Total mean curvature, scalar curvature, and a variational analog of Brown-York mass

Pengzi Miao University of Miami

(joint work with Christos Mantoulidis)

Workshop on Geometric Analysis and General Relativity

BIRS, Banff, July 2016

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

Theorem (Shi - Tam, 02)

Let (Ω, g) be a compact, connected, Riemannian 3-manifold with nonnegative scalar curvature, and with nonempty boundary Σ . Suppose Σ has finitely many components Σ_j , j = 1, ..., k, so that each Σ_j is a topological 2-sphere which has positive Gauss curvature and positive mean curvature H. Then

$$\int_{\Sigma_j} H \ d\sigma \le \int_{\Sigma_j} H_0 \ d\sigma, \tag{1}$$

where $d\sigma$ denotes the induced area element on Σ_j , and H_0 is the mean curvature of the isometric embedding of Σ_j in \mathbb{R}^3 . Moreover, equality holds for some Σ_j if and only if k = 1 and (Ω, g) is isometric to a convex domain in \mathbb{R}^3 .

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.

Proposition (Mantoulidis - M)

Suppose Σ is topologically a 2-sphere. There exists a constant $\Lambda > 0$, depending only on (Σ, γ) , where γ is the induced metric on Σ from (Ω, g) , such that $\int_{\Sigma} H d\sigma \leq \Lambda$.

Proposition (Mantoulidis - M)

Suppose Σ is topologically a 2-sphere. There exists a constant $\Lambda > 0$, depending only on (Σ, γ) , where γ is the induced metric on Σ from (Ω, g) , such that $\int_{\Sigma} H d\sigma \leq \Lambda$.

Remark:

• This fact was also independently derived and made used by Lu recently on isometric embeddings into Riemannian manifolds.

Proposition (Mantoulidis - M)

Suppose Σ is topologically a 2-sphere. There exists a constant $\Lambda > 0$, depending only on (Σ, γ) , where γ is the induced metric on Σ from (Ω, g) , such that $\int_{\Sigma} H d\sigma \leq \Lambda$.

Remark:

- This fact was also independently derived and made used by Lu recently on isometric embeddings into Riemannian manifolds.
- The proof makes key use of results of Wang-Yau and Shi-Tam on boundary behavior of compact manifolds with a negative lower bound on scalar curvature.

向下 イヨト イヨト

Implications:

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

▲□→ ▲ □→ ▲ □→

æ

 $\begin{aligned} \mathcal{F}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ is a compact three dimensional} \\ & \text{manifold with } R \geq 0, \ \partial \Omega \text{ isometric to} \\ & (\Sigma,\gamma), \text{with } H > 0 \} \,. \end{aligned}$

Pengzi Miao University of Miami (joint work v Total mean curvature, scalar curvature, etc.

$$\begin{aligned} \mathcal{F}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ is a compact three dimensional} \\ & \text{manifold with } R \geq 0, \ \partial \Omega \text{ isometric to} \\ & (\Sigma,\gamma), \text{with } H > 0 \} \,. \end{aligned}$$

It follows that

$$\Lambda_{(\Sigma,\gamma)} := \sup\left\{\frac{1}{8\pi}\int_{\partial\Omega} Hd\sigma \mid (\Omega,g) \in \mathcal{F}_{(\Sigma,\gamma)}\right\} < \infty, \quad (2)$$

向下 イヨト イヨト

э

which is an invariant of the metric γ on $\Sigma = S^2$.

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.

$$\begin{aligned} \mathcal{F}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ is a compact three dimensional} \\ & \text{manifold with } R \geq 0, \ \partial \Omega \text{ isometric to} \\ & (\Sigma,\gamma), \text{with } H > 0 \} \,. \end{aligned}$$

It follows that

$$\Lambda_{(\Sigma,\gamma)} := \sup\left\{\frac{1}{8\pi}\int_{\partial\Omega} Hd\sigma \mid (\Omega,g) \in \mathcal{F}_{(\Sigma,\gamma)}\right\} < \infty, \qquad (2)$$

which is an invariant of the metric γ on $\Sigma = S^2$. *Remark*:

