Mirror symmetry for elementary birational cobordisms

Gabriel Kerr

Homological Mirror Geometry, BIRS March 10, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Motivation

B-model

A-model

Sketch of the proof

Outline

Motivation

B-model

A-model

Sketch of the proof

Let X be a Fano DM stack and $W: X^{mir} \to \mathbb{C}$ its mirror potential.

Let X be a Fano DM stack and $W: X^{mir} \to \mathbb{C}$ its mirror potential. $\frac{\text{HMS Conjecture}}{2}$: There is an equivalence

 $D(X) \cong FS(W).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let X be a Fano DM stack and $W : X^{mir} \to \mathbb{C}$ its mirror potential. $\frac{\text{HMS Conjecture}}{2}$: There is an equivalence

$$D(X) \cong FS(W).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question 1 : What are natural decompositions for either side of this equivalence?

Let X be a Fano DM stack and $W : X^{mir} \to \mathbb{C}$ its mirror potential. $\frac{\text{HMS Conjecture}}{2}$: There is an equivalence

$$D(X) \cong FS(W).$$

Question 1 : What are natural decompositions for either side of this equivalence?

Question 2 : Does HMS respect these decompositions?

Question 1 : What are natural decompositions for either side of this equivalence?

(ロ)、(型)、(E)、(E)、 E) の(の)

Question 1 : What are natural decompositions for either side of this equivalence?

B-model answer : If X admits a minimal model or VGIT sequence

$$X \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_r} X_r$$

then

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \ldots, \mathcal{T}_{f_r}^B, D(X_r) \right\rangle.$$

If $X_r = \emptyset$, then this fully decomposes D(X) in terms of wall contribution categories.

Question 1 : What are natural decompositions for either side of this equivalence?

(ロ)、(型)、(E)、(E)、 E) の(の)

A-model answer : Take the following steps

Question 1 : What are natural decompositions for either side of this equivalence?

A-model answer : Take the following steps

Step 1 : Replace $W: X^{mir} \to \mathbb{C}$ with **w** where

$$\begin{array}{c} X^{mir} \longrightarrow \mathcal{U} \\ W \downarrow \qquad \qquad \downarrow^{\pi} \\ \mathbb{C} \xrightarrow{\mathbf{w}} \mathcal{M} \end{array}$$

and $\pi: \mathcal{U} \to \mathcal{M}$ is a moduli stack of hypersurfaces of X^{mir} .

Question 1 : What are natural decompositions for either side of this equivalence?

A-model answer : Take the following steps

Step 2 : Compactify the range \mathbb{C} of the superpotential W where

$$\begin{array}{ccc} \bar{X}^{mir} \longrightarrow \bar{\mathcal{U}} \\ w & & \downarrow^{\pi} \\ \mathbb{P}^1 \xrightarrow{\mathbf{w}} \bar{\mathcal{M}} \end{array}$$

and $\pi : \overline{\mathcal{U}} \to \overline{\mathcal{M}}$ is a compactified moduli stack of stable hypersurface degenerations of \overline{X}^{mir} .

Question 1 : What are natural decompositions for either side of this equivalence?

A-model answer : Take the following steps

Step 3 : Consider a 1-parameter degeneration \mathbf{w}_t of $\mathbf{w} = \mathbf{w}_1$

$$\begin{array}{c} \tilde{X}_{\mathbf{w}_{-}}^{mir} \longrightarrow \bar{\mathcal{U}} \\ W \downarrow \qquad \qquad \downarrow^{\pi} \\ \mathbb{P}^{1} \times D^{*} \stackrel{\mathbf{w}_{t}}{\rightarrow} \bar{\mathcal{M}} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where D is the unit disc and $D^* = D \setminus \{0\}$.

Question 1 : What are natural decompositions for either side of this equivalence?

