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Penrose inequality for initial data sets

@ Consider asymptotically flat initial data sets (A3, ~, K) (one end) satisfying DEC.
@ Y weakly outer trapped: 6+ := Hy +trs K < 0.

@ Future trapped region 7,5 C ¥: Union of compact domains with weakly outer
trapped boundary.

Conjecture (Penrose inequality)

Let (N", g, K) be an asymptotically flat initial data set satisfying DEC and Smin(07T5")
the minimal area enclosure of OT5". Then

_ . +
(2MADM)"7§ 2 M’ Wp—i = |Sn71|

Moreover, equality implies (£ \ Ty , g, K) can be isometrically embedded into the
Schwarzschild spacetime.
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@ Consider asymptotically flat initial data sets (A3, ~, K) (one end) satisfying DEC.
@ Y weakly outer trapped: 6+ := Hy +trs K < 0.

@ Future trapped region 7,5 C ¥: Union of compact domains with weakly outer
trapped boundary.

Conjecture (Penrose inequality)

Let (N", g, K) be an asymptotically flat initial data set satisfying DEC and Smin(07T5")
the minimal area enclosure of OT5". Then

_ . +
(2MADM)'77§ 2 M’ Wh—1 = |Sn71|

Moreover, equality implies (£ \ Ty , g, K) can be isometrically embedded into the
Schwarzschild spacetime.

Proven in the time symmetric case K = 0:

@ In full generality for 3 < n < 7 ([Huisken & limanen '01], [Bray '01], [Bray & Lee '09]).
@ For graphical manifolds in E™**, n > 3 ([Lam '10], [Huang & Wu '12]).

Still not much known when K # 0.
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Penrose inequality for null hypersurfaces

Need for Smin(aTg) comes from the heuristics behind the Penrose inequality
(restrict to n = 4)

@ The standard collapse scenario implies
167 Mipy > |H NN

@ H event horizon of the black hole that forms (weak
cosmic censorship).

@ 974 is known to lie inside the black hole (but may
have larger area than H N N.

The minimal area enclosure takes care of this: 167 Mapy > [H N N| > Smin(975)

Introduction: Penrose inequality for null hypersurfaces 3/21



Penrose inequality for null hypersurfaces

Need for Smin(aTg) comes from the heuristics behind the Penrose inequality
(restrict to n = 4)
@ The standard collapse scenario implies
167 Mipy > |H NN
@ H event horizon of the black hole that forms (weak
cosmic censorship).
@ 974 is known to lie inside the black hole (but may
have larger area than H N N.

The minimal area enclosure takes care of this: 167 Mapy > [H N N| > Smin(975)
There are situations where Syin is not necessary.

@ Assume (M, g) admits a past null infinity .# .

@ Consider a smooth null hypersurface N extending to .%
and containing a weakly trapped surface.

@ Smoothness of N requires 6y <0 — |[HNN]|> |X]

Penrose heuristics gives:

16 Ms(N)* > |Z], Mg(N') Bondi mass of NV.
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Leads to a Penrose inequality conjecture for null hypersurfaces.

@ Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let N be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume
that ¥ — N is a weakly outer trapped surface. Then, the Bondi mass of N satisfies

Ma(A) > ('”Z)

~ 2 \wp-1

@ Intrinsic and extrinsic geometry of V.

Inequality involves:
@ Asymptotic conditions along A/
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Leads to a Penrose inequality conjecture for null hypersurfaces.

@ Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let N be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume
that ¥ — N is a weakly outer trapped surface. Then, the Bondi mass of N satisfies

Ma(A) > ('”Z)

~ 2 \wp-1

o @ Intrinsic and extrinsic geometry of V.
Inequality involves: ) o
@ Asymptotic conditions along A/

@ No need for minimal area enclosures.
Need to define:

@ Asymptotic flatness.

@ Bondi mass (or Bondi energy).

Penrose’s original version of the inequality involved a particular case of this
(shells propagating in Minkowski).
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Consequences of the Null Penrose inequality conjecture

Null Penrose inequality assumes a weakly outer trapped surface.
@ However, it has implications on general asymptotically flat vacuum spacetimes.
The physical idea is to let shells (distributional matter) propagate on a given spacetime.
@ This can be made precise. Assume (M, g):
@ vacuum
@ admitting a null AF hypersurface N/
Select any cross section ~ on A/

@ Modify appropriately the characteristic
data on N/, so that it stays vacuum.

