Asymptotic behaviour of the Hawking energy in null directions and a Penrose-like inequality

Marc Mars (joint work with Alberto Soria)

Universidad de Salamanca

July 19, 2016

Geometric Analysis and General Relativity, BIRS, 2016

Penrose inequality for initial data sets

- Consider asymptotically flat initial data sets ($\mathcal{N}^3, \gamma, \mathcal{K}$) (one end) satisfying DEC.
- Σ weakly outer trapped: $\theta_+ := H_{\Sigma} + tr_{\Sigma}K \leq 0$.
- Future trapped region $\mathcal{T}_{\Sigma}^+ \subset \Sigma$: Union of compact domains with weakly outer trapped boundary.

Conjecture (Penrose inequality)

Let (\mathcal{N}^n, g, K) be an asymptotically flat initial data set satisfying DEC and $S_{\min}(\partial \mathcal{T}_{\Sigma}^+)$ the minimal area enclosure of $\partial \mathcal{T}_{\Sigma}^+$. Then

$$(2M_{ADM})^{rac{n-1}{n-2}} \geq rac{\mathcal{S}_{\min}(\partial \mathcal{T}_{\Sigma}^+)}{\omega_{n-1}}, \qquad \omega_{n-1} = |\mathbb{S}^{n-1}|$$

Moreover, equality implies $(\Sigma \setminus T^+_{\Sigma}, g, K)$ can be isometrically embedded into the Schwarzschild spacetime.

Penrose inequality for initial data sets

- Consider asymptotically flat initial data sets ($\mathcal{N}^3, \gamma, \mathcal{K}$) (one end) satisfying DEC.
- Σ weakly outer trapped: $\theta_+ := H_{\Sigma} + \operatorname{tr}_{\Sigma} K \leq 0$.
- Future trapped region $\mathcal{T}_{\Sigma}^+ \subset \Sigma$: Union of compact domains with weakly outer trapped boundary.

Conjecture (Penrose inequality)

Let (\mathcal{N}^n, g, K) be an asymptotically flat initial data set satisfying DEC and $S_{\min}(\partial \mathcal{T}_{\Sigma}^+)$ the minimal area enclosure of $\partial \mathcal{T}_{\Sigma}^+$. Then

$$(2M_{ADM})^{rac{n-1}{n-2}} \geq rac{\mathcal{S}_{\min}(\partial \mathcal{T}_{\Sigma}^+)}{\omega_{n-1}}, \qquad \omega_{n-1} = |\mathbb{S}^{n-1}|$$

Moreover, equality implies $(\Sigma \setminus \mathcal{T}^+_{\Sigma}, g, K)$ can be isometrically embedded into the Schwarzschild spacetime.

Proven in the time symmetric case K = 0:

- In full generality for $3 \le n \le 7$ ([Huisken & Ilmanen '01], [Bray '01], [Bray & Lee '09]).
- For graphical manifolds in \mathbb{E}^{n+1} , $n \ge 3$ ([Lam '10], [Huang & Wu '12]).

Still not much known when $K \neq 0$.

Penrose inequality for null hypersurfaces

Need for $S_{\min}(\partial T_{\Sigma}^+)$ comes from the heuristics behind the Penrose inequality (restrict to n = 4)

• The standard collapse scenario implies

 $16\pi M_{ADM}^2 \geq |\mathcal{H} \cap \mathcal{N}|.$

- *H* event horizon of the black hole that forms (weak cosmic censorship).
- $\partial \mathcal{T}_{\Sigma}^+$ is known to lie inside the black hole (but may have larger area than $\mathcal{H} \cap \mathcal{N}$.

The minimal area enclosure takes care of this: $16\pi M_{ADM}^2 \ge |\mathcal{H} \cap \mathcal{N}| \ge S_{\min}(\partial \mathcal{T}_{\Sigma}^+)$

Penrose inequality for null hypersurfaces

Need for $S_{\min}(\partial \mathcal{T}_{\Sigma}^+)$ comes from the heuristics behind the Penrose inequality (restrict to n = 4)

• The standard collapse scenario implies

 $16\pi M_{ADM}^2 \geq |\mathcal{H} \cap \mathcal{N}|.$

- *H* event horizon of the black hole that forms (weak cosmic censorship).
- $\partial \mathcal{T}_{\Sigma}^+$ is known to lie inside the black hole (but may have larger area than $\mathcal{H} \cap \mathcal{N}$.

 \mathcal{N}

The minimal area enclosure takes care of this: $16\pi M_{ADM}^2 \ge |\mathcal{H} \cap \mathcal{N}| \ge S_{\min}(\partial \mathcal{T}_{\Sigma}^+)$

There are situations where S_{\min} is not necessary.

- Assume (M,g) admits a past null infinity \mathcal{I}^- .
- Consider a smooth null hypersurface N extending to *I*⁻ and containing a weakly trapped surface.
- Smoothness of \mathcal{N} requires $\theta_k \leq 0 \implies |\mathcal{H} \cap \mathcal{N}| \geq |\Sigma|$

Penrose heuristics gives:

 $16\pi M_B(\mathcal{N})^2 \ge |\Sigma|, \qquad M_B(\mathcal{N})$ Bondi mass of \mathcal{N} .

Ţ

Leads to a Penrose inequality conjecture for null hypersurfaces.

• Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let \mathcal{N} be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume that $\Sigma \hookrightarrow \mathcal{N}$ is a weakly outer trapped surface. Then, the Bondi mass of \mathcal{N} satisfies

$$M_B(\mathcal{N}) \geq rac{1}{2} \left(rac{|\Sigma|}{\omega_{n-1}}
ight)^{rac{n-2}{n-1}}$$

Inequality involves:

- Intrinsic and extrinsic geometry of \mathcal{N} .
- Asymptotic conditions along \mathcal{N} .

Leads to a Penrose inequality conjecture for null hypersurfaces.

Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let ${\mathcal N}$ be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume that $\Sigma \hookrightarrow \mathcal{N}$ is a weakly outer trapped surface. Then, the Bondi mass of \mathcal{N} satisfies

$$M_B(\mathcal{N}) \geq \frac{1}{2} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-2}{n-1}}$$

Inequality involves: {

- Intrinsic and extrinsic geometry of N.
 Asymptotic conditions along N.
- No need for minimal area enclosures.

Need to define:

- Asymptotic flatness.
- Bondi mass (or Bondi energy).

Penrose's original version of the inequality involved a particular case of this (shells propagating in Minkowski).

Consequences of the Null Penrose inequality conjecture

Null Penrose inequality assumes a weakly outer trapped surface.

• However, it has implications on general asymptotically flat vacuum spacetimes.

The physical idea is to let shells (distributional matter) propagate on a given spacetime.

- This can be made precise. Assume (M, g):
 - vacuum
 - $\bullet\,$ admitting a null AF hypersurface ${\cal N}$

Select any cross section Σ on ${\mathcal N}$

- Modify appropriately the characteristic data on N, so that it stays vacuum.
- Suplement with data on \mathscr{I}^-

Another asymptotically flat vacuum spacetime (M', g') exists.

Consequences of the Null Penrose inequality conjecture

Null Penrose inequality assumes a weakly outer trapped surface.

• However, it has implications on general asymptotically flat vacuum spacetimes.

The physical idea is to let shells (distributional matter) propagate on a given spacetime.

- This can be made precise. Assume (M, g):
 - vacuum
 - $\bullet\,$ admitting a null AF hypersurface ${\cal N}$

Select any cross section Σ on ${\mathcal N}$

- Modify appropriately the characteristic data on N, so that it stays vacuum.
- Suplement with data on \mathscr{I}^-

- Data can always be arranged so that Σ is a weakly outer trapped surface in (M',g').
- Bondi energy of (M',g') can be computed in terms of the Bondi energy of (M,g)and the geometry of $\Sigma \hookrightarrow (M,g)$

The Penrose inequality applied to (M',g') leads to a geometric inequality purely (M,g)

Theorem (Shell-Penrose inequality, [M., 2016])

- Let N be an asymptotically flat null hypersurface embedded in a vacuum spacetime (M, g) and Σ any cross section of N.
- Let {Σ_λ} by a foliation by cross sections starting at Σ, approaching large spheres and with a geodesic flow vector k.
- Let ℓ be the future null normal to Σ satisfying $\langle k, \ell \rangle = -2$.

If the null Penrose inequality conjecture holds, then the Bondi energy E_B associated to $\{\Sigma_{\lambda}\}$ satisfies

$$E_B + rac{1}{16\pi} \int_{\Sigma} heta_\ell \eta_{\Sigma} \geq \sqrt{rac{|\Sigma|}{16\pi}},$$
 (1)

where θ_{ℓ} is the null expansion of Σ along ℓ in (M, g).

Theorem (Shell-Penrose inequality, [M., 2016])

- Let N be an asymptotically flat null hypersurface embedded in a vacuum spacetime (M, g) and Σ any cross section of N.
- Let {Σ_λ} by a foliation by cross sections starting at Σ, approaching large spheres and with a geodesic flow vector k.
- Let ℓ be the future null normal to Σ satisfying $\langle k, \ell \rangle = -2$.

If the null Penrose inequality conjecture holds, then the Bondi energy E_B associated to $\{\Sigma_{\lambda}\}$ satisfies

$$E_B + rac{1}{16\pi} \int_{\Sigma} heta_\ell \eta_{\Sigma} \geq \sqrt{rac{|\Sigma|}{16\pi}},$$
 (1)

where θ_{ℓ} is the null expansion of Σ along ℓ in (M, g).

Can be extended to other matter models.

• Proving (1) for specific spacetimes (e.g. Minkowski) is still a hard problem.

Known results on the null Penrose inequality

The null Penrose inequality has been proven in a number of special cases:

- General proof was claimed by [Ludvigsen & Vickers, '83].
 - Important gap found by [Bergvist, '97].
- For shear-free null hypersurfaces ($K^k \propto$ first fund. form γ) [Sauter, Ph.D. thesis 2008]
 - The null Penrose inequality reduces to

$$\int_{\mathbb{S}^2} (m{F}^2 + |m{d}m{F}|^2_{\check{m{q}}}) \, m{\eta}_{\check{m{q}}} \geq \sqrt{4\pi \int_{\mathbb{S}^2} m{F}^4 \, m{\eta}_{\check{m{q}}}}.$$

• Particular case of a general Sobolev-type inequality on S^n [Beckner '93]

- For null shells propagating in Minkowski in special cases [Tod, '85], [Gibbons, '97], [M. & Soria, 14], [M. & Soria, 15].
- For shells propagating in Schwarzschild [Brendle & Wang, 14].
- For vacuum spacetimes near Schwarzschild [Alexakis '15].

Asymptotically flat null hypersurface

We want a definition that involves local "in time" conditions on \mathcal{N} (global along \mathcal{N}).