A-model answer : Take the following steps

Step 4 : Consider the degenerate potential \mathbf{w}_0 of \mathbf{w}_t which is a map

$$\mathbf{w}_0 = \cup \mathbf{w}_0^i : \cup_1^r \mathbb{P}^1 o \bar{\mathcal{M}}.$$

Question 1 : What are natural decompositions for either side of this equivalence?

A-model answer : Take the following steps

Step 5 : Taking W_i to be the pullback of \mathcal{U} along \mathbf{w}_0^i and $\mathcal{T}_{\mathbf{w}^i}^A = FS(W_i)$, there is a semi-orthogonal decomposition

$$FS(W) = \left\langle \mathcal{T}_{w^1}^A, \ldots, \mathcal{T}_{w'}^A \right\rangle.$$

Question 2 : Does HMS respect these decompositions?

Question 2 : Does HMS respect these decompositions? Toric Setting : Diemer, Katzarkov, K. (DKK) give an explicit prescription for taking a VGIT sequence

$$X \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_r} \emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

to a degeneration \mathbf{w}_t of mirror potentials.

Question 2 : Does HMS respect these decompositions? Toric Setting The resulting decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$

$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle$$

have the same number of components. Theorem (DKK) : For mirror decompositions,

$$\mathsf{rk}(\mathcal{K}_0(\mathcal{T}^B_{f_i})) = \mathsf{rk}(\mathcal{K}_0(\mathcal{T}^A_{\mathbf{w}^i})).$$

Question 2 : Does HMS respect these decompositions? Toric Setting The resulting decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$

$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle$$

have the same number of components. Theorem (DKK) : For mirror decompositions,

$$\mathsf{rk}(\mathcal{K}_0(\mathcal{T}^B_{f_i})) = \mathsf{rk}(\mathcal{K}_0(\mathcal{T}^A_{\mathbf{w}^i})).$$

Question 2 : Does HMS respect these decompositions? Toric Setting The resulting decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$

$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle$$

have the same number of components. Theorem (DKK) : For mirror decompositions,

$$\mathsf{rk}(K_0(\mathcal{T}^B_{f_i})) = \mathsf{rk}(K_0(\mathcal{T}^A_{\mathbf{w}^i})).$$

Conjecture : There exists an equivalence of categories

$$\mathcal{T}_{f_i}^B \cong \mathcal{T}_{\mathbf{w}^i}^A.$$

Outline

Motivation

B-model

A-model

Sketch of the proof

• Let
$$(a_0, \ldots, a_d) \in \mathbb{Z}^{d+1}$$
 with $a_i \neq 0$ for all i .

<□ > < @ > < E > < E > E のQ @

• Let
$$(a_0, \ldots, a_d) \in \mathbb{Z}^{d+1}$$
 with $a_i \neq 0$ for all i .

► Take
$$X = \mathbb{C}^{d+1}$$
 and \mathbb{C}^* acting via $\lambda \cdot (z_0, \ldots, z_d) = (\lambda^{a_0} z_0, \ldots, \lambda^{a_d} z_d).$

The unstable loci for the GIT quotients

$$B_{-} = \{(z_0, \dots, z_d) : z_i = 0 \text{ for } a_i < 0\},\$$

$$B_{+} = \{(z_0, \dots, z_d) : z_i = 0 \text{ for } a_i > 0\}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Let
$$(a_0, \ldots, a_d) \in \mathbb{Z}^{d+1}$$
 with $a_i \neq 0$ for all i .

► Take
$$X = \mathbb{C}^{d+1}$$
 and \mathbb{C}^* acting via $\lambda \cdot (z_0, \ldots, z_d) = (\lambda^{a_0} z_0, \ldots, \lambda^{a_d} z_d).$

The unstable loci for the GIT quotients

$$B_{-} = \{(z_0, \dots, z_d) : z_i = 0 \text{ for } a_i < 0\},\$$

$$B_{+} = \{(z_0, \dots, z_d) : z_i = 0 \text{ for } a_i > 0\}.$$

• Let
$$X_{\pm} = X \setminus B_{\pm}$$
 and

$$X_+/\mathbb{C}^* \dashrightarrow X_-/\mathbb{C}^*$$

(ロ)、(型)、(E)、(E)、 E) の(の)

the associated VGIT.

