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Penrose inequality for initial data sets

Consider asymptotically flat initial data sets (N 3, γ,K ) (one end) satisfying DEC.

Σ weakly outer trapped: θ+ := HΣ + trΣK ≤ 0.

Future trapped region T +
Σ ⊂ Σ: Union of compact domains with weakly outer

trapped boundary.

Conjecture (Penrose inequality)

Let (N n, g ,K ) be an asymptotically flat initial data set satisfying DEC and Smin(∂T
+
Σ )

the minimal area enclosure of ∂T +
Σ . Then

(2MADM)
n−1
n−2 ≥

Smin(∂T
+
Σ )

ωn−1
, ωn−1 = |Sn−1|

Moreover, equality implies (Σ \ T +
Σ , g ,K ) can be isometrically embedded into the

Schwarzschild spacetime.
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Future trapped region T +
Σ ⊂ Σ: Union of compact domains with weakly outer

trapped boundary.

Conjecture (Penrose inequality)

Let (N n, g ,K ) be an asymptotically flat initial data set satisfying DEC and Smin(∂T
+
Σ )

the minimal area enclosure of ∂T +
Σ . Then

(2MADM)
n−1
n−2 ≥

Smin(∂T
+
Σ )

ωn−1
, ωn−1 = |Sn−1|

Moreover, equality implies (Σ \ T +
Σ , g ,K ) can be isometrically embedded into the

Schwarzschild spacetime.

Proven in the time symmetric case K = 0:

In full generality for 3 ≤ n ≤ 7 ([Huisken & Ilmanen ’01], [Bray ’01], [Bray & Lee ’09]).

For graphical manifolds in E
n+1, n ≥ 3 ([Lam ’10], [Huang & Wu ’12]).

Still not much known when K 6= 0.
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Penrose inequality for null hypersurfaces

Need for Smin(∂T
+
Σ ) comes from the heuristics behind the Penrose inequality

(restrict to n = 4)

The standard collapse scenario implies

16πM2
ADM ≥ |H ∩N|.

H event horizon of the black hole that forms (weak
cosmic censorship).

∂T +
Σ is known to lie inside the black hole (but may

have larger area than H ∩N .

N

I +H

i0

Σ

The minimal area enclosure takes care of this: 16πM2
ADM ≥ |H ∩N| ≥ Smin(∂T

+
Σ )
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The standard collapse scenario implies

16πM2
ADM ≥ |H ∩N|.

H event horizon of the black hole that forms (weak
cosmic censorship).

∂T +
Σ is known to lie inside the black hole (but may

have larger area than H ∩N .

N

I +H

i0

Σ

The minimal area enclosure takes care of this: 16πM2
ADM ≥ |H ∩N| ≥ Smin(∂T

+
Σ )

There are situations where Smin is not necessary.

Assume (M, g) admits a past null infinity I
−.

Consider a smooth null hypersurface N extending to I
−

and containing a weakly trapped surface.

Smoothness of N requires θk ≤ 0 =⇒ |H ∩N| ≥ |Σ|

N

k

I −

I +H

i0

Σ

Penrose heuristics gives:

16πMB(N )2 ≥ |Σ|, MB(N ) Bondi mass of N .
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Leads to a Penrose inequality conjecture for null hypersurfaces.

Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let N be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume

that Σ →֒ N is a weakly outer trapped surface. Then, the Bondi mass of N satisfies

MB(N ) ≥
1

2

(
|Σ|

ωn−1

) n−2
n−1

.

Inequality involves:

{

Intrinsic and extrinsic geometry of N .

Asymptotic conditions along N .
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Leads to a Penrose inequality conjecture for null hypersurfaces.

Can be formulated in any spacetime dimension.

Conjecture (Null Penrose inequality)

Let N be an asymptotically flat null hypersurface in a spacetime satisfying DEC. Assume

that Σ →֒ N is a weakly outer trapped surface. Then, the Bondi mass of N satisfies

MB(N ) ≥
1

2

(
|Σ|

ωn−1

) n−2
n−1

.

Inequality involves:

{

Intrinsic and extrinsic geometry of N .

Asymptotic conditions along N .

No need for minimal area enclosures.

Need to define:

Asymptotic flatness.

Bondi mass (or Bondi energy).

Penrose’s original version of the inequality involved a particular case of this
(shells propagating in Minkowski).
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Consequences of the Null Penrose inequality conjecture

Null Penrose inequality assumes a weakly outer trapped surface.