@ Suplement with data on ¥~

Another asymptotically flat vacuum spacetime (M’, g’) exists.
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Consequences of the Null Penrose inequality conjecture

Null Penrose inequality assumes a weakly outer trapped surface.
@ However, it has implications on general asymptotically flat vacuum spacetimes.
The physical idea is to let shells (distributional matter) propagate on a given spacetime.
@ This can be made precise. Assume (M, g):
@ vacuum
@ admitting a null AF hypersurface N/
Select any cross section ~ on A/

@ Modify appropriately the characteristic
data on N/, so that it stays vacuum.

@ Suplement with data on ¥~

Another asymptotically flat vacuum spacetime (M’, g’) exists.
@ Data can always be arranged so that ¥ is a weakly outer trapped surface in (M’ g’).

@ Bondi energy of (M’, g’) can be computed in terms of the Bondi energy of (M, g)
and the geometry of ¥ — (M, g)

The Penrose inequality applied to (M’, g’) leads to a geometric inequality purely (M, g)
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Theorem (Shell-Penrose inequality, [M., 2016])

o Let N be an asymptotically flat null hypersurface embedded in a vacuum spacetime
(M, g) and ¥ any cross section of N.

o Let {X\} by a foliation by cross sections starting at X, approaching large spheres
and with a geodesic flow vector k.

@ Let £ be the future null normal to X satisfying (k,£) = —2.

If the null Penrose inequality conjecture holds, then the Bondi energy Eg associated to

{X\} satisfies
1/ [1Z]
E — [ 0 >4/ — 1
81 Tor J. M= = Y 167 (1)

where 0, is the null expansion of ¥ along £ in (M, g).
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Theorem (Shell-Penrose inequality, [M., 2016])

o Let N be an asymptotically flat null hypersurface embedded in a vacuum spacetime
(M, g) and T any cross section of N.

o Let {X\} by a foliation by cross sections starting at X, approaching large spheres
and with a geodesic flow vector k.

@ Let £ be the future null normal to X satisfying (k,£) = —2.

If the null Penrose inequality conjecture holds, then the Bondi energy Eg associated to

{X\} satisfies
L[ [ 1Z]
E — [ 0 >4/ — 1
81 Tor J. M= = Y 167 (1)

where 0, is the null expansion of ¥ along £ in (M, g).

Can be extended to other matter models.

@ Proving (1) for specific spacetimes (e.g. Minkowski) is still a hard problem.
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Known results on the null Penrose inequality

The null Penrose inequality has been proven in a number of special cases:
@ General proof was claimed by [Ludvigsen & Vickers, '83].
@ Important gap found by [Bergvist, '97].
@ For shear-free null hypersurfaces (K* o first fund. form ) [Sauter, Ph.D. thesis 2008]

@ The null Penrose inequality reduces to

/2(F2+ |dF|3)mq > 4|47 / F4ng.

@ Particular case of a general Sobolev-type inequality on S” [Beckner '93]

@ For null shells propagating in Minkowski in special cases [Tod, '85], [Gibbons, '97], [M.
& Soria, 14], [M. & Soria, 15].

@ For shells propagating in Schwarzschild [Brendle & Wang, 14].

@ For vacuum spacetimes near Schwarzschild [Alexakis '15].
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Asymptotically flat null hypersurface

We want a definition that involves local “in time" conditions on N (global along N/).

Convenient to use foliations of A by spacelike surfaces.

@ Let k € I(TN) be future null and nowhere zero (null
generator)

@ Satisfies Vik = Quk, Qx: N —R
@ k is called geodesic if Qx = 0.
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Asymptotically flat null hypersurface

We want a definition that involves local “in time" conditions on N (global along N/).

Convenient to use foliations of A by spacelike surfaces.
@ Let k € I(TN) be future null and nowhere zero (null ’ ¢
generator) p
o Satisfies Vik = Quk, Qu: N =R N
@ k is called geodesic if Qx = 0. PN

Definition (A extending to past null infinity)

A null hypersurface A in a spacetime (M, g) is extends to past null infinity if
@ N admits a cross section Y of spherical topology.

o Affinely parametrized null geodesics starting at p € X with tangent vector —k|,
have maximal domain (Ao(p), 00).