• Let
$$a_{d+1} = -\sum_{i=0}^{d} a_i$$
 and $\mathbf{a} = (a_0, \dots, a_{d+1}) \in \mathbb{Z}^{d+2}$.

<□ > < @ > < E > < E > E のQ @

• Let
$$a_{d+1} = -\sum_{i=0}^{d} a_i$$
 and $\mathbf{a} = (a_0, \dots, a_{d+1}) \in \mathbb{Z}^{d+2}$.

Theorem (BFK, HL) If $a_{d+1} < 0$ then

$$D(X_+/\mathbb{C}^*)\cong \left\langle \mathcal{T}^B_{\mathsf{a}}, D(X_-/\mathbb{C}^*) \right\rangle$$

where \mathcal{T}^{B}_{a} admits a complete exceptional collection

 $\langle E_0, \ldots, E_{-a_{d+1}-1} \rangle$

• Let
$$a_{d+1} = -\sum_{i=0}^{d} a_i$$
 and $\mathbf{a} = (a_0, \dots, a_{d+1}) \in \mathbb{Z}^{d+2}$.

Theorem (BFK, HL) If $a_{d+1} < 0$ then

$$D(X_+/\mathbb{C}^*)\cong \left\langle \mathcal{T}^B_{\mathsf{a}}, D(X_-/\mathbb{C}^*) \right\rangle$$

where \mathcal{T}^{B}_{a} admits a complete exceptional collection

$$\langle E_0,\ldots,E_{-a_{d+1}-1}\rangle$$

Furthermore, there is a full and faithful embedding

$$F: \mathcal{T}^B_{\mathbf{a}} \to D^{eq}(X)$$

for which $F(E_i) = \mathcal{O}_{B_-}(i)$.

4日 + 4日 + 4日 + 4日 + 10 - 900

Want to compute the dg-algebra

$$End^*_{Coh^{eq}(X)}(\oplus_{i=0}^{-a_{d+1}-1}\mathcal{O}_{B_-}(i))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

in the dg category $Coh^{eq}(X)$.

Want to compute the dg-algebra

$$End^*_{Coh^{eq}(X)}(\oplus_{i=0}^{-a_{d+1}-1}\mathcal{O}_{B_-}(i))$$

in the dg category $Coh^{eq}(X)$.

► Given an equivariant sheaf *F*,

$$\operatorname{Hom}_{\operatorname{Coh}^{eq}(X)}^{*}(\mathcal{F}(i),\mathcal{F}(j))\cong\operatorname{End}_{\operatorname{Coh}(X)}^{*}(\mathcal{F})_{(j-i)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and these isomorphisms are compatible with composition.

Want to compute the dg-algebra

$$End^*_{Coh^{eq}(X)}(\oplus_{i=0}^{-a_{d+1}-1}\mathcal{O}_{B_-}(i))$$

in the dg category $Coh^{eq}(X)$.

► Given an equivariant sheaf *F*,

$$\operatorname{Hom}_{\operatorname{Coh}^{eq}(X)}^{*}(\mathcal{F}(i),\mathcal{F}(j))\cong\operatorname{End}_{\operatorname{Coh}(X)}^{*}(\mathcal{F})_{(j-i)}$$

and these isomorphisms are compatible with composition.

