Mirror symmetry for elementary birational cobordisms

Gabriel Kerr

Homological Mirror Geometry, BIRS
March 10, 2016

Outline

Motivation

B-model

A-model

Sketch of the proof

Outline

Motivation

B-model

A-model

Sketch of the proof

Birational approach to HMS

Let X be a Fano DM stack and $W: X^{\text {mir }} \rightarrow \mathbb{C}$ its mirror potential.

Birational approach to HMS

Let X be a Fano DM stack and $W: X^{\text {mir }} \rightarrow \mathbb{C}$ its mirror potential. $\frac{\text { HMS Conjecture }}{2}$: There is an equivalence

$$
D(X) \cong F S(W)
$$

Birational approach to HMS

Let X be a Fano DM stack and $W: X^{\text {mir }} \rightarrow \mathbb{C}$ its mirror potential. $\frac{\text { HMS Conjecture }}{2}$: There is an equivalence

$$
D(X) \cong F S(W)
$$

Question 1 : What are natural decompositions for either side of this equivalence?

Birational approach to HMS

Let X be a Fano DM stack and $W: X^{\text {mir }} \rightarrow \mathbb{C}$ its mirror potential. $\frac{\text { HMS Conjecture }}{2}$: There is an equivalence

$$
D(X) \cong F S(W)
$$

Question 1 : What are natural decompositions for either side of this equivalence?
Question 2 : Does HMS respect these decompositions?

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
B-model answer : If X admits a minimal model or VGIT sequence

$$
X \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{r}} X_{r}
$$

then

$$
D(X)=\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}, D\left(X_{r}\right)\right\rangle
$$

If $X_{r}=\emptyset$, then this fully decomposes $D(X)$ in terms of wall contribution categories.

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps
Step 1 : Replace $W: X^{\text {mir }} \rightarrow \mathbb{C}$ with \mathbf{w} where

and $\pi: \mathcal{U} \rightarrow \mathcal{M}$ is a moduli stack of hypersurfaces of $X^{\text {mir }}$.

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps
Step 2 : Compactify the range \mathbb{C} of the superpotential W where

$$
\begin{gathered}
\bar{X}^{\text {mir }} \longrightarrow \overline{\mathcal{U}} \\
\left.w\right|^{-1} \\
\mathbb{P}^{1} \xrightarrow{w}{ }_{\overline{\mathcal{M}}}
\end{gathered}
$$

and $\pi: \overline{\mathcal{U}} \rightarrow \overline{\mathcal{M}}$ is a compactified moduli stack of stable hypersurface degenerations of $\bar{X}^{\text {mir }}$.

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps
Step 3 : Consider a 1-parameter degeneration \mathbf{w}_{t} of $\mathbf{w}=\mathbf{w}_{1}$

where D is the unit disc and $D^{*}=D \backslash\{0\}$.

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps
Step 4 : Consider the degenerate potential \mathbf{w}_{0} of \mathbf{w}_{t} which is a map

$$
\mathbf{w}_{0}=\cup \mathbf{w}_{0}^{i}: \cup_{1}^{r} \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}
$$

Birational Approach

Question 1 : What are natural decompositions for either side of this equivalence?
A-model answer : Take the following steps
Step 5 : Taking W_{i} to be the pullback of \mathcal{U} along \mathbf{w}_{0}^{i} and $\mathcal{T}_{w^{i}}^{A}=F S\left(W_{i}\right)$, there is a semi-orthogonal decomposition

$$
F S(W)=\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle
$$

Birational Approach

Question 2 : Does HMS respect these decompositions?

Birational Approach

Question 2 : Does HMS respect these decompositions?
Toric Setting : Diemer, Katzarkov, K. (DKK) give an explicit prescription for taking a VGIT sequence

$$
X \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{r}} \emptyset
$$

to a degeneration \mathbf{w}_{t} of mirror potentials.