Convenient to use foliations of $\ensuremath{\mathcal{N}}$ by spacelike surfaces.

- Let k ∈ Γ(TN) be future null and nowhere zero (null generator)
- Satisfies $abla_k k = Q_k k$, $Q_k : \mathcal{N} \mapsto \mathbb{R}$
- k is called geodesic if $Q_k = 0$.

Asymptotically flat null hypersurface

We want a definition that involves local "in time" conditions on \mathcal{N} (global along \mathcal{N}).

Convenient to use foliations of ${\mathcal N}$ by spacelike surfaces.

- Let $k \in \Gamma(T\mathcal{N})$ be future null and nowhere zero (null generator)
- Satisfies $abla_k k = Q_k k$, $Q_k : \mathcal{N} \mapsto \mathbb{R}$
- k is called geodesic if $Q_k = 0$.

Σ_0 ℓ k N Σ_λ

Definition (\mathcal{N} extending to past null infinity)

A null hypersurface \mathcal{N} in a spacetime (M,g) is extends to past null infinity if

- $\bullet \ \mathcal{N}$ admits a cross section Σ_0 of spherical topology.
- Affinely parametrized null geodesics starting at p ∈ Σ₀ with tangent vector -k|_p have maximal domain (λ₀(p), ∞).
- Chose k geodesic. Define $\lambda : \mathcal{N} \mapsto \mathbb{R}$ by $k(\lambda) = -1$ and $\lambda|_{\Sigma_0} = 0$.
- Level sets Σ_{λ} of λ are cross sections of spherical topology.

• In particular
$$\mathcal{N}=\mathbb{R} imes\mathbb{S}^2$$

Define ℓ along $\mathcal N$ by: (i) ℓ null, (ii) orthogonal to Σ_{λ} , (iii) $\langle k,\ell \rangle = -2$

We use λ to specify the decay at infinity.

A covariant tensor field ${\it T}$ on ${\it N}$ is

• Transversal: if $T(\dots, k, \dots) = 0$. • Lie constant: if $\mathcal{L}_k T = 0$.

Transversal tensors are in one-to-one correspondence to a family $T(\lambda)$ on Σ_{λ} .

• Denote
$$T_{A_1 \cdots A_q} := T(X_{A_1}, \cdots X_{A_q})$$

 X_A local basis of $T\Sigma_0$ extended to \mathcal{N} by $[k, X_A] = 0$.

We use λ to specify the decay at infinity.

A covariant tensor field T on \mathcal{N} is

• Transversal: if $T(\dots, k, \dots) = 0$. • Lie constant: if $\mathcal{L}_k T = 0$.

Transversal tensors are in one-to-one correspondence to a family $T(\lambda)$ on Σ_{λ} .

• Denote
$$T_{A_1 \cdots A_q} := T(X_{A_1}, \cdots X_{A_q})$$

 X_A local basis of $T\Sigma_0$ extended to \mathcal{N} by $[k, X_A] = 0$.

Definition

- A transversal tensor field T on \mathcal{N} is
 - T = O(1) if $T_{A_1 \cdots A_q}$ is uniformly bounded.

•
$$T = O_n(\lambda^{-q}), (q, n \in \mathbb{N}) \text{ iff } \lambda^{q+i}(\mathcal{L}_k)^i T = O(1), i = 0, \cdots, n$$

• $T = o(\lambda^{-q})$ and $T = o_n(\lambda^{-q})$ defined similarly.

Given a transversal T, $\mathcal{L}_{X_A}T$ is also transversal.

• $T = o_n^X(\lambda^{-q})$ iff

$$\lambda^{q} \underbrace{\mathcal{L}_{X_{A_{1}}}\cdots\mathcal{L}_{X_{A_{i}}}}_{i} T = o(1) \quad \forall i = 0, 1, \cdots, n \quad \text{ for all values of } A_{1}, \cdots, A_{i}.$$

Definitions independent of the choice of λ and the choice of basis $\{X_A\}$

Asymptotically flat null hypersurfaces

Notation for spacelike codimension-two surfaces:

- Induced metric: γ
- Mean curvature \vec{H} (outwards for a sphere)
- Null expansions $\theta_k := \langle k, \vec{H} \rangle$, $\theta_\ell := \langle \ell, \vec{H} \rangle$,
- Normal connection $s_{\ell}(X) = -\frac{1}{2} \langle \nabla_X \ell, k \rangle$.

Notation for spacelike codimension-two surfaces:

- Induced metric: γ
- Mean curvature \vec{H} (outwards for a sphere)
- Null expansions $\theta_k := \langle k, \vec{H} \rangle$, $\theta_\ell := \langle \ell, \vec{H} \rangle$,
- Normal connection $s_{\ell}(X) = -\frac{1}{2} \langle \nabla_X \ell, k \rangle$.