 An elementary computation shows there are quasi-isomorphisms

$$\operatorname{End}_{\operatorname{Coh}(X)}^{*}(\mathcal{O}_{B_{-}}) \cong \operatorname{Ext}_{\operatorname{Coh}(X)}^{*}(\mathcal{O}_{B_{-}}, \mathcal{O}_{B_{-}}),$$
$$\cong \Omega_{X/B_{-}}^{*},$$
$$\cong \operatorname{Sym}^{*}(V_{0} \oplus V_{1}).$$

$$\operatorname{End}_{Coh(X)}^{*}(\mathcal{O}_{B_{-}}) \cong \operatorname{Sym}^{*}(V_{0} \oplus V_{1}).$$

Here, we take

$$egin{aligned} V_0 &= \mathbb{C}\{z_i: a_i > 0\}, \ V_1 &= \mathbb{C}\{dz_i: a_i < 0\}[1]. \end{aligned}$$

So that $R_a := \text{Sym}^*(V_0 \oplus V_1)$ is a weighted, super-symmetric algebra with wt $(z_i) = a_i$ and wt $(dz_i) = -a_i$.

$$\operatorname{End}_{Coh(X)}^{*}(\mathcal{O}_{B_{-}}) \cong \operatorname{Sym}^{*}(V_{0} \oplus V_{1}).$$

Here, we take

$$V_0 = \mathbb{C}\{z_i : a_i > 0\},\ V_1 = \mathbb{C}\{dz_i : a_i < 0\}[1].$$

So that $R_a := \text{Sym}^*(V_0 \oplus V_1)$ is a weighted, super-symmetric algebra with wt $(z_i) = a_i$ and wt $(dz_i) = -a_i$.

► Due to formality, and working in the category R_a-mod^Z, the Yoneda functor yields an equivalence of categories

$$\mathcal{T}^{\mathcal{B}}_{\mathbf{a}} \cong D\left(\mathsf{End}^*\left(\bigoplus_{k=0}^{-a_{d+1}-1} R_{\mathbf{a}}(k)\right) \operatorname{-mod}\right)$$

Examples

$$R_{\mathbf{a}} = \operatorname{Sym}^{*}(V_{0} \oplus V_{1}) \cong \operatorname{End}_{Coh(X)}^{*}(\mathcal{O}_{B_{-}}).$$

$$\frac{\mathbf{a}}{(1,1,-2)} \frac{R_{\mathbf{a}}}{\mathbb{C}[z_{0}, z_{1}, dz_{2}]} \frac{X_{+}/\mathbb{C}^{*}}{\mathbb{P}^{1}} \qquad \emptyset$$

$$R_{\mathbf{a}}(0) \xrightarrow[z_0]{z_1} R_{\mathbf{a}}(1)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Examples

$$\begin{array}{c|c|c|c|c|c|c|c|c|} \hline \mathbf{a} & R_{\mathbf{a}} & X_{+}/\mathbb{C}^{*} & X_{-}/\mathbb{C}^{*} \\ \hline \hline (2,3,-5) & \mathbb{C}[z_{0},z_{1},dz_{2}] & \mathbb{P}(2,3) & \emptyset \end{array}$$

 $R_{\mathbf{a}} = \operatorname{Sym}^*(V_0 \oplus V_1) \cong \operatorname{End}^*_{Coh(X)}(\mathcal{O}_{B_-}).$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Examples

$$R_{\mathbf{a}} = \operatorname{Sym}^*(V_0 \oplus V_1) \cong \operatorname{End}^*_{Coh(X)}(\mathcal{O}_{B_-}).$$

а	R _a	X_+/\mathbb{C}^*	X_{-}/\mathbb{C}^{*}
(1,2,3,-1,-5)	$\mathbb{C}[z_0, z_1, z_2, dz_3, dz_4]$	$\mathcal{O}_{\mathbb{P}(1,2,3)}(-1)$	\mathbb{C}^3

Outline

Motivation

B-model

A-model

Sketch of the proof

Definition

A symplectic Lefschetz fibration $W : Y \to \mathbb{C}^*$ is called atomic if it has a unique critical point p with critical value q.

Definition

A symplectic Lefschetz fibration $W : Y \to \mathbb{C}^*$ is called atomic if it has a unique critical point p with critical value q.

Choosing a basepoint *, the path δ_0 gives the vanishing thimble $T_0 \subset Y$ and the vanishing cycle $L_0 \subset W^{-1}(*)$.