Birational Approach

Question 2 : Does HMS respect these decompositions?
Toric Setting The resulting decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle, \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle
\end{aligned}
$$

have the same number of components.
Theorem (DKK) : For mirror decompositions,

$$
\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{f_{i}}^{B}\right)\right)=\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{\mathbf{w}^{i}}^{A}\right)\right)
$$

Birational Approach

Question 2 : Does HMS respect these decompositions?
Toric Setting The resulting decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle, \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle
\end{aligned}
$$

have the same number of components.
Theorem (DKK) : For mirror decompositions,

$$
\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{f_{i}}^{B}\right)\right)=\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{\mathbf{w}^{i}}^{A}\right)\right)
$$

Birational Approach

Question 2 : Does HMS respect these decompositions?
Toric Setting The resulting decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle, \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle
\end{aligned}
$$

have the same number of components.
Theorem (DKK) : For mirror decompositions,

$$
\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{f_{i}}^{B}\right)\right)=\operatorname{rk}\left(K_{0}\left(\mathcal{T}_{\mathbf{w}^{i}}^{A}\right)\right)
$$

Conjecture : There exists an equivalence of categories

$$
\mathcal{T}_{f_{i}}^{B} \cong \mathcal{T}_{\mathbf{w}^{i}}^{A}
$$

Outline

Motivation

B-model

A-model

Sketch of the proof

Elementary birational cobordisms

- Let $\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{Z}^{d+1}$ with $a_{i} \neq 0$ for all i.

Elementary birational cobordisms

- Let $\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{Z}^{d+1}$ with $a_{i} \neq 0$ for all i.
- Take $X=\mathbb{C}^{d+1}$ and \mathbb{C}^{*} acting via

$$
\lambda \cdot\left(z_{0}, \ldots, z_{d}\right)=\left(\lambda^{a_{0}} z_{0}, \ldots, \lambda^{a_{d}} z_{d}\right) .
$$

Elementary birational cobordisms

- Let $\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{Z}^{d+1}$ with $a_{i} \neq 0$ for all i.
- Take $X=\mathbb{C}^{d+1}$ and \mathbb{C}^{*} acting via

$$
\lambda \cdot\left(z_{0}, \ldots, z_{d}\right)=\left(\lambda^{a_{0}} z_{0}, \ldots, \lambda^{a_{d}} z_{d}\right) .
$$

- The unstable loci for the GIT quotients

$$
\begin{aligned}
& B_{-}=\left\{\left(z_{0}, \ldots, z_{d}\right): z_{i}=0 \text { for } a_{i}<0\right\}, \\
& B_{+}=\left\{\left(z_{0}, \ldots, z_{d}\right): z_{i}=0 \text { for } a_{i}>0\right\} .
\end{aligned}
$$

Elementary birational cobordisms

- Let $\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{Z}^{d+1}$ with $a_{i} \neq 0$ for all i.
- Take $X=\mathbb{C}^{d+1}$ and \mathbb{C}^{*} acting via
$\lambda \cdot\left(z_{0}, \ldots, z_{d}\right)=\left(\lambda^{a_{0}} z_{0}, \ldots, \lambda^{a_{d}} z_{d}\right)$.
- The unstable loci for the GIT quotients

$$
\begin{aligned}
& B_{-}=\left\{\left(z_{0}, \ldots, z_{d}\right): z_{i}=0 \text { for } a_{i}<0\right\}, \\
& B_{+}=\left\{\left(z_{0}, \ldots, z_{d}\right): z_{i}=0 \text { for } a_{i}>0\right\} .
\end{aligned}
$$

- Let $X_{ \pm}=X \backslash B_{ \pm}$and

$$
X_{+} / \mathbb{C}^{*} \rightarrow X_{-} / \mathbb{C}^{*}
$$

the associated VGIT.

Elementary birational cobordisms

- Let $a_{d+1}=-\sum_{i=0}^{d} a_{i}$ and $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+2}$.

Elementary birational cobordisms

- Let $a_{d+1}=-\sum_{i=0}^{d} a_{i}$ and $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+2}$.

Theorem (BFK, HL)
If $a_{d+1}<0$ then

$$
D\left(X_{+} / \mathbb{C}^{*}\right) \cong\left\langle\mathcal{T}_{\mathbf{a}}^{B}, D\left(X_{-} / \mathbb{C}^{*}\right)\right\rangle
$$

where $\mathcal{T}_{\mathbf{a}}^{B}$ admits a complete exceptional collection

$$
\left\langle E_{0}, \ldots, E_{-a_{d+1}-1}\right\rangle
$$

Elementary birational cobordisms

- Let $a_{d+1}=-\sum_{i=0}^{d} a_{i}$ and $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+2}$.