Definition (Asymptotically flat \mathcal{N})

A null hypersurface Ω in a spacetime (M, g) is past asymptotically flat if (i) extends to past null infinity and (ii) for a choice of geodesic k and corresponding level function λ : (i) The first fundamental form γ of \mathcal{N} is $\gamma = \lambda^2 \hat{q} + \lambda h + \tilde{\gamma}$: \hat{q}, h transversal and Lie-constant, $\hat{q} > 0$, $\tilde{\gamma} = o_1(\lambda) \cap o_2^X(\lambda)$. (ii) The normal connection s_ℓ of $\{\Sigma_\lambda\}$ is $s_\ell = s_\ell^{(1)}\lambda^{-1} + o_1(\lambda^{-1})$, $s_\ell^{(1)}$ Lie constant (iii) The null expansion θ_ℓ is $\theta_\ell = \theta_\ell^{(0)}\lambda^{-1} + \theta_\ell^{(1)}\lambda^{-2} + o(\lambda^{-2})$: $\theta_\ell^{(0)}, \theta_\ell^{(1)}$ Lie constant, (iv) $\lim_{\lambda \to \infty} \lambda^{-2} \operatorname{Riem}^g(X_A, X_B, X_C, X_D)$ exists and its double trace satisfies $2\operatorname{Ein}^g(k, \ell) - \operatorname{Scal}^g - \frac{1}{2}\operatorname{Riem}^g(\ell, k, \ell, k) = o(\lambda^{-2})$.

 $\theta_{\ell}^{(0)} = \frac{2\mathcal{K}_{\hat{q}}}{\lambda} + \frac{\theta_{\ell}^{(1)}}{\lambda^2} + o(\lambda^{-2}), \qquad \theta_k = -\frac{2}{\lambda} + \frac{\theta_k^{(1)}}{\lambda^2} + o(\lambda^{-2})$

Consequences:

Asymptotically flat null hypersurfaces

Bondi energy and Hawking energy

 \hat{q} can be thought of as the metric of Σ_{λ} "at infinity".

- Under a rescaling k' = f k, with f > 0 Lie constant: $\hat{q}' = f^2 \hat{q}$.
- Always exists a choice of geodesic k such that \hat{q} is the standard metric on \mathbb{S}^2 .
 - Denoted by *q*.

Foliation Σ_{λ} associated to such k: approaching large spheres Not unique.

Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface ${\cal N}$ for any choice of observer at infinity.

Bondi energy and Hawking energy

 \hat{q} can be thought of as the metric of Σ_{λ} "at infinity".

- Under a rescaling k' = f k, with f > 0 Lie constant: $\hat{q}' = f^2 \hat{q}$.
- Always exists a choice of geodesic k such that \hat{q} is the standard metric on \mathbb{S}^2 .
 - Denoted by *q*.

Foliation Σ_{λ} associated to such k: approaching large spheres Not unique.

Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface ${\cal N}$ for any choice of observer at infinity.

• Recall the Hawking energy of a spacelike surface

$$m_{H}(\Sigma) = \sqrt{rac{|\Sigma|}{16\pi}} \left(1 - rac{1}{16\pi} \int_{\Sigma} \langle ec{H}, ec{H}
angle \eta_{\Sigma}
ight).$$

Definition (Bondi energy)

Let N be a past asymptotically flat null hypersurface. Select a geodesic null generator k and let the associated foliation $\{\Sigma_{\lambda}\}$ approach large spheres. The Bondi energy of the observed at infinity defined by this foliation is

 $E_B(\mathcal{N}) := \lim_{\lambda \to \infty} m_H(\Sigma_{\lambda}).$

Limit of the Hawking energy at infinity along general foliations

• Geodesic foliations approaching large spheres are very special.

Aim: understand the asymptotic value of the Hawking energy along general foliations.

Let ${\cal N}$ be null past asymptotically flat, k geodesic and Σ_λ an associated foliation.

- Any cross section can be defined as the graph $\{\lambda = F\}$, of a function $F : \Sigma_0 \longrightarrow \mathbb{R}$
- Foliations by cross sections can be defined in terms of one-parameter families of function F_{λ*} : Σ₀ → ℝ

 $\Sigma_{\lambda^{\star}} := \operatorname{graph}(F_{\lambda^{\star}})$

Limit of the Hawking energy at infinity along general foliations

• Geodesic foliations approaching large spheres are very special.

Aim: understand the asymptotic value of the Hawking energy along general foliations.

Let ${\cal N}$ be null past asymptotically flat, k geodesic and Σ_λ an associated foliation.

- Any cross section can be defined as the graph $\{\lambda = F\}$, of a function $F : \Sigma_0 \longrightarrow \mathbb{R}$
- Foliations by cross sections can be defined in terms of one-parameter families of function F_{λ[⋆]} : Σ₀ → ℝ

$$\Sigma_{\lambda^{\star}} := \operatorname{graph}(F_{\lambda^{\star}})$$

Examples:

• $F_{\lambda^{\star}} = \phi \lambda^{\star}$ with $\phi : \Sigma_0 \to \mathbb{R}^+$:

Geodesic foliation with the same initial surface Σ_0 and different speed ($k^* = \phi k$).

•
$$F_{\lambda^{\star}} = \lambda^{\star} + \tau$$
 with $\tau : \Sigma_0 \to \mathbb{R}$:

Geodesic foliation with initial surface $\Sigma_0^{\star} = \operatorname{graph}(\tau)$ and same speed.

• $F_{\lambda^{\star}} = \lambda^{\star} + \xi(\lambda^{\star})$ with ξ suitably decaying: Non-geodesic foliation which approaches $\{\Sigma_{\lambda}\}$ at infinity.

A combination describes any foliation with reaches infinity non-zero speed (vector flow bounded away from zero).