Definition

A symplectic Lefschetz fibration $W : Y \to \mathbb{C}^*$ is called atomic if it has a unique critical point p with critical value q.

Applying monodromy gives paths $\delta_0, \delta_1, \ldots, \delta_{n-1}$ and a collection of vanishing cycles $L_0, L_1, \ldots, L_{n-1} \subset W^{-1}(*)$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

A symplectic Lefschetz fibration $W : Y \to \mathbb{C}^*$ is called atomic if it has a unique critical point p with critical value q.

Applying monodromy gives paths $\delta_0, \delta_1, \ldots, \delta_{n-1}$ and a collection of vanishing cycles $L_0, L_1, \ldots, L_{n-1} \subset W^{-1}(*)$.

Definition

Given an atomic Lefschetz fibration W, the *n*-unfolded category $\mathcal{A}^{1/n}$ of W is the directed A_{∞} -subcategory

$$\langle L_0,\ldots,L_{n-1}\rangle$$

of the Fukaya category $\mathcal{F}(W^{-1}(*))$. The Fukaya-Seidel category $FS(W^{1/n})$ is the category of twisted complexes $Tw(\mathcal{A}(W^{1/n}))$.

Definition

Given an atomic Lefschetz fibration W, the *n*-unfolded category $\mathcal{A}^{1/n}$ of W is the directed A_{∞} -subcategory

$$\langle L_0,\ldots,L_{n-1}\rangle$$

of the Fukaya category $\mathcal{F}(W^{-1}(*))$. The Fukaya-Seidel category $FS(W^{1/n})$ is the category of twisted complexes $Tw(\mathcal{A}(W^{1/n}))$. Here

$$\operatorname{Hom}_{\mathcal{A}^{1/n}}(L_i, L_j) = \begin{cases} \operatorname{Hom}_{\mathcal{F}(W^{-1}(*))}(L_i, L_j) & \text{ if } i < j, \\ 1_i & \text{ if } i = j, \\ 0 & \text{ if } i > j. \end{cases}$$

Alternatively, taking the pullback $\tilde{W} : \tilde{Y} \to \mathbb{C}$ of W along exp gives a periodic collection of critical values.

э

イロト イポト イヨト イヨト

э

イロト イポト イヨト イヨト

Restricting to a strip gives $\tilde{W}_S : \tilde{Y}_S \to S$.

э

イロト イポト イヨト イヨト

Restricting to a strip gives $\tilde{W}_S : \tilde{Y}_S \to S$.

Theorem (Seidel)

There is an equivalence $FS(W^{1/n}) \cong FS(\tilde{W}_S)$.

Mirror potentials to elementary birational cobordisms

Let

$$P_{d} = \left\{ [Z_{0} : \cdots : Z_{d+1}] : \sum_{i=0}^{d+1} Z_{i} = 0, Z_{i} \neq 0 \right\} \subset \mathbb{P}^{d+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

be the *d*-dimensional pair of pants.

Mirror potentials to elementary birational cobordisms

Let

$$P_{d} = \left\{ [Z_{0} : \cdots : Z_{d+1}] : \sum_{i=0}^{d+1} Z_{i} = 0, Z_{i} \neq 0 \right\} \subset \mathbb{P}^{d+1}$$

be the *d*-dimensional pair of pants.

Given a = (a₀,..., a_{d+1}) ∈ Z^{d+2} with ∑_{i=0}^{d+1} a_i = 0, consider the pencil ψ_a : P^{d+1} → P¹ defined by

$$\psi_{\mathbf{a}}([Z_0:\cdots:Z_{d+1}]):=\left[\prod_{a_i>0}Z_i^{a_i}:\prod_{a_i<0}Z_i^{-a_i}\right]$$

•

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mirror potentials to elementary birational cobordisms

Let

$$P_{d} = \left\{ [Z_{0} : \cdots : Z_{d+1}] : \sum_{i=0}^{d+1} Z_{i} = 0, Z_{i} \neq 0 \right\} \subset \mathbb{P}^{d+1}$$

be the *d*-dimensional pair of pants.