@ Chose k geodesic. Define A : N — R by k(A) = —1 and Az, = 0.
@ Level sets X of \ are cross sections of spherical topology.
o In particular N =R x §?

Define £ along A by: (i) £ null,  (ii) orthogonal to £,  (iii) (k,¢) = —2
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We use A to specify the decay at infinity.

A covariant tensor field T on N is
@ Transversal: if T(--- ,k,---)=0. @ Lie constant: if L, T = 0.

Transversal tensors are in one-to-one correspondence to a family T(X) on Xy.

@ Denote Ta,...a, := T(Xay, - Xa,)
Xa local basis of TX, extended to N by [k, Xa] = 0.
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We use A to specify the decay at infinity.

A covariant tensor field T on N is
@ Transversal: if T(--- ,k,---)=0. @ Lie constant: if L, T = 0.

Transversal tensors are in one-to-one correspondence to a family T(X) on Xy.

@ Denote Ta,...a, := T(Xay, - Xa,)
Xa local basis of TX, extended to N by [k, Xa] = 0.

Definition

A transversal tensor field T on A is
o T=0(Q)if Tay...a, is uniformly bounded.
o T =0,(A9), (q,n € N)iff \X"(Lk)'T=0(1), i=0,---,n.
@ T =o0o(A"9 and T = 0,(A"7) defined similarly.
Given a transversal T, Lx, T is also transversal.
e T = oX(\79)iff

A7 Lxy - Lx, T= o(1) Vi=0,1,---,n for all values of A, --- , A;.
—_———

i

Definitions independent of the choice of A and the choice of basis {Xa}
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Notation for spacelike codimension-two surfaces:
@ Induced metric: v
@ Mean curvature H (outwards for a sphere)
Null expansions 0y := (k, H), 0, == (¢, H),

@ Normal connection s;(X) = —%(Vx/, k).

©

Asymptotically flat null hypersurfaces 10/21



Notation for spacelike codimension-two surfaces:
@ Induced metric: v
@ Mean curvature H (outwards for a sphere)
Null expansions 0y := (k, H), 0, == (¢, H),

@ Normal connection s;(X) = —%(Vx/, k).

©

Definition (Asymptotically flat N)

A null hypersurface Q in a spacetime (M, g) is past asymptotically flat if (i) extends to
past null infinity and (ii) for a choice of geodesic k and corresponding level function A:

(i) The first fundamental form ~ of A is v =X§+ A+ 5
§, h transversal and Lie-constant, § > 0, 7 = o01(A\) N oX(N).

(i) The normal connection s; of {Xx} is sy = s[(l)/\71 +o (A7), sél) Lie constant
(iii) The null expansion 6, is 0, = 0&0))\_1 + 921)/\_2 +o(A7?): GEO),GEI) Lie constant,

(iv) AIim A" ?Riem®(Xa, Xz, Xc, Xp) exists and its double trace satisfies
— 00

2Einé (k, £) — Scal® — %Riemg(& k, £, k) = o(A72).

R (1) (1)
Consequences: 0&0) = % + % +o(A73), b =—2+ 0}\% +0o(A7?)
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Bondi energy and Hawking energy

g can be thought of as the metric of £, “at infinity”.
@ Under a rescaling k' = f k, with f > 0 Lie constant: § = 4.
& Always exists a choice of geodesic k such that § is the standard metric on S2.
@ Denoted by §.
Foliation X associated to such k: approaching large spheres Not unique.
Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface
N for any choice of observer at infinity.
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Bondi energy and Hawking energy

g can be thought of as the metric of £, “at infinity”.
@ Under a rescaling k' = f k, with f > 0 Lie constant: § = 4.
& Always exists a choice of geodesic k such that § is the standard metric on S2.
@ Denoted by §.
Foliation X associated to such k: approaching large spheres Not unique.

Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface
N for any choice of observer at infinity.
@ Recall the Hawking energy of a spacelike surface

mu(X) = 1% (1 - 16%/{(/3, H>77[>.

Definition (Bondi energy)

Let AV be a past asymptotically flat null hypersurface. Select a geodesic null generator k
and let the associated foliation {¥x} approach large spheres.
The Bondi energy of the observed at infinity defined by this foliation is

EB(N) = lim mH(ZA)A

A—00
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Limit of the Hawking energy at infinity along general foliations

@ Geodesic foliations approaching large spheres are very special.
Aim: understand the asymptotic value of the Hawking energy along general foliations.
Let NV be null past asymptotically flat, k geodesic and X,
an associated foliation.