Theorem (M. & Alberto Soria, '2015)

- Let Ω be a past asymptotically flat null hypersurface in spacetime (M, g).
- Select a geodesic generator k with corresponding foliation {Σ_λ} approaching large spheres.
- Consider another foliation $\{\Sigma_{\lambda^*}\}$ defined by the the level sets of the function $\mathcal{F}(\mathcal{N}) \ni \lambda^* := \Psi \lambda \tau \xi$ where

 $\tau,\Psi>0\in\mathcal{F}(\mathcal{N}), \text{ Lie constant}, \qquad \xi=o_1(1)\cap o_2^X(1) \text{ and } k(\xi)=o_1^X(\lambda^{-1})$

The limit of the Hawking energy along $\{\Sigma_{\lambda^\star}\}$ is

$$\lim_{\lambda^{\star}\to\infty}m_{H}(\Sigma_{\lambda^{\star}})=\frac{1}{8\pi}\left(\sqrt{\int_{\mathbb{S}^{2}}\frac{1}{16\pi\Psi^{2}}\eta_{\tilde{\mathbf{q}}}}\right)\int_{\mathbb{S}^{2}}\left(\bigtriangleup_{\tilde{q}}\theta_{k}^{(1)}-(\theta_{k}^{(1)}+\theta_{\ell}^{(1)})-4\mathrm{div}_{\tilde{q}}(\boldsymbol{s}_{\ell}^{(1)})\right)\Psi\eta_{\tilde{\mathbf{q}}},$$

where $\theta_k^{(1)}$, $\theta_\ell^{(1)}$, $s_\ell^{(1)}$ and \mathring{q} refer to the background foliation $\{\Sigma_\lambda\}$.

Theorem (M. & Alberto Soria, '2015)

- Let Ω be a past asymptotically flat null hypersurface in spacetime (M, g).
- Select a geodesic generator k with corresponding foliation {Σ_λ} approaching large spheres.
- Consider another foliation $\{\Sigma_{\lambda^{\star}}\}$ defined by the the level sets of the function $\mathcal{F}(\mathcal{N}) \ni \lambda^{\star} := \Psi \lambda \tau \xi$ where

 $\tau,\Psi>0\in\mathcal{F}(\mathcal{N}), \text{ Lie constant}, \qquad \xi=o_1(1)\cap o_2^X(1) \text{ and } k(\xi)=o_1^X(\lambda^{-1})$

The limit of the Hawking energy along $\{\Sigma_{\lambda^\star}\}$ is

$$\lim_{\lambda^{\star}\to\infty}m_{H}(\Sigma_{\lambda^{\star}})=\frac{1}{8\pi}\left(\sqrt{\int_{\mathbb{S}^{2}}\frac{1}{16\pi\Psi^{2}}\eta_{\tilde{\mathbf{q}}}}\right)\int_{\mathbb{S}^{2}}\left(\bigtriangleup_{\tilde{q}}\theta_{k}^{(1)}-(\theta_{k}^{(1)}+\theta_{\ell}^{(1)})-4\mathrm{div}_{\tilde{q}}(\boldsymbol{s}_{\ell}^{(1)})\right)\Psi\eta_{\tilde{\mathbf{q}}},$$

where $\theta_k^{(1)}$, $\theta_\ell^{(1)}$, $s_\ell^{(1)}$ and \mathring{q} refer to the background foliation $\{\Sigma_\lambda\}$.

- Remarkably simple dependence on Ψ , τ and ξ .
- Integrand with interesting invariance properties under change of geodesic foliation.
- Recovers the limit to the Bondi energy when $\{\Sigma_{\lambda}\}$ approaches large spheres.

An approach to the null Penrose inequality

- Key object: Functional on spacelike surfaces. $M(\Sigma, \ell) = \sqrt{\frac{|\Sigma|}{16\pi} \frac{1}{16\pi}} \int_{\Sigma} \theta_{\ell} \eta_{\Sigma}$,
 - Physical dimensions of length (energy), but not truly quasi-local (there is ℓ).
- However, on a weakly outer trapped surface ($heta_\ell \leq 0$) satisfies $M(\Sigma, \ell) \geq \sqrt{\frac{|\Sigma|}{16\pi}}$.
- It may interpolate between both sides of the null Penrose inequality
 - Need to understand its monotonicity properties and its asymptotic behaviour.

An approach to the null Penrose inequality

- Key object: Functional on spacelike surfaces. $M(\Sigma, \ell) = \sqrt{\frac{|\Sigma|}{16\pi} \frac{1}{16\pi}} \int_{\Sigma} \theta_{\ell} \eta_{\Sigma}$,
 - Physical dimensions of length (energy), but not truly quasi-local (there is ℓ).
- However, on a weakly outer trapped surface ($heta_\ell \leq 0$) satisfies $M(\Sigma, \ell) \geq \sqrt{rac{|\Sigma|}{16\pi}}$.
- It may interpolate between both sides of the null Penrose inequality
 - Need to understand its monotonicity properties and its asymptotic behaviour.

Lemma

- Let $\mathcal{N} \simeq \mathbb{R} \times \Sigma$ be a null hypersurface with generator along \mathbb{R} .
- Let Σ_{λ} be a foliation by cross sections and scale the null generator so that $k(\lambda) = -1$. Define Q_k by $\nabla_k k = Q_k k$.
- For any choice of function $\varphi > 0$ on Σ_{λ} let ℓ^{φ} be null and normal with $\langle k, \ell^{\varphi} \rangle = -\varphi$.

$$\frac{dM(\Sigma_{\lambda},\ell^{\varphi})}{d\lambda} = \frac{1}{\sqrt{64\pi|\Sigma_{\lambda}|}} \int_{\Sigma_{\lambda}} (-\theta_{k})\eta_{\Sigma_{\lambda}} + \frac{1}{16\pi} \int_{\Sigma_{\lambda}} \left[\operatorname{Ein}^{g}(\ell,k) - \frac{\varphi}{2} \operatorname{Scal}^{\Sigma_{\mu}} \right. \\ \left. + \varphi\left(-div_{\Sigma_{\lambda}} s_{\ell^{\varphi}} + |s_{\ell^{\varphi}}|^{2}_{\gamma_{\Sigma_{\lambda}}} \right) + \left(\frac{1}{\varphi} k(\varphi) - Q_{k} \right) \theta_{\ell^{\varphi}} \right] \eta_{\Sigma_{\lambda}}$$

Then:

Leads naturally to $\varphi = \text{const}$ and $Q_k = 0$.