Theorem (BFK, HL)
If $a_{d+1}<0$ then

$$
D\left(X_{+} / \mathbb{C}^{*}\right) \cong\left\langle\mathcal{T}_{\mathbf{a}}^{B}, D\left(X_{-} / \mathbb{C}^{*}\right)\right\rangle
$$

where $\mathcal{T}_{\mathbf{a}}^{B}$ admits a complete exceptional collection

$$
\left\langle E_{0}, \ldots, E_{-a_{d+1}-1}\right\rangle
$$

- Furthermore, there is a full and faithful embedding

$$
F: \mathcal{T}_{\mathbf{a}}^{B} \rightarrow D^{e q}(X)
$$

for which $F\left(E_{i}\right)=\mathcal{O}_{B_{-}}(i)$.

Computing $\mathcal{T}_{\mathbf{a}}^{B}$

- Want to compute the dg-algebra

$$
\operatorname{End}_{\text {Coheq }(X)}^{*}\left(\oplus_{i=0}^{-a_{d+1}-1} \mathcal{O}_{B_{-}}(i)\right)
$$

in the dg category $\operatorname{Coh}^{e q}(X)$.

Computing $\mathcal{T}_{\mathbf{a}}^{B}$

- Want to compute the dg-algebra

$$
\operatorname{End}_{\text {Coheq }(X)}^{*}\left(\oplus_{i=0}^{-a_{d+1}-1} \mathcal{O}_{B_{-}}(i)\right)
$$

in the dg category $\operatorname{Coh}^{e q}(X)$.

- Given an equivariant sheaf \mathcal{F},

$$
\operatorname{Hom}_{C o h h^{e q}(X)}^{*}(\mathcal{F}(i), \mathcal{F}(j)) \cong \operatorname{End}_{\operatorname{Coh}(X)}^{*}(\mathcal{F})_{(j-i)}
$$

and these isomorphisms are compatible with composition.

Computing $\mathcal{T}_{\mathbf{a}}^{B}$

- Want to compute the dg-algebra

$$
\operatorname{End}_{\text {Coheq }(X)}^{*}\left(\oplus_{i=0}^{-a_{d+1}-1} \mathcal{O}_{B_{-}}(i)\right)
$$

in the dg category $\operatorname{Coh}^{e q}(X)$.

- Given an equivariant sheaf \mathcal{F},

$$
\operatorname{Hom}_{C o h h^{e q}(X)}^{*}(\mathcal{F}(i), \mathcal{F}(j)) \cong \operatorname{End}_{\operatorname{Coh}(X)}^{*}(\mathcal{F})_{(j-i)}
$$

and these isomorphisms are compatible with composition.

- An elementary computation shows there are quasi-isomorphisms

$$
\begin{aligned}
\operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right) & \cong \operatorname{Ext}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}, \mathcal{O}_{B_{-}}\right), \\
& \cong \Omega_{X / B_{-}}^{*} \\
& \cong \operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right)
\end{aligned}
$$

Computing $\mathcal{T}_{\mathbf{a}}^{B}$

$$
\operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right) \cong \operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right) .
$$

- Here, we take

$$
\begin{aligned}
& V_{0}=\mathbb{C}\left\{z_{i}: a_{i}>0\right\}, \\
& V_{1}=\mathbb{C}\left\{d z_{i}: a_{i}<0\right\}[1] .
\end{aligned}
$$

So that $R_{\mathrm{a}}:=\operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right)$ is a weighted, super-symmetric algebra with $\mathrm{wt}\left(z_{i}\right)=a_{i}$ and $\mathrm{wt}\left(d z_{i}\right)=-a_{i}$.

Computing $\mathcal{T}_{\mathbf{a}}^{B}$

$$
\operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right) \cong \operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right) .
$$

- Here, we take

$$
\begin{aligned}
& V_{0}=\mathbb{C}\left\{z_{i}: a_{i}>0\right\}, \\
& V_{1}=\mathbb{C}\left\{d z_{i}: a_{i}<0\right\}[1] .
\end{aligned}
$$

So that $R_{\mathrm{a}}:=\operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right)$ is a weighted, super-symmetric algebra with $\mathrm{wt}\left(z_{i}\right)=a_{i}$ and $\mathrm{wt}\left(d z_{i}\right)=-a_{i}$.