Given a = (a₀,..., a_{d+1}) ∈ Z^{d+2} with ∑^{d+1}_{i=0} a_i = 0, consider the pencil ψ_a : P^{d+1} → P¹ defined by

$$\psi_{\mathbf{a}}([Z_0:\cdots:Z_{d+1}]):=\left[\prod_{a_i>0}Z_i^{a_i}:\prod_{a_i<0}Z_i^{-a_i}\right]$$

Observation (GKZ, DKK)

The function $W_{\mathbf{a}} = \psi_{\mathbf{a}}|_{P_d}$ is an atomic Lefschetz fibration.

HMS for elementary birational cobordisms

The potential W_a appears in DKK as the equivariant quotient by \mathbb{Z}/a_{d+1} of the homological mirror potential W to the VGIT defined by (a_0, \ldots, a_d) .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HMS for elementary birational cobordisms

The potential W_a appears in DKK as the equivariant quotient by \mathbb{Z}/a_{d+1} of the homological mirror potential W to the VGIT defined by (a_0, \ldots, a_d) .

Theorem (K.)

For any $0 \le n \le \sum_{a_i > 0} a_i$ there is a strict, fully faithful functor

$$\Phi:\mathcal{A}^{1/n}
ightarrow R_{\mathbf{a}} ext{-}\mathsf{mod}^{\mathbb{Z}}$$

for which

$$\Phi(L_k)=R_{\mathbf{a}}(k).$$

Two corollaries

Letting $\mathcal{T}_{\mathbf{a}}^{A} = FS(W^{1/-a_{d+1}})$ the theorem implies, Corollary There is an equivalence $\mathcal{T}_{\mathbf{a}}^{B} \cong \mathcal{T}_{\mathbf{a}}^{A}$.

Two corollaries

Letting $\mathcal{T}^{\mathcal{A}}_{\mathbf{a}} = \textit{FS}(\mathcal{W}^{1/-a_{d+1}})$ the theorem implies,

Corollary

There is an equivalence $\mathcal{T}^{B}_{\mathbf{a}} \cong \mathcal{T}^{A}_{\mathbf{a}}$.

As a special case when $a_i > 0$ for all $i \neq d + 1$,

Corollary

HMS holds for weighted projective spaces

$$D(\mathbb{P}(a_0,\ldots,a_d))\cong FS(W_{\mathbf{a}}^{1/-a_{d+1}})=FS(W_{\mathbf{a}}^{HV}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Motivation

B-model

A-model

Sketch of the proof

Base case d = 1

Assume $\mathbf{a} = (a_0, a_1, a_2) \in \mathbb{Z}^3$ satisfies $a_0, a_1 > 0$. Parameterize $P_1 \cong \mathbb{P}^1 \setminus \{0, -1, \infty\}$ with $[Z_0 : Z_1]$. Then

$$W_{\mathbf{a}}([Z_0:Z_1]) = \frac{Z_0^{a_0} Z_1^{a_1}}{(-Z_0 - Z_1)^{a_0 + a_1}}$$

is an $(a_0 + a_1)$ -fold branched covering with ramification degree a_0, a_1 and a_2 at $0, \infty$ and -1, respectively, and a single critical point at $[a_0 : a_1] \in P_1$. The admissible path δ_0 from $W_a([a_0 : a_1])$ to zero has vanishing thimble equal to the component of $W^{-1}(\delta_0)$ containing $[a_0, a_1]$.

(日) (同) (三) (三) (三) (○) (○)

・ロト・西ト・ヨト ヨー シタぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

The logarithmic picture

To better understand the Floer theory of the vanishing thimbles T_i , consider the logarithm log : $P_1 \to \mathbb{C} \setminus (\pi i + 2\pi i\mathbb{Z})$.