Penrose-like inequality

For $\varphi = \text{and } Q_k = 0$:

$$\frac{dM(\Sigma_{\lambda},\ell^{\varphi})}{d\lambda} = \frac{\int_{\Sigma_{\lambda}}(-\theta_{k})\eta_{\Sigma_{\lambda}}}{\sqrt{64\pi|\Sigma_{\lambda}|}} + \frac{1}{16\pi}\int_{\Sigma_{\lambda}}\left(\operatorname{Ein}^{g}(\ell^{\varphi},k) + \varphi|s_{\ell^{\varphi}}|^{2}_{\gamma_{\Sigma_{\lambda}}}\right)\eta_{\Sigma_{\lambda}} - \frac{\varphi\,\chi(\Sigma_{\lambda})}{8}.$$

- Monotonic under DEC if the (connected) Σ has non-zero genus.
- Non-monotonic in the spherical case.
 - However, there is only one bad term.

For $\varphi = \text{and } Q_k = 0$:

$$\frac{dM(\Sigma_{\lambda},\ell^{\varphi})}{d\lambda} = \frac{\int_{\Sigma_{\lambda}}(-\theta_{k})\eta_{\Sigma_{\lambda}}}{\sqrt{64\pi|\Sigma_{\lambda}|}} + \frac{1}{16\pi}\int_{\Sigma_{\lambda}}\left(\operatorname{Ein}^{g}(\ell^{\varphi},k) + \varphi|s_{\ell^{\varphi}}|^{2}_{\gamma_{\Sigma_{\lambda}}}\right)\eta_{\Sigma_{\lambda}} - \frac{\varphi\,\chi(\Sigma_{\lambda})}{8}.$$

- Monotonic under DEC if the (connected) Σ has non-zero genus.
- Non-monotonic in the spherical case.
 - However, there is only one bad term.
- Concerning the asymptotic behaviour.

Lemma

• Let N be past asymptotically flat, $\{\Sigma_{\lambda}\}$ a geodesic foliation and $\varphi > 0$ a constant.

• The limit
$$\lim_{\lambda \to \infty} M(\Sigma_{\lambda}, \ell^{\varphi})$$
 is finite if and only if $\varphi = 2R_{\hat{q}}$ with $R_{\hat{q}} := \sqrt{rac{|\Sigma|_{\hat{q}}}{4\pi}}$

Let
$$\ell^{\star} = R_{\hat{q}}\ell$$
. Then $\lim_{\lambda \to \infty} M(\Sigma_{\lambda}, \ell^{\star}) = \lim_{\lambda \to \infty} m_{H}(\Sigma_{\lambda}) + \frac{1}{16\pi} \int_{\Sigma} \theta_{k}^{(1)} \left(\frac{1}{R_{\hat{q}}} - R_{\hat{q}}\mathcal{K}_{\hat{q}}\right) \eta_{\hat{q}}.$

Two interesting cases where the two limits agree:

- \hat{q} has constant curvature, since then $\mathcal{K}_{\hat{q}} = 1/R_{\hat{q}}^2$ (approach to large spheres).
- When $\theta_k^{(1)}$ is constant. By Gauss-Bonnet $\int_{\Sigma} \mathcal{K}_{\hat{q}} \eta_{\hat{q}} = 4\pi$.

Penrose-like inequality

Definition

Let \mathcal{N} be a past asymptotically flat null hypersurface and Σ_0 be a cross section. A geodesic foliation $\{\Sigma_\lambda\}$ is called geodesic, asymptotically Bondi and associated to Σ_0 iff

(i)
$$\Sigma_{\lambda=0} = \Sigma_0$$
.

(ii) With k the associated null generator $(k(\lambda) = -1)$, the leading term $\theta_k^{(1)}$ in

$$heta_k = -rac{2}{\lambda} + rac{ heta_k^{(1)}}{\lambda^2} + o(\lambda^{-2})$$
 is constant.

Definition

Let \mathcal{N} be a past asymptotically flat null hypersurface and Σ_0 be a cross section. A geodesic foliation $\{\Sigma_\lambda\}$ is called geodesic, asymptotically Bondi and associated to Σ_0 iff

(i)
$$\Sigma_{\lambda=0} = \Sigma_0$$
.

(ii) With k the associated null generator $(k(\lambda) = -1)$, the leading term $\theta_k^{(1)}$ in

$$heta_k = -rac{2}{\lambda} + rac{ heta_k^{(1)}}{\lambda^2} + o(\lambda^{-2})$$
 is constant.

Proposition (Existence and uniqueness)

Assume DEC. Given any cross section Σ_0 :

(i) There exists a geodesic asymptotically Bondi foliation associated to Σ_0 .