On Σ = S², if γ is a metric with λ₁(−Δ + K) > 0, then by the method of Mantoulidis-Schoen (2014), F_(Σ,γ) ≠ Ø.

$$\begin{aligned} \mathcal{F}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ is a compact three dimensional} \\ & \text{manifold with } R \geq 0, \ \partial \Omega \text{ isometric to} \\ & (\Sigma,\gamma), \text{with } H > 0 \} \,. \end{aligned}$$

It follows that

$$\Lambda_{(\Sigma,\gamma)} := \sup\left\{\frac{1}{8\pi}\int_{\partial\Omega} Hd\sigma \mid (\Omega,g) \in \mathcal{F}_{(\Sigma,\gamma)}\right\} < \infty, \qquad (2)$$

which is an invariant of the metric γ on $\Sigma = S^2$. *Remark*:

- On Σ = S², if γ is a metric with λ₁(-Δ + K) > 0, then by the method of Mantoulidis-Schoen (2014), F_(Σ,γ) ≠ Ø.
- A related but different set of fill-ins was used by Jauregui (2011).

Recall that, given a compact 3-manifold (Ω, g) with boundary Σ being a 2-sphere, if the induced metric γ on Σ has K > 0, the Brown-York mass of Σ in (Ω, g) is defined as

$$\mathfrak{m}_{BY}(\Sigma;\Omega) := \frac{1}{8\pi} \int_{\Sigma} (H_0 - H) d\sigma.$$
(3)

Pengzi Miao University of Miami (joint work v Total mean curvature, scalar curvature, etc.

Recall that, given a compact 3-manifold (Ω, g) with boundary Σ being a 2-sphere, if the induced metric γ on Σ has K > 0, the Brown-York mass of Σ in (Ω, g) is defined as

$$\mathfrak{m}_{BY}(\Sigma;\Omega) := \frac{1}{8\pi} \int_{\Sigma} (H_0 - H) d\sigma.$$
(3)

Note that the mean curvature H_0 of the isometric embedding of Σ is not used pointwisely in (3).

Recall that, given a compact 3-manifold (Ω, g) with boundary Σ being a 2-sphere, if the induced metric γ on Σ has K > 0, the Brown-York mass of Σ in (Ω, g) is defined as

$$\mathfrak{m}_{BY}(\Sigma;\Omega) := \frac{1}{8\pi} \int_{\Sigma} (H_0 - H) d\sigma.$$
(3)

Note that the mean curvature H_0 of the isometric embedding of Σ is not used pointwisely in (3).

Without assuming γ on Σ has positive K, one may consider

Definition (Mantoulidis - M)

Given a compact 3-manifold (Ω, g) with $\Sigma = \partial \Omega$ being a 2-sphere, define

$$\tilde{\mathfrak{m}}_{BY}(\Sigma;\Omega) := \Lambda_{(\Sigma,\gamma)} - \frac{1}{8\pi} \int_{\Sigma} H d\sigma.$$
(4)

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

For those (Ω, g) which has $R \ge 0$ and H > 0, one has

a)
$$\widetilde{\mathfrak{m}}_{_{BY}}(\Sigma;\Omega) \geq 0$$
,

b) $ilde{\mathfrak{m}}_{_{BY}}(\Sigma;\Omega)=0$ only if (Ω,g) is flat, and

c)
$$\tilde{\mathfrak{m}}_{_{BY}}(\Sigma;\Omega) = \mathfrak{m}_{_{BY}}(\Sigma;\Omega)$$
 when $K > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

For those (Ω, g) which has $R \ge 0$ and H > 0, one has

a)
$$\tilde{\mathfrak{m}}_{_{BY}}(\Sigma; \Omega) \ge 0$$
,
b) $\tilde{\mathfrak{m}}_{_{BY}}(\Sigma; \Omega) = 0$ only if (Ω, g) is flat, and
c) $\tilde{\mathfrak{m}}_{_{BY}}(\Sigma; \Omega) = \mathfrak{m}_{_{BY}}(\Sigma; \Omega)$ when $K > 0$.