However, it has implications on general asymptotically flat vacuum spacetimes.

The physical idea is to let shells (distributional matter) propagate on a given spacetime.

This can be made precise. Assume (M, g):

vacuum

admitting a null AF hypersurface N

Select any cross section Σ on N

Modify appropriately the characteristic
data on N , so that it stays vacuum.

Suplement with data on I
−

N

(M, g)

(M′, g′)

I
−

Σ

Another asymptotically flat vacuum spacetime (M ′, g ′) exists.
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The physical idea is to let shells (distributional matter) propagate on a given spacetime.

This can be made precise. Assume (M, g):

vacuum

admitting a null AF hypersurface N

Select any cross section Σ on N

Modify appropriately the characteristic
data on N , so that it stays vacuum.

Suplement with data on I
−

N

(M, g)

(M′, g′)

I
−

Σ

Another asymptotically flat vacuum spacetime (M ′, g ′) exists.

Data can always be arranged so that Σ is a weakly outer trapped surface in (M ′, g ′).

Bondi energy of (M ′, g ′) can be computed in terms of the Bondi energy of (M, g)
and the geometry of Σ →֒ (M, g)

The Penrose inequality applied to (M ′, g ′) leads to a geometric inequality purely (M, g)
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Theorem (Shell-Penrose inequality, [M., 2016])

Let N be an asymptotically flat null hypersurface embedded in a vacuum spacetime

(M, g) and Σ any cross section of N .

Let {Σλ} by a foliation by cross sections starting at Σ, approaching large spheres

and with a geodesic flow vector k.

Let ℓ be the future null normal to Σ satisfying 〈k, ℓ〉 = −2.

If the null Penrose inequality conjecture holds, then the Bondi energy EB associated to

{Σλ} satisfies

EB +
1

16π

∫

Σ

θℓηΣ ≥

√

|Σ|

16π
, (1)

where θℓ is the null expansion of Σ along ℓ in (M, g).
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Let {Σλ} by a foliation by cross sections starting at Σ, approaching large spheres

and with a geodesic flow vector k.

Let ℓ be the future null normal to Σ satisfying 〈k, ℓ〉 = −2.

If the null Penrose inequality conjecture holds, then the Bondi energy EB associated to

{Σλ} satisfies

EB +
1

16π

∫

Σ

θℓηΣ ≥

√

|Σ|

16π
, (1)

where θℓ is the null expansion of Σ along ℓ in (M, g).

Can be extended to other matter models.

Proving (1) for specific spacetimes (e.g. Minkowski) is still a hard problem.
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Known results on the null Penrose inequality

The null Penrose inequality has been proven in a number of special cases:

General proof was claimed by [Ludvigsen & Vickers, ’83].

Important gap found by [Bergvist, ’97].

For shear-free null hypersurfaces (K k ∝ first fund. form γ) [Sauter, Ph.D. thesis 2008]

The null Penrose inequality reduces to

∫

S2

(F 2 + |dF |2q̊)ηq̊ ≥

√

4π

∫

S2

F 4 ηq̊.

Particular case of a general Sobolev-type inequality on S
n [Beckner ’93]

For null shells propagating in Minkowski in special cases [Tod, ’85], [Gibbons, ’97], [M.

& Soria, 14], [M. & Soria, 15].

For shells propagating in Schwarzschild [Brendle & Wang, 14].

For vacuum spacetimes near Schwarzschild [Alexakis ’15].
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Asymptotically flat null hypersurface

We want a definition that involves local “in time” conditions on N (global along N ).

Convenient to use foliations of N by spacelike surfaces.

Let k ∈ Γ(TN ) be future null and nowhere zero (null
generator)

Satisfies ∇kk = Qkk, Qk : N 7→ R

k is called geodesic if Qk = 0.

Nk

Σ0
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We want a definition that involves local “in time” conditions on N (global along N ).

Convenient to use foliations of N by spacelike surfaces.

Let k ∈ Γ(TN ) be future null and nowhere zero (null
generator)

Satisfies ∇kk = Qkk, Qk : N 7→ R

k is called geodesic if Qk = 0.

Nk

Σ0

Nk

ℓ
Σ0

Σλ

Definition (N extending to past null infinity)

A null hypersurface N in a spacetime (M, g) is extends to past null infinity if

N admits a cross section Σ0 of spherical topology.

