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MODEL AND DATA

• We observe continuous i.i.d. data W1, . . . ,Wn

• Wi = Xi + Ui, Xi and Ui are independent

• Xi ∼ fX : variable of interest, Ui ∼ fU : measurement errors

• Ex: X = long term saturated fat intake, systolic blood pressure, etc.
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CLASSICAL MEASUREMENT ERROR SETTING

• Characteristic function of a r.v. V :

φV (t) = E
(

eitV
)

=

∫

eitvfV (v) dv

• Assume fU is known and even, φU(t) 6= 0 for all t, φX ∈ L1.

• Wi = Xi + Ui, Xi and Ui are independent

⇒ φW (t) = φX(t)φU(t) ⇒ φX(t) = φW (t)/φU(t).

• Fourier inversion theorem implies

fX(x) =
1

2π

∫

e−itxφX(t) dt =
1

2π

∫

e−itxφW (t)/φU(t) dt
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• Goal: estimate

fX(x) =
1

2π

∫

e−itxφW (t)/φU(t) dt

• We know fU ⇒ we know φU .

• Data: W1, . . . ,Wn ⇒ estimate φW (t) = E(eitW ) by φ̂W (t) = n−1
∑n

j=1
eitWj

• Stefanski and Carroll (1990): estimate fX by

f̂X(x) =
1

2π

∫

e−itxφ̂W (t)w(t)/φU(t) dt

where w is a weight function s.t. w(t) → 0 as |t| → ∞.

• Often, w(t) = φK(ht)

• h > 0 is a param, K is a symm fction, φK(t) =
∫

eitxK(x) dx

4



OUR SETTING

• Problem: Error density fU is not always known.

• Is it possible to estimate fX in this case?

• Assume fU is symmetric (even) and φU(t) > 0 for all t.

• Can estimate φU from replicates Wij = Xi + Uij (Li and Vuong, 1998;

Delaigle et al., 2008)

• or from sample of Ui’s (Diggle and Hall, 1993; Neumann, 1997).

• Other cases: fU is parametric (Butucea and Matias, 2005, Meister, 2006).

• Dong and Lewbel (2011): prove identification when X is binary and

asymmetric.

• No general method can be applied broadly and enjoys good perfor-

mance.

5



OUR SETTING

• Can we estimate fX without replicates and without param model?

• Not always.

• Our approach is unusual.

• It is the irregularity and unpleasantness of a real world FX distribution

that allows us to do unexpected things.

• If FX were nice, symmetric and conventional (e.g. Gaussian), we could

not recover it from data on W without knowing the distribution of U .

• If it is reasonably irregular then we can estimate it consistently.
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WHEN CAN WE IDENTIFY fX?

• fU sym ⇒ if fX sym, can’t distinguish fX from fU knowing only fW .

• Thus fX has to be asymmetric, but this is not enough.

• Suppose X = Y + Z where Y and Z indep, fZ symmetric.

• Then W = X + U = (Y + U ) + Z = Y + (U + Z).

• Symmetric error could be Z, U or U + Z (can’t identify which one).

• Thus fX can’t be such that X = Y + Z as above.

• Many non symmetric r.v. can be expressed in this way, but how likely

are we to encounter them in real life?
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REAL LIFE DISTRIBUTIONS

• In real applications, fX can rarely be expected to be “regular”.

• Classical symmetric distributions are often convenient for inference, but

• we rarely believe that our data come perfectly from such distributions.

• Data can come from very diverse populations ⇒ fX can be viewed as a

member of a very diverse universe.

• Factorisation like X = Y + Z with Z symmetric imposes constraints on

the structure of the universe

• Fails to hold with probability 1 for a member of that universe drawn at

random.
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PHASE FUNCTION

• Phase function of a r.v. X : ρX = φX/|φX|.

• Since W = X + U , X indep of U and fU symmetric, then

ρW = φW/|φW | = φX φU/{|φX|φU} = ρX

• Let T = X+V , X indep of V , fV sym. Then ρX = ρT and var(T ) > var(X).

• If X = Y +Z (Z ⊥⊥ Y ) with fZ symmetric, then ρX = ρY , var(Y ) < var(X).

• We argued before that the above is unlikely in real life.

• Motivates us to assume that:

FX is the distr with smallest var among all distr with phase function ρX
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ESTIMATION METHOD

• Estimate ρX = φW/|φW | from the data W1, . . . ,Wn.

• Among all distr with phase fction ρ̂X , find the one with smallest variance.

• Tricky ⇒ discretize the problem to make it simpler.

• Approximate FX by discrete distribution that puts masses p1, . . . , pm at

atoms x1, . . . , xm.

• Phase function of that distribution:

ρp(t) =

m
∑

j=1

pj exp(itxj)/
∣

∣

m
∑

j=1

pj exp(itxj)
∣

∣
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ESTIMATION METHOD (CONTD)

• Choose discrete approximation s.t. ρp close to ρX .

• ρp = ρX ⇐⇒ φW (t)− |φW (t)| ρp(t) = 0 for all t.

• Only have φ̂W and |φ̂W |, and quality of φ̂W (t) degrades as |t| increases.