(ii) This foliation is unique except for trivial constant reparametrizations $\lambda' = a\lambda$, $a \in \mathbb{R}$

• The functional $M(\Sigma, \ell^{\varphi})$ is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

• Bound from above $M(\Sigma_0, \ell^{\star})$ at the initial weakly outer trapped surface

$$M(\Sigma_0,\ell^\star) \leq \displaystyle{\lim_{\lambda o \infty}} M(\Sigma_\lambda,\ell^\star)$$

To exploit the good terms in the variation formula:

• Split $M(\Sigma, \ell^{\varphi})$ in two: $M(\Sigma, \ell^{\varphi}) := \underbrace{\left(\sqrt{\frac{|\Sigma|}{16\pi}} - \frac{\varphi}{4}\lambda\right)}_{:=D(\Sigma, \ell^{\varphi})} + \underbrace{\left(\frac{\varphi}{4}\lambda - \frac{1}{16\pi}\int_{\Sigma}\theta_{\ell^{\varphi}}\eta_{\Sigma}\right)}_{M_{b}(\Sigma, \ell^{\varphi})}$

• $M_b(\Sigma, \ell^{\varphi})$ (introduced by [Bergqvist, '97]): Monotonic for geodesic null flows + DEC.

D(Σ, ℓ^{*}) and M_b(Σ, ℓ^{*}) have finite limits at infinity (for geodesic flows)

• The functional $M(\Sigma, \ell^{\varphi})$ is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

• Bound from above $M(\Sigma_0, \ell^{\star})$ at the initial weakly outer trapped surface

$$M(\Sigma_0,\ell^\star) \leq \displaystyle{\lim_{\lambda o \infty}} M(\Sigma_\lambda,\ell^\star)$$

To exploit the good terms in the variation formula:

• Split $M(\Sigma, \ell^{\varphi})$ in two: $M(\Sigma, \ell^{\varphi}) := \underbrace{\left(\sqrt{\frac{|\Sigma|}{16\pi}} - \frac{\varphi}{4}\lambda\right)}_{:=D(\Sigma, \ell^{\varphi})} + \underbrace{\left(\frac{\varphi}{4}\lambda - \frac{1}{16\pi}\int_{\Sigma}\theta_{\ell^{\varphi}}\eta_{\Sigma}\right)}_{M_{b}(\Sigma, \ell^{\varphi})}$

• $M_b(\Sigma, \ell^{\varphi})$ (introduced by [Bergqvist, '97]): Monotonic for geodesic null flows + DEC.

• $D(\Sigma, \ell^*)$ and $M_b(\Sigma, \ell^*)$ have finite limits at infinity (for geodesic flows)

Monotonicity of M_b implies automatically $M_b(\Sigma_0, \ell^*) \leq \lim_{\lambda \to \infty} M(\Sigma_\lambda, \ell^*)$

Need to understand under which conditions

$$D(\Sigma_0, \ell^\star) \leq \lim_{\lambda \to \infty} D(\Sigma_\lambda, \ell^\star).$$

Any situation where such bound holds leads immediately to a Penrose-like inequality

A Penrose-like inequality

• Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let ${\cal N}$ be null and past asymptotically flat. Let $\{\Sigma_\lambda\}$ be a GAB foliation. Then

 $D(\Sigma_0, \ell^\star) \leq \lim_{\lambda o \infty} D(\Sigma_\lambda, \ell^\star)$

• Combining with the limit at infinity of $M(\Sigma_{\lambda}, \ell^{\star})$.

A Penrose-like inequality

• Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let ${\cal N}$ be null and past asymptotically flat. Let $\{\Sigma_\lambda\}$ be a GAB foliation. Then

 $D(\Sigma_0, \ell^{\star}) \leq \lim_{\lambda \to \infty} D(\Sigma_{\lambda}, \ell^{\star})$

Combining with the limit at infinity of M(Σ_λ, ℓ^{*}).

Theorem ([M. & A. Soria, '16])

- Let $\mathcal N$ be a past asymptotically flat null hypersurface and Σ_0 a cross section.
- Assume DEC.

Then

$$-\sqrt{rac{|m{\Sigma}_0|}{16\pi}}-rac{1}{16\pi}\int_{m{\Sigma}_0} heta_{\ell^\star}m{\eta}_{m{\Sigma}_m{0}}\leq \lim_{\lambda o\infty}m_H(m{\Sigma}_\lambda),$$

where the limit is taken along the GAB foliation $\{\Sigma_{\lambda}\}$ associated to Σ_{0} .

In particular, if Σ_0 is weakly outer trapped: $\sqrt{\frac{|\Sigma_0|}{16\pi}} \leq \lim_{\lambda \to \infty} m_H(\Sigma_\lambda)$.

This is the null Penrose inequality whenever, in addition, the GAB foliation Σ_{λ} approaches large spheres. Key ingredient in the proof:

$$F(\Sigma_{\lambda}) = \frac{|\Sigma_{\lambda}|}{\left(8\pi R_{\hat{q}}^2 \lambda + \int_{\Sigma} \theta_k^{(1)} \eta_{\hat{q}}\right)^2} \quad \text{monotonically increasing for GAB foliations} + \text{DEC}.$$

 Monotonicity of F(Σ_λ) is useful for general geodesic foliations because (with no additional assumptions):

$$rac{dF(m{\Sigma}_{\lambda})}{d\lambda} \geq 0 \quad \Longrightarrow \quad D(m{\Sigma}_{0},\ell^{\star}) \leq \displaystyle{\lim_{\lambda o \infty}} D(m{\Sigma}_{\lambda},\ell^{\star}).$$

