METHODOLOGY FOR NONPARAMETRIC DECONVOLUTION WHEN THE ERROR DISTRIBUTION IS UNKNOWN

AURORE DELAIGLE,

UNIVERSITY OF MELBOURNE

JOINT WORK WITH

PETER HALL, UNIVERSITY OF MELBOURNE

MODEL AND DATA

- We observe continuous i.i.d. data W_1, \ldots, W_n
- $W_i = X_i + U_i$, X_i and U_i are independent
- $X_i \sim f_X$: variable of interest, $U_i \sim f_U$: measurement errors
- Ex: *X* = long term saturated fat intake, systolic blood pressure, etc.

CLASSICAL MEASUREMENT ERROR SETTING

• Characteristic function of a r.v. *V*:

$$\phi_V(t) = E(e^{itV}) = \int e^{itv} f_V(v) \, dv$$

• Assume f_U is known and even, $\phi_U(t) \neq 0$ for all $t, \phi_X \in L_1$.

• $W_i = X_i + U_i$, X_i and U_i are independent

$$\Rightarrow \phi_W(t) = \phi_X(t)\phi_U(t) \Rightarrow \phi_X(t) = \phi_W(t)/\phi_U(t).$$

• Fourier inversion theorem implies

$$f_X(x) = \frac{1}{2\pi} \int e^{-itx} \phi_X(t) \, dt = \frac{1}{2\pi} \int e^{-itx} \phi_W(t) / \phi_U(t) \, dt$$

• Goal: estimate

$$f_X(x) = \frac{1}{2\pi} \int e^{-itx} \phi_W(t) / \phi_U(t) dt$$

• We know
$$f_U \Rightarrow$$
 we know ϕ_U .

• Data: $W_1, \ldots, W_n \Rightarrow$ estimate $\phi_W(t) = E(e^{itW})$ by $\hat{\phi}_W(t) = n^{-1} \sum_{j=1}^n e^{itW_j}$

• Stefanski and Carroll (1990): estimate f_X by

$$\hat{f}_X(x) = \frac{1}{2\pi} \int e^{-itx} \hat{\phi}_W(t) w(t) / \phi_U(t) dt$$

where *w* is a weight function s.t. $w(t) \to 0$ as $|t| \to \infty$.

- Often, $w(t) = \phi_K(ht)$
- h > 0 is a param, K is a symm fction, $\phi_K(t) = \int e^{itx} K(x) dx$

OUR SETTING

- **Problem**: Error density f_U is not always known.
- Is it possible to estimate f_X in this case?
- Assume f_U is symmetric (even) and $\phi_U(t) > 0$ for all t.

- Can estimate ϕ_U from replicates $W_{ij} = X_i + U_{ij}$ (Li and Vuong, 1998; Delaigle et al., 2008)
- or from sample of *U*_i's (Diggle and Hall, 1993; Neumann, 1997).
- Other cases: f_U is parametric (Butucea and Matias, 2005, Meister, 2006).
- Dong and Lewbel (2011): prove identification when *X* is binary and asymmetric.
- No general method can be applied broadly and enjoys good performance.

OUR SETTING

- Can we estimate f_X without replicates and without param model?
- Not always.

- Our approach is unusual.
- It is the irregularity and unpleasantness of a real world *F*_{*X*} distribution that allows us to do unexpected things.
- If F_X were nice, symmetric and conventional (e.g. Gaussian), we could not recover it from data on W without knowing the distribution of U.
- If it is reasonably irregular then we can estimate it consistently.

When can we identify f_X ?

- $f_U \operatorname{sym} \Rightarrow \operatorname{if} f_X \operatorname{sym}$, can't distinguish $f_X \operatorname{from} f_U \operatorname{knowing} \operatorname{only} f_W$.
- Thus f_X has to be asymmetric, but this is not enough.
- Suppose X = Y + Z where Y and Z indep, f_Z symmetric.
- Then W = X + U = (Y + U) + Z = Y + (U + Z).
- Symmetric error could be Z, U or U + Z (can't identify which one).
- Thus f_X can't be such that X = Y + Z as above.
- Many non symmetric r.v. can be expressed in this way, but how likely are we to encounter them in real life?