The third property, which is equivalent to the assertion

$$\Lambda_{(\Sigma,\gamma)} = \frac{1}{8\pi} \int_{\Sigma} H_0 d\sigma \ \, {\rm when} \ \, {\cal K} > 0,$$

is provided by the Shi-Tam theorem.

Remark:

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

2

Remark: Given a surface Σ with a metric γ , one may also consider

$$\begin{split} \mathring{\mathcal{F}}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ satisfies conditions imposed on} \\ &\quad \text{elements in } \mathcal{F}_{(\Sigma,\gamma)}, \text{ except that } \partial \Omega \setminus \Sigma \\ &\quad \text{may consist of minimal surfaces} \} \,. \end{split}$$

伺下 イヨト イヨト

Remark: Given a surface Σ with a metric γ , one may also consider

$$\begin{split} \mathring{\mathcal{F}}_{(\Sigma,\gamma)} &= \left\{ (\Omega,g) \mid (\Omega,g) \text{ satisfies conditions imposed on} \\ &\quad \text{elements in } \mathcal{F}_{(\Sigma,\gamma)}, \text{ except that } \partial \Omega \setminus \Sigma \\ &\quad \text{may consist of minimal surfaces} \right\}. \end{split}$$

If one lets
$$\mathring{\Lambda}_{(\Sigma,\gamma)} := \sup \left\{ \frac{1}{8\pi} \int_{\partial\Omega} Hd\sigma \mid (\Omega,g) \in \mathring{\mathcal{F}}_{(\Sigma,\gamma)} \right\}$$
, then it can be shown
$$\Lambda_{(\Sigma,\gamma)} = \mathring{\Lambda}_{(\Sigma,\gamma)}.$$
(5)

伺下 イヨト イヨト

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

Remark: Given a surface Σ with a metric γ , one may also consider

$$\begin{split} \mathring{\mathcal{F}}_{(\Sigma,\gamma)} &= \{ (\Omega,g) \mid (\Omega,g) \text{ satisfies conditions imposed on} \\ &\quad \text{elements in } \mathcal{F}_{(\Sigma,\gamma)}, \text{ except that } \partial \Omega \setminus \Sigma \\ &\quad \text{may consist of minimal surfaces} \} \,. \end{split}$$

If one lets
$$\mathring{\Lambda}_{(\Sigma,\gamma)} := \sup \left\{ \frac{1}{8\pi} \int_{\partial\Omega} Hd\sigma \mid (\Omega,g) \in \mathring{\mathcal{F}}_{(\Sigma,\gamma)} \right\}$$
, then it can be shown
 $\Lambda_{(\Sigma,\gamma)} = \mathring{\Lambda}_{(\Sigma,\gamma)}.$ (5)

So it does not matter whether one uses $\Lambda_{(\Sigma,\gamma)}$ or $\mathring{\Lambda}_{(\Sigma,\gamma)}$ in the definition of $\widetilde{\mathfrak{m}}_{_{BY}}(\Sigma;\Omega)$.

伺下 イヨト イヨト

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

Next, we consider fill-ins of multiple surfaces.

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

- 17

문 🕨 👘 문

Next, we consider fill-ins of multiple surfaces. Let

$$(\Sigma_1, \gamma_1), \ldots, (\Sigma_k, \gamma_k)$$

be a collection of $k \ge 1$ closed, connected, orientable 2-surface Σ_j where γ_j is any metric on Σ_j , j = 1, ..., k.

直 とう きょう うちょう

Next, we consider fill-ins of multiple surfaces. Let

$$(\Sigma_1, \gamma_1), \ldots, (\Sigma_k, \gamma_k)$$

be a collection of $k \ge 1$ closed, connected, orientable 2-surface Σ_j where γ_j is any metric on Σ_j , j = 1, ..., k. Denote by

$$\mathcal{F}_{(\Sigma_1,\gamma_1),\ldots,(\Sigma_k,\gamma_k)}$$

the set of all compact, connected 3-manifolds (Ω, g) satisfying:

 ∂Ω, with the induced metric, is isometric to the disjoint union of (Σ_j, γ_j), j = 1,..., k,

- H > 0, where H is the mean curvature of $\partial \Omega$, and
- $R(g) \ge 0$, where R(g) is the scalar curvature of g.