Can one find conditions ensuring monotonicity of $D(\Sigma_{\lambda}, \ell)$ or $F(\Sigma_{\lambda})$ in the case of foliations approaching large spheres? Renormalized area method

Key ingredient in the proof:

$$F(\Sigma_{\lambda}) = \frac{|\Sigma_{\lambda}|}{\left(8\pi R_{\hat{q}}^2 \lambda + \int_{\Sigma} \theta_k^{(1)} \eta_{\hat{q}}\right)^2} \quad \text{monotonically increasing for GAB foliations} + \text{DEC}.$$

 Monotonicity of F(Σ_λ) is useful for general geodesic foliations because (with no additional assumptions):

$$rac{dF({f \Sigma}_\lambda)}{d\lambda}\geq 0 \quad \Longrightarrow \quad D({f \Sigma}_0,\ell^\star)\leq {\displaystyle \lim_{\lambda o\infty}} D({f \Sigma}_\lambda,\ell^\star).$$

Can one find conditions ensuring monotonicity of $D(\Sigma_{\lambda}, \ell)$ or $F(\Sigma_{\lambda})$ in the case of foliations approaching large spheres? Renormalized area method

• Need to strengthen slightly the definition of asymptotic flatness.

Definition

A null hypersurface is strongly past asymptotically flat if, in addition to being past asymptotically flat, the first fundamental form of ${\cal N}$ admits an expansion

 $\gamma = \lambda^2 \hat{q} + \lambda h + \Psi_0 + o_1(1) \cap o_2^X(1), \qquad \quad \hat{q} > 0, h, \Psi_0 \quad \text{Lie constant.}$

Consequence:
$$heta_k=-rac{2}{\lambda}+rac{ heta_k^{(1)}}{\lambda^2}+rac{ heta_k^{(2)}}{\lambda^2}+o(\lambda^{-2}).$$

Renormalized area method

Sufficient conditions for the renormalized area method

Studying the variation of D(Σ_λ, ℓ) along the foliation

Theorem ([M. & A. Soria, '16])

Let N be strong past asymptotically flat null hypersurface and assume DEC. Let $\{\Sigma_{\lambda}\}$ be a geodesic foliation approaching large spheres. Assume the two conditions

(i)
$$\left(\int_{\mathbb{S}^2} \theta_k^{(1)} \eta_{\bar{\mathbf{q}}}\right)^2 - 8\pi \int_{\mathbb{S}^2} \left(\theta_k^{(1)}\right)^2 \eta_{\bar{\mathbf{q}}} - 8\pi \int_{\mathbb{S}^2} \theta_k^{(2)} \eta_{\bar{\mathbf{q}}} \ge 0$$

(ii) $\int_{\Sigma_\lambda} \left(-2\theta_k \operatorname{Ric}^g(k,k) + 2(\Pi^k)^{AB} R_{AB} + \frac{d}{d\lambda} \operatorname{Ric}^g(k,k)\right) \eta_{\Sigma_\lambda} \le 0, \quad \forall \lambda \ge 0$

hold, where Π^k is the trace-free part of the null second fundamental form K^k and $R_{AB} = \operatorname{Riem}^g(X_A, k, X_B, k)$. Then

 $\sqrt{\frac{|\Sigma_0|}{16\pi} - \frac{1}{16\pi} \int_{\Sigma_0} \theta_\ell \, \eta_{\Sigma_0} \le E_B} \qquad E_B \text{ Bondi energy associated to } \{\Sigma_\lambda\}.$ (2)

If, in addition, Σ_0 is weakly outer trapped, the Penrose inequality $E_B \ge \sqrt{\frac{|\Sigma_0|}{16\pi}}$ holds.

Renormalized area method

Applications

- Method particularly well-adapted to vacuum + shear-free case $\Pi^k = 0$.
 - We can recover and strengthen the result by Sauter.

Theorem ([M. & A. Soria, '16])

- Let \mathcal{N} be a shear-free, past asymptotically flat null hypersurface in a vacuum (M, g).
- Let Σ₀ be a cross section and select k along Σ₀ so that the corresponding geodesic foliation {Σ_λ} approaches large spheres.
- Define F > 0 by $F^2 = -2(\theta_k|_{\Sigma_0})^{-1}$ and decompose $s_\ell = s_\ell^{\perp} + \gamma dF$.

Then, the Bondi energy associated to $\{\Sigma_\lambda\}$ satisfies

$$\begin{split} E_{B} &= \sqrt{\frac{|\Sigma_{0}|}{16\pi}} - \frac{1}{16\pi} \int_{\Sigma_{0}} \theta_{\ell} \eta_{\Sigma_{0}} \\ &+ \frac{1}{8\pi} \bigg(\underbrace{\int_{\mathbb{S}^{2}} \left(F^{2} + |dF|_{\tilde{q}}^{2}\right) \eta_{\tilde{q}}}_{\geq 0} - \sqrt{4\pi \int_{\mathbb{S}^{2}} F^{2} \eta_{\tilde{q}}} + \underbrace{\frac{1}{3} \int_{\mathbb{S}^{2}} F^{2} |s_{\ell}^{\perp}|^{2} + \frac{(1 + \gamma F^{2})^{2}}{F^{2}} |dF|^{2} \eta_{\tilde{q}}}_{\geq 0} \bigg). \\ &\xrightarrow{\geq 0 \text{ by Beckner}} \end{split}$$

• Method also well-suited for the Minkowski spacetime \longrightarrow Shell-Penrose inequality in Minkowski for a large class of cases.