Real life distributions

- In real applications, f_X can rarely be expected to be "regular".
- Classical symmetric distributions are often convenient for inference, but
- we rarely believe that our data come perfectly from such distributions.

- Data can come from very diverse populations ⇒ *f_X* can be viewed as a member of a very diverse universe.
- Factorisation like *X* = *Y* + *Z* with *Z* symmetric imposes constraints on the structure of the universe
- Fails to hold with probability 1 for a member of that universe drawn at random.

PHASE FUNCTION

- Phase function of a r.v. *X*: $\rho_X = \phi_X / |\phi_X|$.
- Since W = X + U, X indep of U and f_U symmetric, then

$$\rho_W = \phi_W / |\phi_W| = \phi_X \phi_U / \{ |\phi_X| \phi_U \} = \rho_X$$

- Let T = X + V, X indep of V, f_V sym. Then $\rho_X = \rho_T$ and var(T) > var(X).
- If X = Y + Z ($Z \perp Y$) with f_Z symmetric, then $\rho_X = \rho_Y$, var(Y) < var(X).
- We argued before that the above is unlikely in real life.
- Motivates us to assume that:

 F_X is the distr with smallest var among all distr with phase function ρ_X

ESTIMATION METHOD

- Estimate $\rho_X = \phi_W / |\phi_W|$ from the data W_1, \ldots, W_n .
- Among all distr with phase fction $\hat{\rho}_X$, find the one with smallest variance.
- Tricky \Rightarrow discretize the problem to make it simpler.

- Approximate F_X by discrete distribution that puts masses p_1, \ldots, p_m at atoms x_1, \ldots, x_m .
- Phase function of that distribution:

$$\rho_p(t) = \sum_{j=1}^m p_j \, \exp(itx_j) / \left| \sum_{j=1}^m p_j \, \exp(itx_j) \right|$$

ESTIMATION METHOD (CONTD)

- Choose discrete approximation s.t. ρ_p close to ρ_X .
- $\rho_p = \rho_X \iff \phi_W(t) |\phi_W(t)| \ \rho_p(t) = 0$ for all t.

- Only have $\hat{\phi}_W$ and $|\hat{\phi}_W|$, and quality of $\hat{\phi}_W(t)$ degrades as |t| increases.
- Let *w* be a weight function
- Choose discrete distribution that minimises

$$T(p) = \int_{-\infty}^{\infty} \left| \hat{\phi}_W(t) - \left| \hat{\phi}_W(t) \right| \, \rho_p(t) \right|^2 w(t) \, dt \tag{1}$$

at the same time minimising the variance of the discrete distribution.

How to do this in practice?

- We only optimise over the p_j 's.
- We draw x_1, \ldots, x_m randomly and uniformly in $[\min_i W_i, \max_i W_i]$.
- We have a rule for choosing *m*, but could be improved.
- Take the weight $w(t) = 1\{|\hat{\phi}_W(t)| > n^{-1/4}\}.$

• Then find p_1, \ldots, p_m that minimises the variance and $T(p) = \int_{-\infty}^{\infty} \left| \hat{\phi}_W(t) - \left| \hat{\phi}_W(t) \right| \, \rho_p(t) \right|^2 w(t) \, dt$ under the constraint $\sum p_i = 1, \, p_i \ge 0.$

(2)

OBTAIN DENSITY

• Once we have our discrete distribution with probas $\hat{p}_1, \ldots, \hat{p}_m$ at points x_1, \ldots, x_m , turn it into a density.

• Recall that by the Fourier inversion theorem,

$$f_X(x) = \frac{1}{2\pi} \int e^{-itx} \phi_X(t) \, dt.$$

Take

$$\hat{f}_X(x) = \frac{1}{2\pi} \int e^{-itx} \hat{\phi}_X(t) \phi_K(ht) \, dt.$$

where $\hat{\phi}_X(t)$ is the char fction of the discrete distribution, *K* is a kernel function, h > 0 is a parameter.