@ Any cross section can be defined as the graph
{\A = F}, of a function F: ¥y — R

@ Foliations by cross sections can be defined in terms of
one-parameter families of function Fx+ : g — R

X+ := graph(Fx+)

12/21
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Limit of the Hawking energy at infinity along general foliations

@ Geodesic foliations approaching large spheres are very special.
Aim: understand the asymptotic value of the Hawking energy along general foliations.

Let NV be null past asymptotically flat, k geodesic and X,
an associated foliation.

@ Any cross section can be defined as the graph
{\A = F}, of a function F: ¥y — R

@ Foliations by cross sections can be defined in terms of
one-parameter families of function Fx+ : g — R

X+ := graph(Fx+)
Examples:
@ Fyx = ¢X* with ¢ : Lo — R™:
Geodesic foliation with the same initial surface ¥o and different speed (k* = ¢k).
@ Fax =X+ 17 witht: X = R:
Geodesic foliation with initial surface X5 = graph(7) and same speed.
o Fy+ = A" 4+ &(N\*) with & suitably decaying:
Non-geodesic foliation which approaches {¥X} at infinity.
A combination describes any foliation with reaches infinity non-zero speed (vector flow
bounded away from zero).
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Asymptotics of the Hawking energy

Theorem (M. & Alberto Soria, '2015)
o Let Q be a past asymptotically flat null hypersurface in spacetime (M, g).
@ Select a geodesic generator k with corresponding foliation {¥x} approaching large
spheres.
@ Consider another foliation {X~} defined by the the level sets of the function
FN) D N =W\ — 7 — & where

7,W >0 € F(N), Lie constant, € =o01(1)No5(1) and k(£) = o (A1)

The limit of the Hawking energy along {¥x«} is

i _ L _1 . 0D _ (0™ 4 g™ _ adive (<Y wrs
Jim mi(Sae) = o (’//§2 167rw2’7“> Zz (24607 = (61 +0) - adiva(s() ) W,

where 9&1), 951), sél) and § refer to the background foliation {¥}.
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Asymptotics of the Hawking energy

Theorem (M. & Alberto Soria, '2015)
o Let Q be a past asymptotically flat null hypersurface in spacetime (M, g).
@ Select a geodesic generator k with corresponding foliation {¥x} approaching large
spheres.
@ Consider another foliation {X~} defined by the the level sets of the function
FN) D N =W\ — 7 — & where

7,W >0 € F(N), Lie constant, € =o01(1)No5(1) and k(£) = o (A1)

The limit of the Hawking energy along {¥x+} is

i N I B - 00 _ (0D 1+ 0™ _ adiva(sP)) W
/\*l'TOCmH(Z/\*)* 87r< /\)2 167Tw277q> ZZ (Aqek (0" +6;7) — Adive(s, )) Vg,

where 95(1), 9&1), sél) and § refer to the background foliation {¥X}.

@ Remarkably simple dependence on W, 7 and &.
@ Integrand with interesting invariance properties under change of geodesic foliation.
@ Recovers the limit to the Bondi energy when {X,} approaches large spheres.
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An approach to the null Penrose inequality

> 1 '
@ Key object: Functional on spacelike surfaces. M(%Z,?) = % ~ T6n / Oems,
T Js

@ Physical dimensions of length (energy), but not truly quasi-local (there is £).

@ However, on a weakly outer trapped surface (6, < 0) satisfies M(X, ¢) > %.

@ It may interpolate between both sides of the null Penrose inequality

@ Need to understand its monotonicity properties and its asymptotic behaviour.
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An approach to the null Penrose inequality

> 1 '
@ Key object: Functional on spacelike surfaces. M(%Z,?) = % ~ T6n / Oems,
T Js

@ Physical dimensions of length (energy), but not truly quasi-local (there is £).

@ However, on a weakly outer trapped surface (6, < 0) satisfies M(X, ¢) > %.

@ It may interpolate between both sides of the null Penrose inequality

@ Need to understand its monotonicity properties and its asymptotic behaviour.

Lemma
@ Let N~ R x ¥ be a null hypersurface with generator along R.

@ Let X, be a foliation by cross sections and scale the null generator so that
k(M) = —1. Define Q«x by Vik = Qk.

