.0050 0.17e-03

0.05 -2 RMSE 0.0178 0.0190

BIAS -0.0019 -0.0054

STD 0.0177 0.0182

0.25 -1 RMSE 0.0352 0.0332

BIAS 0.0020 0.0049

STD 0.0351 0.0329

0.75 -1 RMSE 0.0750 0.0544

BIAS 0.0250 -0.0090

STD 0.0708 0.0537



Density of X when U ∼ N+(α, β2)

α = 0, β = 0.8 α = 0.6, β = 0.6
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Case 1 : α = 0, β = 0.8

ρ log10 λ τ̂ σ̂

0 -4 RMSE 0.0127 0.29e-04

BIAS -0.0090 0.14e-04

STD 0.0090 0.26e-04

0.05 -2 RMSE 0.0441 0.0385

BIAS -0.0227 0.0083

STD 0.0378 0.0376

0.25 -2 RMSE 0.0999 0.0672

BIAS -0.0436 0.0126

STD 0.0900 0.0661

0.75 1 RMSE 0.0777 0.0716

BIAS -0.0529 0.0555

STD 0.0570 0.0452



Case 2 : α = 0.6, β = 0.6

ρ log10 λ τ̂ σ̂

0 -2 RMSE 0.0255 0.13e-03

BIAS -0.0169 0.50e-04

STD 0.0191 0.12e-03

0.05 -4 RMSE 0.1038 0.0776

BIAS -0.0672 0.0428

STD 0.0792 0.0649

0.25 -3 RMSE 0.1483 0.0894

BIAS -0.0959 0.0301

STD 0.1132 0.0843

0.75 2 RMSE 0.1812 0.0876

BIAS -0.1226 0.0711

STD 0.1336 0.0512



Robustness to Gaussian assumption :

We now compare our method with the one by Hall and Simar (2002,

JASA), who assumed that

⋄ density of log Z unknown but symmetric

⋄ σ = σn → 0

Consider (as before) the case where U ∼ N+(0,0.82).

Consider the same model settings as before, except that

log Z ∼ C1t4 or log Z ∼ C2 Laplace,

where the scaling factors C1 and C2 are chosen to obtain the same

noise to signal ratios as in the preceding simulation.



Case 1 : log Z ∼ C1t4

ρ τ̂ τ̂HS σ̂

0 RMSE 0.0129 0.0427 0.38e-03

BIAS -0.0088 -0.0087 0.30e-03

STD 0.0095 0.0418 0.24e-03

0.05 RMSE 0.0415 0.0431 0.0363

BIAS -0.0210 -0.0085 0.0070

STD 0.0359 0.0423 0.0356

0.25 RMSE 0.0963 0.0600 0.0788

BIAS -0.0492 -0.0075 0.0155

STD 0.0829 0.0596 0.0774

0.75 RMSE 0.0767 3.0828 0.1027

BIAS -0.0550 0.6044 0.0552

STD 0.0535 3.0260 0.0867



Case 2 : log Z ∼ C2 Laplace

ρ τ̂ τ̂HS σ̂

0 RMSE 0.0128 0.0394 0.12e-03

BIAS -0.0086 -0.0062 0.48e-04

STD 0.0095 0.0389 0.11e-03

0.05 RMSE 0.0434 0.0431 0.0361

BIAS -0.0235 -0.0085 0.0073

STD 0.0365 0.0423 0.0354

0.25 RMSE 0.0959 0.0598 0.0703

BIAS -0.0481 -0.0045 0.0142

STD 0.0830 0.0597 0.0689

0.75 RMSE 0.0777 0.4797 0.0818

BIAS -0.0564 0.1189 0.0542

STD 0.0535 0.4652 0.0614



Conclusions

⋄ We considered the model Y = X · Z , where Y is observed, X is

the variable of interest with support (0, τ ] and Z is the noise.

⋄ We supposed that f (τ) > 0 and that Z is independent of X and is

log-normal with unknown variance σ2.

⋄ We showed that the model is identifiable.

⋄ We proposed a profile likelihood estimator for τ and σ and proved

their consistency and rate of convergence.

⋄ We showed that the estimators work well for small n.
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Consider the model

Y = X + ε = τ + Z + ε, where Z ≥ 0,X ⊥⊥ ε,

and we assume now that

the density of ε is symmetric around 0, but otherwise unknown.

Note that X lives on [τ,∞).

As in Delaigle and Hall (2016) we assume that X is

non-decomposable, i.e. it is not possible to write X as

X = X1 + X2,

with X1 ⊥⊥ X2

X1 ≥ τ1 for some τ1

X2 is symmetric around 0.

This assumption is necessary to make the model identifiable.



Let

ψY (t) = E{exp(itY )}

be the characteristic function of Y . We propose to estimate τ by

minimizing the following distance between two estimators of ψY (t) :

∫
w(t)

∣∣∣ψ̂NP(t)− ψ̂τ (t)
∣∣∣
2

dt ,

where ψ̂NP(t) = n−1
∑n

j=1 exp(itYj) = nonparametric estimator

ψ̂τ (t) = certain estimator depending on τ

w(t) = certain weight function



Note that

ψY (t) = |ψY (t)|PY (t),

where |ψY (t)| is the modulus of Y

PY (t) = ψY (t)/|ψY (t)| is the phase function of Y .