- Due to formality, and working in the category $R_{\mathrm{a}}-\bmod ^{\mathbb{Z}}$, the Yoneda functor yields an equivalence of categories

$$
\mathcal{T}_{\mathbf{a}}^{B} \cong D\left(\operatorname{End}^{*}\left(\bigoplus_{k=0}^{-a_{d+1}-1} R_{\mathbf{a}}(k)\right)-\bmod \right)
$$

Examples

$$
R_{\mathbf{a}}=\operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right) \cong \operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right)
$$

\mathbf{a}	$R_{\mathbf{a}}$	X_{+} / \mathbb{C}^{*}	X_{-} / \mathbb{C}^{*}
$(1,1,-2)$	$\mathbb{C}\left[z_{0}, z_{1}, d z_{2}\right]$	\mathbb{P}^{1}	\emptyset

$$
R_{\mathbf{a}}(0) \xrightarrow[z_{0}]{z_{1}} R_{\mathbf{a}}(1)
$$

Examples

$$
\begin{aligned}
& R_{\mathbf{a}}=\operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right) \cong \operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right) . \\
& \begin{array}{c|c|c|c}
\mathbf{a} & R_{\mathbf{a}} & X_{+} / \mathbb{C}^{*} & X_{-} / \mathbb{C}^{*} \\
\hline(2,3,-5) & \mathbb{C}\left[z_{0}, z_{1}, d z_{2}\right] & \mathbb{P}(2,3) & \emptyset
\end{array}
\end{aligned}
$$

Examples

$$
R_{\mathbf{a}}=\operatorname{Sym}^{*}\left(V_{0} \oplus V_{1}\right) \cong \operatorname{End}_{\operatorname{Coh}(X)}^{*}\left(\mathcal{O}_{B_{-}}\right)
$$

\mathbf{a}	$R_{\mathbf{a}}$	X_{+} / \mathbb{C}^{*}	X_{-} / \mathbb{C}^{*}
$(1,2,3,-1,-5)$	$\mathbb{C}\left[z_{0}, z_{1}, z_{2}, d z_{3}, d z_{4}\right]$	$\mathcal{O}_{\mathbb{P}(1,2,3)}(-1)$	\mathbb{C}^{3}

Outline

Motivation

B-model

A-model

Sketch of the proof

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

A symplectic Lefschetz fibration $W: Y \rightarrow \mathbb{C}^{*}$ is called atomic if it has a unique critical point p with critical value q.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

A symplectic Lefschetz fibration $W: Y \rightarrow \mathbb{C}^{*}$ is called atomic if it has a unique critical point p with critical value q.

Choosing a basepoint $*$, the path δ_{0} gives the vanishing thimble $T_{0} \subset Y$ and the vanishing cycle $L_{0} \subset W^{-1}(*)$.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

A symplectic Lefschetz fibration $W: Y \rightarrow \mathbb{C}^{*}$ is called atomic if it has a unique critical point p with critical value q.

Applying monodromy gives paths $\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}$ and a collection of vanishing cycles $L_{0}, L_{1}, \ldots, L_{n-1} \subset W^{-1}(*)$.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

A symplectic Lefschetz fibration $W: Y \rightarrow \mathbb{C}^{*}$ is called atomic if it has a unique critical point p with critical value q.

Applying monodromy gives paths $\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}$ and a collection of vanishing cycles $L_{0}, L_{1}, \ldots, L_{n-1} \subset W^{-1}(*)$.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

Given an atomic Lefschetz fibration W, the n-unfolded category $\mathcal{A}^{1 / n}$ of W is the directed A_{∞}-subcategory

$$
\left\langle L_{0}, \ldots, L_{n-1}\right\rangle
$$

of the Fukaya category $\mathcal{F}\left(W^{-1}(*)\right)$. The Fukaya-Seidel category $F S\left(W^{1 / n}\right)$ is the category of twisted complexes $\operatorname{Tw}\left(\mathcal{A}\left(W^{1 / n}\right)\right)$.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Definition