• Choose *h* as in standard errors-in-variables problems.

NON DECOMPOSABILITY

• Our method is motivated by the assumption that we cannot write

X = Y + Z

with *Y* and *Z* independent and *Z* symmetric. This is called non decomposability where one component is symmetric.

- We have proved this in the discrete case in various "random universe" settings.
- For example it holds with probability one if F_X is drawn randomly from the space of discrete distributions where the atoms x_1, \ldots, x_m are irregularly spaced in the sense that the joint distribution of any finite number of the atoms is continuous.

CONSISTENCY

- We have proved that $\sup_{x} |\hat{f}_{X}(x) f_{X}(x)| \xrightarrow{P} 0 \text{ as } n \to \infty.$
- However we don't have convergence rates.
- The problem is particularly difficult.
- Rather inexplicit conditions, but roughly:
- \exists unique distribution with minimum var and phase function ρ_X .
- $m \to \infty$ as $n \to \infty$ (discrete approximation gets more precise)
- Smoothness constraints on f_X and f_U .

- Framingham study (National Heart, Lung, and Blood Institute).
- Long term systolic blood pressure (SBP) is measured with lots of noise for *n* = 1615 patients.
- For each patient *i*, SBP measured twice at two exams. As in Carroll et al. (2006), for each *i* let M_{ij} be the average of the two measurements at exam *j*, for *j* = 1 and 2.
- Take $W_{ij} = \log(50 M_{ij})$ and assume $X_i = \log(50 \text{SBP}_i)$.

Real data example 1

- Goal: see if our method works well with real data.
- Apply our method to data *W*_{*i*1}.
- Compare with method that estimates f_U through $W_{i1}-W_{i2}$ as in Delaigle, Hall and Meister (2008).
- Compare with naive estimator that ignores the error.
- Also computes deconvolution estimator that assumes parametric model for f_U (variance estimated by our method)

RESULTS

- Pilot study on coronary heart disease (Morris, Marr and Clayton, 1977).
- We have error-prone measurements W_{i1} , i = 1, ..., n of the ratio X_i of poly-unsaturated fat to saturated fat intake for n = 336 men in a one-week dietary survey.
- For 60 patients, W_i is measured a second time several months later.
- As in example 1, can compare our method with method that estimates f_U through $W_{i1} W_{i2}$.

RESULTS

EXTENSION

- From our method we can estimate f_U .
- Therefore can apply it to other problems of measurement errors, e.g. regression.
- We have done this.
- Method works surprisingly well

Some references

- Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. *Bernoulli*, **11**, 309–340.
- Butucea, C., Matias, C. and Pouet, P. (2008). Adaptivity in convolution models with partially known noise distribution. *Electron. J. Statist.*, **2**, 897-915.
- Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). *Measurement Error in Nonlinear Models*, 2nd Edn. Chapman and Hall.
- Delaigle, A. and Hall, P. (2016). Methodology for nonparametric deconvolution when the error distribution is unknown. *J. Roy. Statist. Soc. B*, **78**, 231–252.
- Delaigle, A., Hall, P. and Meister, A. (2008). On Deconvolution with repeated measurements. *Ann. Statist.*, **36**, 665–685.
- Dong, Y. and Lewbel, A. (2011). Nonparametric identification of a binary random factor in cross section data. *J. Econometrics*, **163**, 163–171.
- Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. *Ann. Statist.*, **19**, 1257–1272.

Some references

- Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. *J. Multivariate Anal.*, **65**, 139–165.
- Meister, A. (2006). Density estimation with normal measurement error with unknown variance. *Statist. Sinica*, **16**, 195–211.
- Morris, J.N., Marr, J.W. and Clayton, D.G. (1977). Diet and heart: a postscript. *British Med. J.*, **2**, 1307–1314.
- Stefanski, L.A and Carroll, R.J. (1990). Deconvoluting kernel density estimators. *Statistics*, 21, 169184.