The logarithmic picture

To better understand the Floer theory of the vanishing thimbles T_i , consider the logarithm log : $P_1 \to \mathbb{C} \setminus (\pi i + 2\pi i\mathbb{Z})$.

As the slope of T_i is decreasing relative to i, any holomorphic polygon with counter-clockwise boundary on the thimbles $\{T_{i_1}, \ldots, T_{i_m}\}$ with $i_j < i_{j+1}$ must be a triangle.

• Assume the theorem holds for dim < d and let

 $\mathbf{a} = (a_0, \dots, a_{d+1})$. We may assume that $a_0, a_1 > 0$ (or apply Koszul duality).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Assume the theorem holds for dim < d and let a = (a₀,..., a_{d+1}). We may assume that a₀, a₁ > 0 (or apply Koszul duality).
- In order to understand the Floer theory for Hom(L_i, L_j), we must understand the geometry of W_a⁻¹(*).

- ▶ Assume the theorem holds for dim < d and let a = (a₀,..., a_{d+1}). We may assume that a₀, a₁ > 0 (or apply Koszul duality).
- In order to understand the Floer theory for Hom(L_i, L_j), we must understand the geometry of W_a⁻¹(*).
- We accomplish this by choosing an auxiliary Lefschetz fibration

$$f([Z_0:\cdots:Z_{d+1}]) = [Z_0:Z_1:-Z_0-Z_1]$$

- ▶ Assume the theorem holds for dim < d and let a = (a₀,..., a_{d+1}). We may assume that a₀, a₁ > 0 (or apply Koszul duality).
- In order to understand the Floer theory for Hom(L_i, L_j), we must understand the geometry of W_a⁻¹(*).
- We accomplish this by choosing an auxiliary Lefschetz fibration

$$f([Z_0:\cdots:Z_{d+1}]) = [Z_0:Z_1:-Z_0-Z_1]$$

► Taking D = {Z₀ + Z₁ = 0} ⊂ P_d and F_t = W_a⁻¹(t)\D, f restricts to a Lefschetz fibration

$$f: F_t \rightarrow P_1$$

for all W_a regular values t.

Induction Step Lemma (K.) Letting

$$egin{aligned} & m{b} = (a_0 + a_1, a_2, \dots, a_{d+1}) \in \mathbb{Z}^{d+1}, \ & m{c} = (a_0, a_1, -a_0 - a_1) \in \mathbb{Z}^3, \end{aligned}$$

 F_t is the pullback

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Induction Step Lemma (K.) Letting

$$egin{aligned} & m{b} = (a_0 + a_1, a_2, \dots, a_{d+1}) \in \mathbb{Z}^{d+1}, \ & m{c} = (a_0, a_1, -a_0 - a_1) \in \mathbb{Z}^3, \end{aligned}$$

 F_t is the pullback

Corollary

The vanishing cycles L_i of W_a are f-matching cycles over the thimbles T_i for W_c . Furthermore, L_i is the pullback along tW_{-c} of a vanishing thimble of W_b .

Example $\mathbf{a} = (2, 3, 1, -2, -4)$ Here $\mathbf{b} = (5, 1, -2, -4)$ and $\mathbf{c} = (2, 3, -5)$.

Example $\mathbf{a} = (2, 3, 1, -2, -4)$ Here $\mathbf{b} = (5, 1, -2, -4)$ and $\mathbf{c} = (2, 3, -5)$.

Consider just two of these thimbles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
The corollary asserts that the W_a vanishing cycles L_0^a, L_4^a are fibered over T_0, T_4 via f, collapsing at its endpoints.