Given an atomic Lefschetz fibration W, the n-unfolded category $\mathcal{A}^{1 / n}$ of W is the directed A_{∞}-subcategory

$$
\left\langle L_{0}, \ldots, L_{n-1}\right\rangle
$$

of the Fukaya category $\mathcal{F}\left(W^{-1}(*)\right)$. The Fukaya-Seidel category $F S\left(W^{1 / n}\right)$ is the category of twisted complexes $\operatorname{Tw}\left(\mathcal{A}\left(W^{1 / n}\right)\right)$. Here

$$
\operatorname{Hom}_{\mathcal{A}^{1 / n}}\left(L_{i}, L_{j}\right)= \begin{cases}\operatorname{Hom}_{\mathcal{F}\left(W^{-1}(*)\right)}\left(L_{i}, L_{j}\right) & \text { if } i<j \\ 1_{i} & \text { if } i=j, \\ 0 & \text { if } i>j\end{cases}
$$

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Alternatively, taking the pullback $\tilde{W}: \tilde{Y} \rightarrow \mathbb{C}$ of W along \exp gives a periodic collection of critical values.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Restricting to a strip gives $\tilde{W}_{S}: \tilde{Y}_{S} \rightarrow S$.

Fukaya-Seidel for $W: Y \rightarrow \mathbb{C}^{*}$

Restricting to a strip gives $\tilde{W}_{S}: \tilde{Y}_{S} \rightarrow S$.
Theorem (Seidel)
There is an equivalence $F S\left(W^{1 / n}\right) \cong F S\left(\tilde{W}_{S}\right)$.

Mirror potentials to elementary birational cobordisms

- Let

$$
P_{d}=\left\{\left[Z_{0}: \cdots: Z_{d+1}\right]: \sum_{i=0}^{d+1} Z_{i}=0, Z_{i} \neq 0\right\} \subset \mathbb{P}^{d+1}
$$

be the d-dimensional pair of pants.

Mirror potentials to elementary birational cobordisms

- Let

$$
P_{d}=\left\{\left[Z_{0}: \cdots: Z_{d+1}\right]: \sum_{i=0}^{d+1} Z_{i}=0, Z_{i} \neq 0\right\} \subset \mathbb{P}^{d+1}
$$

be the d-dimensional pair of pants.

- Given $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+2}$ with $\sum_{i=0}^{d+1} a_{i}=0$, consider the pencil $\psi_{\mathbf{a}}: \mathbb{P}^{d+1} \rightarrow \mathbb{P}^{1}$ defined by

$$
\psi_{\mathbf{a}}\left(\left[Z_{0}: \cdots: Z_{d+1}\right]\right):=\left[\prod_{a_{i}>0} Z_{i}^{a_{i}}: \prod_{a_{i}<0} Z_{i}^{-a_{i}}\right]
$$

Mirror potentials to elementary birational cobordisms

- Let

$$
P_{d}=\left\{\left[Z_{0}: \cdots: Z_{d+1}\right]: \sum_{i=0}^{d+1} Z_{i}=0, Z_{i} \neq 0\right\} \subset \mathbb{P}^{d+1}
$$

be the d-dimensional pair of pants.

- Given $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+2}$ with $\sum_{i=0}^{d+1} a_{i}=0$, consider the pencil $\psi_{\mathbf{a}}: \mathbb{P}^{d+1} \rightarrow \mathbb{P}^{1}$ defined by

$$
\psi_{\mathbf{a}}\left(\left[Z_{0}: \cdots: Z_{d+1}\right]\right):=\left[\prod_{a_{i}>0} Z_{i}^{a_{i}}: \prod_{a_{i}<0} Z_{i}^{-a_{i}}\right]
$$

Observation (GKZ, DKK)
The function $W_{\mathbf{a}}=\left.\psi_{\mathbf{a}}\right|_{P_{d}}$ is an atomic Lefschetz fibration.

HMS for elementary birational cobordisms

The potential W_{a} appears in DKK as the equivariant quotient by \mathbb{Z} / a_{d+1} of the homological mirror potential W to the VGIT defined by $\left(a_{0}, \ldots, a_{d}\right)$.