Given
$$\mathcal{F} = \mathcal{F}_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)}$$
, let

$$\Lambda_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)} := \sup \left\{ \frac{1}{8\pi} \int_{\partial\Omega} H d\sigma \mid (\Omega,g) \in \mathcal{F} \right\}.$$
(6)

If $\mathcal{F} = \emptyset$, $\Lambda_{(\Sigma_1, \gamma_1), \dots, (\Sigma_k, \gamma_k)} := -\infty$.

イロン イロン イヨン イヨン 三日

Given
$$\mathcal{F} = \mathcal{F}_{(\Sigma_1, \gamma_1), \dots, (\Sigma_k, \gamma_k)}$$
, let

$$\Lambda_{(\Sigma_1, \gamma_1), \dots, (\Sigma_k, \gamma_k)} := \sup \left\{ \frac{1}{8\pi} \int_{\partial \Omega} H d\sigma \mid (\Omega, g) \in \mathcal{F} \right\}.$$
(6)

If
$$\mathcal{F} = \emptyset$$
, $\Lambda_{(\Sigma_1, \gamma_1), \dots, (\Sigma_k, \gamma_k)} := -\infty$

In this notation, the Shi-Tam theorem can be rephrased as:

"Suppose Σ is a 2-sphere and $\gamma, \gamma_1, \ldots, \gamma_k$ are metrics on Σ with K > 0, then

向下 イヨト イヨト

3

(I)
$$\Lambda_{(\Sigma,\gamma)} = \frac{1}{8\pi} \int_{\Sigma} H_0 d\sigma;$$

(II) $\int_{\Sigma_j} H d\sigma \leq 8\pi \Lambda_{(\Sigma,\gamma_j)}, \ \forall \ (\Omega,g) \in \mathcal{F}_{(\Sigma,\gamma_1),\dots,(\Sigma,\gamma_k)}.$ "

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

One has the following analogue of Part (II) in general.

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.

문 문 문

One has the following analogue of Part (II) in general.

Theorem (Mantoulidis - M)

Let $\Sigma_1, \ldots, \Sigma_k$ be $k \ge 1$ closed, connected, orientable surfaces endowed with metrics $\gamma_1, \ldots, \gamma_k$. Given $(\Omega, g) \in \mathcal{F}_{(\Sigma_1, \gamma_1), \ldots, (\Sigma_k, \gamma_k)}$, one has

$$\int_{\Sigma_j} H \, d\sigma \leq 8\pi \Lambda_{(\Sigma_j, \gamma_j)}, \quad \forall \ j = 1, \dots, k.$$
(7)

Moreover, equality holds for some j only if k = 1 and (Ω, g) is isometric to a mean-convex handlebody with flat interior whose genus is that of Σ_1 . In particular, if genus $(\Sigma_1) = 0$ then (Ω, g) is a flat 3-ball. Moreover, one can show that the functional $\Lambda_{(\Sigma_1,\gamma_1),...,(\Sigma_k,\gamma_k)}$ satisfies an additivity property.

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.

伺い イヨト イヨト

æ

Moreover, one can show that the functional $\Lambda_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)}$ satisfies an additivity property.

Theorem (Mantoulidis - M)

Let $\Sigma_1, \ldots, \Sigma_k$ be $k \ge 2$ closed, connected, orientable surfaces endowed with metrics $\gamma_1, \ldots, \gamma_k$. One has

$$\Lambda_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)} = \sum_{j=1}^k \Lambda_{(\Sigma_j,\gamma_j)},\tag{8}$$

伺い イヨト イヨト ニヨ

provided each set $\mathcal{F}_{(\Sigma_j,\gamma_j)}$, $j = 1, \ldots, k$, is nonempty.

Pengzi Miao University of Miami (joint work V Total mean curvature, scalar curvature, etc.

Moreover, one can show that the functional $\Lambda_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)}$ satisfies an additivity property.