This gives a decomposition

 $Hom_{FS(W_{a})}(L_{0}^{a}, L_{4}^{a}) = CF^{*}(L_{0}^{a}, L_{4}^{a}) = \bigoplus_{y \in T_{0} \cap T_{4}} CF^{*}(L_{0,y}^{b}, L_{4,y}^{b})$

Implying $\text{Hom}_{FS(W_a)}(L_0^a, L_4^a)$ is isomorphic to

$$\mathsf{Hom}_{FS(W_{\mathbf{b}})}(L_{0}^{\mathbf{b}}, L_{0}^{\mathbf{b}}) \oplus \mathsf{Hom}_{FS(W_{\mathbf{b}})}(L_{0}^{\mathbf{b}}, L_{2}^{\mathbf{b}}) \oplus \cdots$$
$$\cdots \oplus \mathsf{Hom}_{FS(W_{\mathbf{b}})}(L_{0}^{\mathbf{b}}, L_{4}^{\mathbf{b}}) \oplus \mathsf{Hom}_{FS(W_{\mathbf{b}})}(L_{0}^{\mathbf{b}}, L_{1}^{\mathbf{b}}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 T_0 T_4

0

0

By induction, we have $\text{Hom}_{FS(W_a)}(L_0^a, L_4^a)$ is isomorphic to

 $\mathbb{C} \cdot \{1\} \oplus \mathbb{C} \cdot \{d\tilde{z}_2\} \oplus \mathbb{C} \cdot \{d\tilde{z}_3\} \oplus \mathbb{C} \cdot \{\tilde{z}_1\} \subset R_{\mathbf{b}}.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Taking $\tilde{z}_j, d\tilde{z}_i \in R_b$ to $z_{j+1}, dz_{i+1} \in R_a$, and multiplying by a power of z_0 or z_1 (depending on the summand), we obtain

 $\mathbb{C} \cdot \{1\} \oplus \mathbb{C} \cdot \{d\tilde{z}_2\} \oplus \mathbb{C} \cdot \{d\tilde{z}_3\} \oplus \mathbb{C} \cdot \{\tilde{z}_1\} \subset R_{\mathbf{b}},$ $\mathbb{C} \cdot \{z_0^2\} \oplus \mathbb{C} \cdot \{z_0 dz_3\} \oplus \mathbb{C} \cdot \{dz_4\} \oplus \mathbb{C} \cdot \{z_1 z_2\} = R_{\mathbf{a}}(4)$

This yields the isomorphism of vector spaces

$$\Phi: \operatorname{Hom}_{FS(W_{\mathbf{a}}^{1/n})}(L_{0}^{\mathbf{a}}, L_{4}^{\mathbf{a}}) \xrightarrow{\cong} R_{\mathbf{a}}(4).$$

Induction Step

This decomposition is compatible with the Floer product, which defines the functor Φ on morphisms.

Induction Step

This decomposition is compatible with the Floer product, which defines the functor Φ on morphisms.

Utilizing the observation that only holomorphic triangles exist bounding the thimbles T_i , one obtains a formality result on the *n*-th unfolded category $\mathcal{A}^{1/n}$. This gives that Φ is an equivalence of categories.

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$

$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$

$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle.$$

► To check this holds, we must identify (*T*^B_{fi}, *T*^B_{fi+1}) and (*T*^A_{wi}, *T*^A_{wi+1}) bimodules, which glue the pieces together, and prove their equivalence.

Future directions

Recall that the original conjecture was an equivalence of decompositions

$$D(X) = \left\langle \mathcal{T}_{f_1}^B, \dots, \mathcal{T}_{f_r}^B \right\rangle,$$
$$FS(W) = \left\langle \mathcal{T}_{\mathbf{w}^1}^A, \dots, \mathcal{T}_{\mathbf{w}^r}^A \right\rangle.$$

- ► To check this holds, we must identify (T^A_{fi}, T^A_{fi+1}) and (T^A_{wi}, T^A_{wi+1}) bimodules, which glue the pieces together, and prove their equivalence.
- At a more elementary level, the equivalence between $\mathcal{T}_{\mathbf{a}}^{B}$ and $\mathcal{T}_{\mathbf{a}}^{A}$ must be shown in the case when some $a_{i} = 0$ (e.g. blowing up subvarieties of positive dimension).