@ For any choice of function ¢ > 0 on X let £¥ be null and normal with (k,£%) = —¢.

dM(X, ¢7)

1 1
= -0 AL 7/
dA /64T | X, | /ZA( Kz 167 Jx, {

. 1
+p (*d/VZXSZkP + |5€¢‘3vz>\> F (;k(sﬁ) = Qk) 9&9} sy

Ein® (¢, k) — gScalZ“
Then:

Leads naturally to ¢ = const and Qx = 0.
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For ¢ = and Q«x = 0:

dM(Er,£2) _ S5, (ZO0mxs 1 e > P x(Z»)
’ — Ein®(¢7, k 215 -
- Gm  Tor o, B+ plsee ) ey — G

@ Monotonic under DEC if the (connected) X has non-zero genus.
@ Non-monotonic in the spherical case.

@ However, there is only one bad term.
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For ¢ = and Q«x = 0:

px(Xr)

® 9k T]): )
dM(Xx, £%) fzx A 1 (Bin (€7, k) + SD‘SW|E/2A> _ :

+
d\ \ /6471"2)\‘ 167
Monotonic under DEC if the (connected) X has non-zero genus.

Non-monotonic in the spherical case.

©

(4

@ However, there is only one bad term.

@ Concerning the asymptotic behaviour.

Let N be past asymptotically flat, {1} a geodesic foliation and ¢ > 0 a constant.
pAF

©

The limit AIim M(Xx, £7) is finite if and only if ¢ = 2Ry with Ry := i
— 00 ™

Let (" = Ryl. Then  lim M(E5,¢*) = lim my(E5) + i/e(l) LRk ) ma.
A— 00 16 RE,

Two interesting cases where the two limits agree:
@ g has constant curvature, since then Ky = 1/R§ (approach to large spheres).
@ When 65(1) is constant. By Gauss-Bonnet i K5nq = 4.
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Geodesic asymptotically Bondi foliations

Definition

Let AV be a past asymptotically flat null hypersurface and ¥, be a cross section.
A geodesic foliation {Xx} is called geodesic, asymptotically Bondi and associated to X
iff

(I) z)\:o =Y.
(i) With k the associated null generator (k(\) = —1), the leading term G(kl) in
2 oW ,2 .
Ok = Y + 503 +o(A79) is constant.
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Geodesic asymptotically Bondi foliations

Definition

Let AV be a past asymptotically flat null hypersurface and ¥, be a cross section.
A geodesic foliation {Xx} is called geodesic, asymptotically Bondi and associated to X
iff

(I) z)\:o = ZO.
(i) With k the associated null generator (k(\) = —1), the leading term O(kl) in
2 9(1)
Ok = Y + ﬁ +0o(A7?) is constant.

A,

Proposition (Existence and uniqueness)

Assume DEC. Given any cross section Xo:
(i) There exists a geodesic asymptotically Bondi foliation associated to ¥g.

(ii) This foliation is unique except for trivial constant reparametrizations \' = a)\, a € R

v
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@ The functional M(X, £¥) is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

@ Bound from above M(Xo,£*) at the initial weakly outer trapped surface
M(Zo, %) < lim M(Xx, £%)
A—00
To exploit the good terms in the variation formula:

@ Split M(X,£%) in two: ~ M(X, (%) = < = jA) + (%/\ . ewnz)

167 167 Js
| ——
=D(x,0%) My (%, £#)

@ My(X, ¢%) (introduced by [Bergqvist, '97]): Monotonic for geodesic null flows + DEC.
@ D(X,¢*) and My(X, £*) have finite limits at infinity (for geodesic flows)
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@ The functional M(X, £) is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

@ Bound from above M(Xo,£*) at the initial weakly outer trapped surface
M(Zo, %) < lim M(Xx, £%)
A—o0
To exploit the good terms in the variation formula:

@ Split M(X,£%) in two: ~ M(X, (%) = < = jA) + (%/\ . ewn;)

167 167 Js
—_—
=D(%,69) Mp(%,£9)

@ My(X, ¢%) (introduced by [Bergqvist, '97]): Monotonic for geodesic null flows + DEC.
@ D(X,¢*) and My(X, £*) have finite limits at infinity (for geodesic flows)
Monotonicity of M, implies automatically M,(Xo, ") < AIim M(Zx, 0)
—00

@ Need to understand under which conditions

D(Zo,¢*) < lim D(Xx, £%).
A—00
Any situation where such bound holds leads immediately to a Penrose-like inequality
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A Penrose-like inequality

@ Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let N be null and past asymptotically flat. Let {¥x} be a GAB foliation. Then
D(Xo,¢") < lim D(Xx,£%)
A— 00

@ Combining with the limit at infinity of M(X», £*).
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A Penrose-like inequality

@ Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let N be null and past asymptotically flat. Let {¥x} be a GAB foliation. Then

D(Xo,0*) < lim D(Tx,£*)
A—00

@ Combining with the limit at infinity of M(X», £*).