Theorem (Mantoulidis - M)

Let $\Sigma_1, \ldots, \Sigma_k$ be $k \ge 2$ closed, connected, orientable surfaces endowed with metrics $\gamma_1, \ldots, \gamma_k$. One has

$$\Lambda_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)} = \sum_{j=1}^k \Lambda_{(\Sigma_j,\gamma_j)},\tag{8}$$

向下 イヨト イヨト ニヨ

provided each set $\mathcal{F}_{(\Sigma_j,\gamma_j)}$, $j=1,\ldots,k$, is nonempty.

In the course of the proof, it is shown that $\mathcal{F}_{(\Sigma_1,\gamma_1),\dots,(\Sigma_k,\gamma_k)} = \emptyset$ if and only if $\mathcal{F}_{(\Sigma_i,\gamma_i)} = \emptyset$ for some *j*.

Proof of " $\Lambda_{(\Sigma,\gamma)} < \infty$ " when Σ is a 2-sphere

Pengzi Miao University of Miami (joint work v Total mean curvature, scalar curvature, etc.

(本間) (本語) (本語) (語)

Proof of " $\Lambda_{(\Sigma,\gamma)} < \infty$ " when Σ is a 2-sphere

Theorem (Wang - Yau, 06)

Let (Ω, g) be a compact 3-manifold with scalar curvature $R \ge -6\kappa^2$ for some $\kappa > 0$. Suppose its boundary Σ is a topological 2-sphere which has Gauss curvature $K > -\kappa^2$ and positive mean curvature H. Then there exists a future-directed time-like vector-valued function $W^0 : \Sigma \to \mathbb{R}^{3,1}$, which depends on H and the embedding of Σ into $\mathbb{H}^3_{-\kappa^2} \subset \mathbb{R}^{3,1}$ such that

$$\int_{\Sigma} (H_0 - H) W^0 d\sigma \tag{9}$$

伺 とう ヨン うちょう

is a future-directed non-spacelike vector. Here H_0 is the mean curvature of the isometric embedding of Σ in $\mathbb{H}^3_{-\kappa^2}$.

Shi and Tam later found that W^0 in Wang-Yau's theorem can be taken as $W^0 = (x_1, x_2, x_3, \alpha t)$ for some $\alpha > 1$ depending only on (Σ, γ) .

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.

ヨット イヨット イヨッ

э

Shi and Tam later found that W^0 in Wang-Yau's theorem can be taken as $W^0 = (x_1, x_2, x_3, \alpha t)$ for some $\alpha > 1$ depending only on (Σ, γ) . From this, Shi and Tam proved

Theorem (Shi - Tam, 06)

Let (Ω, g) be a compact 3-manifold with scalar curvature $R \ge -6\kappa^2$ for some $\kappa > 0$. Suppose its boundary Σ is a topological 2-sphere which has Gauss curvature $K > -\kappa^2$ and positive mean curvature H. Then

$$\int_{\Sigma} H \cosh \kappa r \ d\sigma \leq \int_{\Sigma} H_0 \cosh \kappa r \ d\sigma, \tag{10}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

where H_0 is the mean curvature of the isometric embedding of Σ in $\mathbb{H}^3_{-\kappa^2}$ and $r(\cdot)$ denotes the distance to any fixed point in the interior of the image of Σ in $\mathbb{H}^3_{-\kappa^2}$. Moreover, equality in (10) holds if and only if (Ω, g) is isometric to a convex domain in $\mathbb{H}^3_{-\kappa^2}$. Some open questions pau

• If γ is a metric on a higher genus surface Σ , is it true

$$\Lambda_{(\mathbf{\Sigma},\gamma)} < \infty$$
 ?

• If $\Lambda_{(\Sigma,\gamma)}<\infty$ and if (Σ,γ) isometrically embeds in $\mathbb{R}^3,$ does

$$\Lambda_{(\Sigma,\gamma)} = \frac{1}{8\pi} \int_{\Sigma} H_0 d\sigma ?$$

Pengzi Miao University of Miami (joint work Total mean curvature, scalar curvature, etc.