Affinely parametrized null geodesics starting at p ∈ Σ0 with tangent vector −k|p
have maximal domain (λ0(p),∞).

Chose k geodesic. Define λ : N 7→ R by k(λ) = −1 and λ|Σ0 = 0.

Level sets Σλ of λ are cross sections of spherical topology.

In particular N = R× S
2

Define ℓ along N by: (i) ℓ null, (ii) orthogonal to Σλ, (iii) 〈k, ℓ〉 = −2
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We use λ to specify the decay at infinity.

A covariant tensor field T on N is

Transversal: if T (· · · , k, · · · ) = 0. Lie constant: if LkT = 0.

Transversal tensors are in one-to-one correspondence to a family T (λ) on Σλ.

Denote TA1···Aq := T (XA1 , · · ·XAq )
XA local basis of TΣ0 extended to N by [k,XA] = 0.
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We use λ to specify the decay at infinity.

A covariant tensor field T on N is

Transversal: if T (· · · , k, · · · ) = 0. Lie constant: if LkT = 0.

Transversal tensors are in one-to-one correspondence to a family T (λ) on Σλ.

Denote TA1···Aq := T (XA1 , · · ·XAq )
XA local basis of TΣ0 extended to N by [k,XA] = 0.

Definition

A transversal tensor field T on N is

T = O(1) if TA1···Aq is uniformly bounded.

T = On(λ
−q), (q, n ∈ N) iff λq+i (Lk)

iT = O(1), i = 0, · · · , n.

T = o(λ−q) and T = on(λ
−q) defined similarly.

Given a transversal T , LXA
T is also transversal.

T = oX
n (λ

−q) iff

λq LXA1
· · · LXAi

︸ ︷︷ ︸

i

T = o(1) ∀i = 0, 1, · · · , n for all values of A1, · · · ,Ai .

Definitions independent of the choice of λ and the choice of basis {XA}
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Notation for spacelike codimension-two surfaces:

Induced metric: γ

Mean curvature ~H (outwards for a sphere)

Null expansions θk := 〈k, ~H〉, θℓ := 〈ℓ, ~H〉,

Normal connection sℓ(X ) = − 1
2
〈∇X ℓ, k〉.

Σ

k ℓ(M, g)
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Notation for spacelike codimension-two surfaces:

Induced metric: γ

Mean curvature ~H (outwards for a sphere)

Null expansions θk := 〈k, ~H〉, θℓ := 〈ℓ, ~H〉,

Normal connection sℓ(X ) = − 1
2
〈∇X ℓ, k〉.

Σ

k ℓ(M, g)

Definition (Asymptotically flat N )

A null hypersurface Ω in a spacetime (M, g) is past asymptotically flat if (i) extends to
past null infinity and (ii) for a choice of geodesic k and corresponding level function λ:

(i) The first fundamental form γ of N is γ = λ2
q̂ + λh + γ̃:

q̂, h transversal and Lie-constant, q̂ > 0, γ̃ = o1(λ) ∩ oX
2 (λ).

(ii) The normal connection sℓ of {Σλ} is sℓ = s
(1)
ℓ λ−1 + o1(λ

−1), s
(1)
ℓ Lie constant

(iii) The null expansion θℓ is θℓ = θ
(0)
ℓ λ−1 + θ

(1)
ℓ λ−2 + o(λ−2): θ

(0)
ℓ , θ

(1)
ℓ Lie constant,

(iv) lim
λ→∞

λ−2
Riem

g (XA,XB ,XC ,XD) exists and its double trace satisfies

2Eing (k, ℓ)− Scal
g −

1

2
Riem

g (ℓ, k, ℓ, k) = o(λ−2).

Consequences: θ
(0)
ℓ =

2Kq̂

λ
+

θ
(1)
ℓ

λ2 + o(λ−2), θk = − 2
λ
+

θ
(1)
k

λ2 + o(λ−2)
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Bondi energy and Hawking energy

q̂ can be thought of as the metric of Σλ “at infinity”.

Under a rescaling k ′ = f k, with f > 0 Lie constant: q̂
′ = f

2
q̂.

Always exists a choice of geodesic k such that q̂ is the standard metric on S
2.

Denoted by q̊.

Foliation Σλ associated to such k: approaching large spheres Not unique.

Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface
N for any choice of observer at infinity.
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Bondi energy and Hawking energy

q̂ can be thought of as the metric of Σλ “at infinity”.

Under a rescaling k ′ = f k, with f > 0 Lie constant: q̂
′ = f

2
q̂.