• Let w be a weight function

• Choose discrete distribution that minimises

T (p) =

∫ ∞

−∞

∣

∣

∣
φ̂W (t)− |φ̂W (t)| ρp(t)

∣

∣

∣

2

w(t) dt (1)

at the same time minimising the variance of the discrete distribution.
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HOW TO DO THIS IN PRACTICE?

• We only optimise over the pj’s.

• We draw x1, . . . , xm randomly and uniformly in [miniWi,maxiWi].

• We have a rule for choosing m, but could be improved.

• Take the weight w(t) = 1{|φ̂W (t)| > n−1/4}.

• Then find p1, . . . , pm that minimises the variance and

T (p) =

∫ ∞

−∞

∣

∣

∣
φ̂W (t)− |φ̂W (t)| ρp(t)

∣

∣

∣

2

w(t) dt (2)

under the constraint
∑

pj = 1, pj ≥ 0.
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OBTAIN DENSITY

• Once we have our discrete distribution with probas p̂1, . . . , p̂m at points

x1, . . . , xm, turn it into a density.

• Recall that by the Fourier inversion theorem,

fX(x) =
1

2π

∫

e−itxφX(t) dt.

Take

f̂X(x) =
1

2π

∫

e−itxφ̂X(t)φK(ht) dt.

where φ̂X(t) is the char fction of the discrete distribution, K is a kernel

function, h > 0 is a parameter.

• Choose h as in standard errors-in-variables problems.
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NON DECOMPOSABILITY

• Our method is motivated by the assumption that we cannot write

X = Y + Z

with Y and Z independent and Z symmetric. This is called non decom-

posability where one component is symmetric.

• We have proved this in the discrete case in various “random universe”

settings.

• For example it holds with probability one if FX is drawn randomly from

the space of discrete distributions where the atoms x1, . . . , xm are irregu-

larly spaced in the sense that the joint distribution of any finite number

of the atoms is continuous.
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CONSISTENCY

• We have proved that supx |f̂X(x)− fX(x)|
P
−→ 0 as n → ∞.

• However we don’t have convergence rates.

• The problem is particularly difficult.

• Rather inexplicit conditions, but roughly:

• ∃ unique distribution with minimum var and phase function ρX .

• m → ∞ as n → ∞ (discrete approximation gets more precise)

• Smoothness constraints on fX and fU .
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REAL DATA EXAMPLE 1

• Framingham study (National Heart, Lung, and Blood Institute).

• Long term systolic blood pressure (SBP) is measured with lots of noise

for n = 1615 patients.

• For each patient i, SBP measured twice at two exams. As in Carroll et

al. (2006), for each i let Mij be the average of the two measurements at

exam j, for j = 1 and 2.

• Take Wij = log(50−Mij) and assume Xi = log(50− SBPi).
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REAL DATA EXAMPLE 1

• Goal: see if our method works well with real data.

• Apply our method to data Wi1.

• Compare with method that estimates fU through Wi1−Wi2 as in Delaigle,

Hall and Meister (2008).

• Compare with naive estimator that ignores the error.

• Also computes deconvolution estimator that assumes parametric model

for fU (variance estimated by our method)
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RESULTS
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REAL DATA EXAMPLE 2

• Pilot study on coronary heart disease (Morris, Marr and Clayton, 1977).

• We have error-prone measurements Wi1, i = 1, . . . , n of the ratio Xi

of poly-unsaturated fat to saturated fat intake for n = 336 men in a

one-week dietary survey.

• For 60 patients, Wi is measured a second time several months later.

• As in example 1, can compare our method with method that estimates

fU through Wi1 −Wi2.
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RESULTS
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EXTENSION

• From our method we can estimate fU .

• Therefore can apply it to other problems of measurement errors, e.g.

regression.

• We have done this.

• Method works surprisingly well

21



SOME REFERENCES

• Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the decon-

volution density in a semiparametric convolution model. Bernoulli, 11, 309–340.

• Butucea, C., Matias, C. and Pouet, P. (2008). Adaptivity in convolution models with par-

tially known noise distribution. Electron. J. Statist., 2, 897-915.

• Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006). Measurement Error

in Nonlinear Models, 2nd Edn. Chapman and Hall.

• Delaigle, A. and Hall, P. (2016). Methodology for nonparametric deconvolution when the

error distribution is unknown. J. Roy. Statist. Soc. B, 78, 231–252.

• Delaigle, A., Hall, P. and Meister, A. (2008). On Deconvolution with repeated measure-

ments. Ann. Statist., 36, 665–685.

• Dong, Y. and Lewbel, A. (2011). Nonparametric identification of a binary random factor

in cross section data. J. Econometrics, 163, 163–171.

• Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution prob-

lems. Ann. Statist., 19, 1257–1272.

22



SOME REFERENCES

• Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model

using multiple indicators. J. Multivariate Anal., 65, 139–165.

• Meister, A. (2006). Density estimation with normal measurement error with unknown

variance. Statist. Sinica, 16, 195–211.

• Morris, J.N., Marr, J.W. and Clayton, D.G. (1977). Diet and heart: a postscript. British Med.

J., 2, 1307–1314.

• Stefanski, L.A and Carroll, R.J. (1990). Deconvoluting kernel density estimators. Statistics,

21, 169184.

23