HMS for elementary birational cobordisms

The potential W_{a} appears in DKK as the equivariant quotient by \mathbb{Z} / a_{d+1} of the homological mirror potential W to the VGIT defined by $\left(a_{0}, \ldots, a_{d}\right)$.
Theorem (K.)
For any $0 \leq n \leq \sum_{a_{i}>0} a_{i}$ there is a strict, fully faithful functor

$$
\Phi: \mathcal{A}^{1 / n} \rightarrow R_{\mathrm{a}}-\bmod ^{\mathbb{Z}}
$$

for which

$$
\Phi\left(L_{k}\right)=R_{\mathbf{a}}(k)
$$

Two corollaries

Letting $\mathcal{T}_{\mathbf{a}}^{A}=F S\left(W^{1 /-\mathbf{a}_{d+1}}\right)$ the theorem implies,
Corollary
There is an equivalence $\mathcal{T}_{\mathbf{a}}^{B} \cong \mathcal{T}_{\mathbf{a}}^{A}$.

Two corollaries

Letting $\mathcal{T}_{\mathbf{a}}^{A}=F S\left(W^{1 /-a_{d+1}}\right)$ the theorem implies,
Corollary
There is an equivalence $\mathcal{T}_{\mathbf{a}}^{B} \cong \mathcal{T}_{\mathbf{a}}^{A}$.
As a special case when $a_{i}>0$ for all $i \neq d+1$,
Corollary
HMS holds for weighted projective spaces

$$
D\left(\mathbb{P}\left(a_{0}, \ldots, a_{d}\right)\right) \cong F S\left(W_{\mathbf{a}}^{1 /-a_{d+1}}\right)=F S\left(W_{\mathbf{a}}^{H V}\right)
$$

Outline

Motivation

B-model

A-model

Sketch of the proof

Base case $d=1$

Assume $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{Z}^{3}$ satisfies $a_{0}, a_{1}>0$. Parameterize $P_{1} \cong \mathbb{P}^{1} \backslash\{0,-1, \infty\}$ with $\left[Z_{0}: Z_{1}\right]$. Then

$$
W_{\mathbf{a}}\left(\left[Z_{0}: Z_{1}\right]\right)=\frac{Z_{0}^{a_{0}} Z_{1}^{a_{1}}}{\left(-Z_{0}-Z_{1}\right)^{a_{0}+a_{1}}}
$$

is an $\left(a_{0}+a_{1}\right)$-fold branched covering with ramification degree a_{0}, a_{1} and a_{2} at $0, \infty$ and -1 , respectively, and a single critical point at $\left[a_{0}: a_{1}\right] \in P_{1}$. The admissible path δ_{0} from $W_{\mathbf{a}}\left(\left[a_{0}: a_{1}\right]\right)$ to zero has vanishing thimble equal to the component of $W^{-1}\left(\delta_{0}\right)$ containing $\left[a_{0}, a_{1}\right]$.

Example $\mathbf{a}=(2,3,-5)$

Example $\mathbf{a}=(2,3,-5)$

L_{0}

Example $\mathbf{a}=(2,3,-5)$

The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
T_{i}, consider the logarithm log : $P_{1} \rightarrow \mathbb{C} \backslash(\pi i+2 \pi i \mathbb{Z})$.

The logarithmic picture

To better understand the Floer theory of the vanishing thimbles
T_{i}, consider the logarithm $\log : P_{1} \rightarrow \mathbb{C} \backslash(\pi i+2 \pi i \mathbb{Z})$.

As the slope of T_{i} is decreasing relative to i, any holomorphic polygon with counter-clockwise boundary on the thimbles $\left\{T_{i_{1}}, \ldots, T_{i_{m}}\right\}$ with $i_{j}<i_{j+1}$ must be a triangle.

Induction Step

- Assume the theorem holds for $\operatorname{dim}<d$ and let $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right)$. We may assume that $a_{0}, a_{1}>0$ (or apply Koszul duality).

Induction Step

- Assume the theorem holds for $\operatorname{dim}<d$ and let $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right)$. We may assume that $a_{0}, a_{1}>0$ (or apply Koszul duality).
- In order to understand the Floer theory for $\operatorname{Hom}\left(L_{i}, L_{j}\right)$, we must understand the geometry of $W_{\mathbf{a}}^{-1}(*)$.