An estimator of |ψY (t)| is given by |ψ̂NP(t)|.

For PY (t), note that (since X and ε are independent)

PY (t) = PX (t)Pε(t) = PX (t)

since ε is symmetric around 0 and hence ψε(t) is real.

Moreover,

PX (t) = exp(itτ)PZ (t)

= exp(itτ)
E{exp(itZ )}
|E{exp(itZ )}| .



E{exp(itZ )} can be estimated by

m∑

k=1

pk exp(itzk ),

where z1, . . . , zm = fixed grid of points in the support of Z

p1, . . . ,pm = parameters satisfying pk ≥ 0 and
∑m

k=1 pk = 1

m = 5 n1/2

(see also Delaigle and Hall, 2016). Hence,

ψ̂τ,p(t) = |ψ̂NP(t)|exp(itτ)

∑m
k=1 pk exp(itzk )

|∑m
k=1 pk exp(itzk )|

.



We now define

(τ̂ , p̂1, . . . , p̂m) = argminτ,p1,...,pm

∫
w(t)

∣∣∣ψ̂NP(t) − ψ̂τ,p(t)
∣∣∣
2

dt ,

under the constraint of maximizing τ .

Asymptotic properties and simulations for these estimators : work in

progress...
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Write

PY (t) = exp(iθY (t)).

Instead of comparing two estimators of ψY (t), we now compare two

estimators of θY (t). Note that

PY (t) = cos(θY (t)) + i sin(θY (t)),

and hence

θY (t) = arctan
Im(PY (t))

Re(PY (t))
,

which can be estimated in a nonparametric way by

θ̂NP(t) = arctan
Im(P̂NP(t))

Re(P̂NP(t))
.

with P̂NP(t) =
n−1

∑n
j=1 exp(itYj )

|n−1
∑n

j=1 exp(itYj )|
.



Next, note that

θY (t) = θX (t) = tτ + θZ (t),

since PY (t) = PX (t) and since X = τ + Z . it can be shown that

θZ (t) =

∞∑

k=1

(−1)k+1t2k−1κ2k−1

(2k − 1)!
,

where κk is the k-th cumulant of the distribution of Z (see Delaigle and

Hall, 2016).

Next, since Z ≥ 0, we can write

Z = − log Z̃ ,

where the support of Z̃ is (0,1].



We know that

FZ (z) = P(Z ≤ z) = P(Z̃ ≥ e−z) = 1 − F
Z̃
(e−z),

and hence

fZ (z) = f
Z̃
(e−z)e−z .

We approximate f
Z̃
(z) by a histogram estimator :

f
Z̃
(z;α) =

Mn∑

j=1

αj I(qj−1 < z ≤ qj),

where qj = j/Mn (j = 0, . . . ,Mn → ∞) and
∑Mn

j=1 αj = Mn.

Note that Z should have positive mass near 0

⇒ Z̃ should have positive mass near 1

⇒ We impose that αMn
> ǫ for some small ǫ > 0



Now, for any k ≥ 1,

µZk =

∫ ∞

0

zk fZ (z)dz =

∫ ∞

0

zk f
Z̃
(e−z)e−zdz

which can be approximated by

∫ ∞

0

zk f
Z̃
(e−z ;α)e−zdz =

Mn∑

j=1

αj

∫ − log qj−1

− log qj

zk e−zdz,

which is a known function of α1, . . . , αMn
. Hence, we also have that

κk = known function of µZ 1, . . . , µZk

= known function of α1, . . . , αMn

We conclude that θX (t) can be approximated by

θ̂τ,α(t) = tτ +
Kn∑

k=1

hk (α1, . . . , αMn
)t2k−1,

where Kn → ∞ and hk (α1, . . . , αMn
) is a known function of α1, . . . , αMn

.



Finally, we define the following estimators of τ and α1, . . . , αMn
:

(τ̂ , α̂1, . . . , α̂Mn
)

= argminα1,...,αMn
>0

αMn>ǫ,τ∈IR

{∫
w(t)

∣∣∣ tan θ̂NP(t) − tan θ̂τ,α(t)
∣∣∣
2
dt

+λ max
3≤j≤Mn

|αj − 2αj−1 + αj−2|
}
,

under the constraint of maximizing τ , where λ ≥ 0 is a smoothness

penalty parameter. Or alternatively, we could also define

(τ̂ , α̂1, . . . , α̂Mn
)alt

= argminα1,...,αMn
>0

αMn>ǫ,τ∈IR

{∫
w(t)

∣∣∣ exp(i θ̂NP(t)) − exp(i θ̂τ,α(t))
∣∣∣
2
dt

+λ max
3≤j≤Mn

|αj − 2αj−1 + αj−2|
}
.



Based on the α̂j ’s, we can estimate the density of Z and then also the

density of X using in addition τ̂ .

Asymptotic properties and simulations for these estimators : work in

progress...



Conclusions

⋄ We considered the model Y = X + ε = τ + Z + ε, where

Z ≥ 0,X ⊥⊥ ε, and the density of ε is symmetric around 0, but

otherwise unknown.

⋄ To assure identifiability, we assumed that X is non-decomposable.

⋄ We proposed two minimum distance estimators for τ (and the

density of X ), one based on the characteristic function of Y , and

one based on the angle of the phase function of Y .

Work in progress

⋄ Asymptotic theory

⋄ Simulations and data analysis
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