Theorem ([M. & A. Soria, '16])

o Let N be a past asymptotically flat null hypersurface and ¥y a cross section.
@ Assume DEC.

|Zo] 1 :
Th — — —— (2 < | >
en Vier 167 Jy, 0= i 25
where the limit is taken along the GAB foliation {¥,} associated to Xg.
o]

In particular, if Xo is weakly outer trapped:

< i .
Tor = am mr(E)

This is the null Penrose inequality whenever, in addition, the GAB foliation X

approaches large spheres.
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Key ingredient in the proof:
3
2
(sﬂRgA . a(k”nf,)

F(x\) = monotonically increasing for GAB foliations + DEC.

@ Monotonicity of F(X) is useful for general geodesic foliations because (with no
additional assumptions):

dF ()
dX

>0 = D(Z0,0") < lim D(Zx, ).
A—o00

Can one find conditions ensuring monotonicity of D(Xx,¢) or F(X) in the case of
foliations approaching large spheres? Renormalized area method

Renormalized area method 19/21



Key ingredient in the proof:
3

5 monotonically increasing for GAB foliations + DEC.
1
(87TR§)\ + 5 6¢ )77&)

F(Z\) =

@ Monotonicity of F(X) is useful for general geodesic foliations because (with no
additional assumptions):

dF ()
dX

Can one find conditions ensuring monotonicity of D(Xx,¢) or F(X) in the case of
foliations approaching large spheres? Renormalized area method

>0 = D(Z0,0") < lim D(Zx, ).
A—o00

@ Need to strengthen slightly the definition of asymptotic flatness.

Definition

A null hypersurface is strongly past asymptotically flat if, in addition to being past
asymptotically flat, the first fundamental form of A/ admits an expansion

¥ =N§+ A+ Vo + 01(1) N o5(1), §>0,h, W, Lie constant.
M) 4@
Consequence: 0, = —% + 9/\% + 6/\% +o(A72).
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Sufficient conditions for the renormalized area method

@ Studying the variation of D(Xx,¢) along the foliation

Theorem ([M. & A. Soria, '16])

Let N be strong past asymptotically flat null hypersurface and assume DEC. Let {¥,}
be a geodesic foliation approaching large spheres.
Assume the two conditions

z 2
(i) (/ H(kl)ne.) *SW/ (G’E)) 4 *SW/ 0Pnq >0
Js2 s2

(ii) / (72€kRicg(k, k) 4+ 2(M*)** Rag + ﬁmc (k, k)) ey, <0, YA>0
P5Y

hold, where N is the trace-free part of the null second fundamental form K* and
RAB = Riemg(XA, k, XB7 k) Then

|Zo|

< j 1 .
Tor 167 / Oens, < Es Eg Bondi energy associated to {X\} (2)

If, in addition, ¥ is weakly outer trapped, the Penrose inequality Eg > |>:0 holds.
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Applications

@ Method particularly well-adapted to vacuum + shear-free case M* = 0.
@ We can recover and strengthen the result by Sauter.

Theorem ([M. & A. Soria, '16])

@ Let N be a shear-free, past asymptotically flat null hypersurface in a vacuum (M, g).

@ Let X be a cross section and select k along ¥ so that the corresponding geodesic
foliation {X\} approaches large spheres.

o Define F > 0 by F> = —2(0|s,) " and decompose s; = s;i- + ~dF.
Then, the Bondi energy associated to {¥,} satisfies

|Xo| / P
167 167 Jy ‘%o

1 2 LZ 1+’YF) 2
+§(/S( T [dF ) ma 1/47r F2n.,+ /F ) \ar g ).

>0 by Beckner 20

Eg =

V.
@ Method also well-suited for the Minkowski spacetime — Shell-Penrose inequality in
Minkowski for a large class of cases.
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