Induction Step

- Assume the theorem holds for $\operatorname{dim}<d$ and let $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right)$. We may assume that $a_{0}, a_{1}>0$ (or apply Koszul duality).
- In order to understand the Floer theory for $\operatorname{Hom}\left(L_{i}, L_{j}\right)$, we must understand the geometry of $W_{\mathrm{a}}^{-1}(*)$.
- We accomplish this by choosing an auxiliary Lefschetz fibration

$$
f\left(\left[Z_{0}: \cdots: Z_{d+1}\right]\right)=\left[Z_{0}: Z_{1}:-Z_{0}-Z_{1}\right]
$$

Induction Step

- Assume the theorem holds for $\operatorname{dim}<d$ and let $\mathbf{a}=\left(a_{0}, \ldots, a_{d+1}\right)$. We may assume that $a_{0}, a_{1}>0$ (or apply Koszul duality).
- In order to understand the Floer theory for $\operatorname{Hom}\left(L_{i}, L_{j}\right)$, we must understand the geometry of $W_{\mathbf{a}}^{-1}(*)$.
- We accomplish this by choosing an auxiliary Lefschetz fibration

$$
f\left(\left[Z_{0}: \cdots: Z_{d+1}\right]\right)=\left[Z_{0}: Z_{1}:-Z_{0}-Z_{1}\right]
$$

- Taking $D=\left\{Z_{0}+Z_{1}=0\right\} \subset P_{d}$ and $F_{t}=W_{\mathbf{a}}^{-1}(t) \backslash D, f$ restricts to a Lefschetz fibration

$$
f: F_{t} \rightarrow P_{1}
$$

for all W_{a} regular values t.

Induction Step

Lemma (K.)
Letting

$$
\begin{aligned}
& \mathbf{b}=\left(a_{0}+a_{1}, a_{2}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+1} \\
& \mathbf{c}=\left(a_{0}, a_{1},-a_{0}-a_{1}\right) \in \mathbb{Z}^{3}
\end{aligned}
$$

F_{t} is the pullback

Induction Step

Lemma (K.)

Letting

$$
\begin{aligned}
& \mathbf{b}=\left(a_{0}+a_{1}, a_{2}, \ldots, a_{d+1}\right) \in \mathbb{Z}^{d+1} \\
& \mathbf{c}=\left(a_{0}, a_{1},-a_{0}-a_{1}\right) \in \mathbb{Z}^{3}
\end{aligned}
$$

F_{t} is the pullback

Corollary

The vanishing cycles L_{i} of $W_{\mathbf{a}}$ are f-matching cycles over the thimbles T_{i} for $W_{\mathbf{c}}$. Furthermore, L_{i} is the pullback along $t W_{-\mathbf{c}}$ of a vanishing thimble of W_{b}.

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

Consider just two of these thimbles.

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

The corollary asserts that the $W_{\mathbf{a}}$ vanishing cycles $L_{0}^{\mathbf{a}}, L_{4}^{\mathbf{a}}$ are fibered over T_{0}, T_{4} via f, collapsing at its endpoints.

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

This gives a decomposition
$\operatorname{Hom}_{F S\left(W_{\mathrm{a}}\right)}\left(L_{0}^{\mathrm{a}}, L_{4}^{\mathrm{a}}\right)=C F^{*}\left(L_{0}^{\mathrm{a}}, L_{4}^{\mathbf{a}}\right)=\oplus_{y \in T_{0} \cap T_{4}} C F^{*}\left(L_{0, y}^{\mathrm{b}}, L_{4, y}^{\mathrm{b}}\right)$

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

Implying $\operatorname{Hom}_{F S\left(W_{\mathbf{a}}\right)}\left(L_{0}^{\mathrm{a}}, L_{4}^{\mathrm{a}}\right)$ is isomorphic to
$\operatorname{Hom}_{F S\left(W_{\mathbf{b}}\right)}\left(L_{0}^{\mathbf{b}}, L_{0}^{\mathbf{b}}\right) \oplus \operatorname{Hom}_{F S\left(W_{\mathbf{b}}\right)}\left(L_{0}^{\mathbf{b}}, L_{2}^{\mathbf{b}}\right) \oplus \cdots$
$\cdots \oplus \operatorname{Hom}_{F S(}\left(W_{\mathbf{b}}\right)\left(L_{0}^{\mathbf{b}}, L_{4}^{\mathbf{b}}\right) \oplus \operatorname{Hom}_{F S}\left(W_{\mathbf{b}}\right)\left(L_{0}^{\mathbf{b}}, L_{1}^{\mathbf{b}}\right)$.

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

By induction, we have $\operatorname{Hom}_{F S\left(W_{\mathrm{a}}\right)}\left(L_{0}^{\mathbf{a}}, L_{4}^{\mathbf{a}}\right)$ is isomorphic to

$$
\mathbb{C} \cdot\{1\} \oplus \mathbb{C} \cdot\left\{d \tilde{z}_{2}\right\} \oplus \mathbb{C} \cdot\left\{d \tilde{z}_{3}\right\} \oplus \mathbb{C} \cdot\left\{\tilde{z}_{1}\right\} \subset R_{\mathbf{b}} .
$$

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

Taking $\tilde{z}_{j}, d \tilde{z}_{i} \in R_{\mathrm{b}}$ to $z_{j+1}, d z_{i+1} \in R_{\mathrm{a}}$, and multiplying by a power of z_{0} or z_{1} (depending on the summand), we obtain

$$
\begin{aligned}
\mathbb{C} \cdot\{1\} \oplus \mathbb{C} \cdot\left\{d \tilde{z}_{2}\right\} \oplus \mathbb{C} \cdot\left\{d \tilde{z}_{3}\right\} \oplus \mathbb{C} \cdot\left\{\tilde{z}_{1}\right\} & \subset R_{\mathbf{b}} \\
\mathbb{C} \cdot\left\{z_{0}^{2}\right\} \oplus \mathbb{C} \cdot\left\{z_{0} d z_{3}\right\} \oplus \mathbb{C} \cdot\left\{d z_{4}\right\} \oplus \mathbb{C} \cdot\left\{z_{1} z_{2}\right\} & =R_{\mathbf{a}}(4)
\end{aligned}
$$

Example $\mathbf{a}=(2,3,1,-2,-4)$

Here $\mathbf{b}=(5,1,-2,-4)$ and $\mathbf{c}=(2,3,-5)$.

This yields the isomorphism of vector spaces

$$
\Phi: \operatorname{Hom}_{F S\left(W_{\mathrm{a}}^{1 / n}\right)}\left(L_{0}^{\mathrm{a}}, L_{4}^{\mathrm{a}}\right) \xrightarrow{\cong} R_{\mathbf{a}}(4) .
$$

Induction Step

This decomposition is compatible with the Floer product, which defines the functor Φ on morphisms.

Induction Step

This decomposition is compatible with the Floer product, which defines the functor Φ on morphisms. Utilizing the observation that only holomorphic triangles exist bounding the thimbles T_{i}, one obtains a formality result on the n-th unfolded category $\mathcal{A}^{1 / n}$. This gives that Φ is an equivalence of categories.

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle .
\end{aligned}
$$

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle .
\end{aligned}
$$

- To check this holds, we must identify $\left(\mathcal{T}_{f_{i}}^{B}, \mathcal{T}_{f_{i+1}}^{B}\right)$ and $\left(\mathcal{T}_{w^{i}}^{A}, \mathcal{T}_{\mathbf{w}^{i+1}}^{A}\right)$ bimodules, which glue the pieces together, and prove their equivalence.

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$
\begin{aligned}
D(X) & =\left\langle\mathcal{T}_{f_{1}}^{B}, \ldots, \mathcal{T}_{f_{r}}^{B}\right\rangle, \\
F S(W) & =\left\langle\mathcal{T}_{\mathbf{w}^{1}}^{A}, \ldots, \mathcal{T}_{\mathbf{w}^{r}}^{A}\right\rangle .
\end{aligned}
$$

- To check this holds, we must identify $\left(\mathcal{T}_{f_{i}}^{B}, \mathcal{T}_{f_{i+1}}^{B}\right)$ and $\left(\mathcal{T}_{w^{i}}^{A}, \mathcal{T}_{\mathbf{w}^{i+1}}^{A}\right)$ bimodules, which glue the pieces together, and prove their equivalence.
- At a more elementary level, the equivalence between $\mathcal{T}_{\mathbf{a}}^{B}$ and $\mathcal{T}_{\mathbf{a}}^{A}$ must be shown in the case when some $a_{i}=0$ (e.g. blowing up subvarieties of positive dimension).