Always exists a choice of geodesic k such that q̂ is the standard metric on S
2.

Denoted by q̊.

Foliation Σλ associated to such k: approaching large spheres Not unique.

Any such choice of geodesic foliation defines an observer at infinity.

The Bondi energy is a quantity associated to a past asymptotically flat null hypersurface
N for any choice of observer at infinity.

Recall the Hawking energy of a spacelike surface

mH(Σ) =

√

|Σ|

16π

(

1−
1

16π

∫

Σ

〈~H, ~H〉ηΣ

)

.

Definition (Bondi energy)

Let N be a past asymptotically flat null hypersurface. Select a geodesic null generator k
and let the associated foliation {Σλ} approach large spheres.
The Bondi energy of the observed at infinity defined by this foliation is

EB(N ) := lim
λ→∞

mH(Σλ).
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Limit of the Hawking energy at infinity along general foliations

Geodesic foliations approaching large spheres are very special.

Aim: understand the asymptotic value of the Hawking energy along general foliations.

Let N be null past asymptotically flat, k geodesic and Σλ

an associated foliation.

Any cross section can be defined as the graph
{λ = F}, of a function F : Σ0 −→ R

Foliations by cross sections can be defined in terms of
one-parameter families of function Fλ⋆ : Σ0 → R

Σλ⋆ := graph(Fλ⋆) N

Σ0

Σλ

F

Σ
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Limit of the Hawking energy at infinity along general foliations

Geodesic foliations approaching large spheres are very special.

Aim: understand the asymptotic value of the Hawking energy along general foliations.

Let N be null past asymptotically flat, k geodesic and Σλ

an associated foliation.

Any cross section can be defined as the graph
{λ = F}, of a function F : Σ0 −→ R

Foliations by cross sections can be defined in terms of
one-parameter families of function Fλ⋆ : Σ0 → R

Σλ⋆ := graph(Fλ⋆) N

Σ0

Σλ

F

Σ

Examples:

Fλ⋆ = φλ⋆ with φ : Σ0 → R
+:

Geodesic foliation with the same initial surface Σ0 and different speed (k⋆ = φk).

Fλ⋆ = λ⋆ + τ with τ : Σ0 → R:
Geodesic foliation with initial surface Σ⋆

0 = graph(τ) and same speed.

Fλ⋆ = λ⋆ + ξ(λ⋆) with ξ suitably decaying:
Non-geodesic foliation which approaches {Σλ} at infinity.

A combination describes any foliation with reaches infinity non-zero speed (vector flow
bounded away from zero).
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Asymptotics of the Hawking energy

Theorem (M. & Alberto Soria, ’2015)

Let Ω be a past asymptotically flat null hypersurface in spacetime (M, g).

Select a geodesic generator k with corresponding foliation {Σλ} approaching large

spheres.

Consider another foliation {Σλ⋆} defined by the the level sets of the function

F(N ) ∋ λ⋆ := Ψλ− τ − ξ where

τ,Ψ > 0 ∈ F(N ), Lie constant, ξ = o1(1) ∩ o
X
2 (1) and k(ξ) = o

X
1 (λ

−1)

The limit of the Hawking energy along {Σλ⋆} is

lim
λ⋆→∞

mH(Σλ⋆) =
1

8π

(√
∫

S2

1

16πΨ2
ηq̊

)
∫

S2

(

△q̊θ
(1)
k − (θ

(1)
k + θ

(1)
ℓ )− 4divq̊(s

(1)
ℓ )
)

Ψηq̊,

where θ
(1)
k , θ

(1)
ℓ , s

(1)
ℓ and q̊ refer to the background foliation {Σλ}.
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Asymptotics of the Hawking energy

Theorem (M. & Alberto Soria, ’2015)

Let Ω be a past asymptotically flat null hypersurface in spacetime (M, g).

Select a geodesic generator k with corresponding foliation {Σλ} approaching large

spheres.

Consider another foliation {Σλ⋆} defined by the the level sets of the function

F(N ) ∋ λ⋆ := Ψλ− τ − ξ where

τ,Ψ > 0 ∈ F(N ), Lie constant, ξ = o1(1) ∩ o
X
2 (1) and k(ξ) = o

X
1 (λ

−1)

The limit of the Hawking energy along {Σλ⋆} is

lim
λ⋆→∞

mH(Σλ⋆) =
1

8π

(√
∫

S2

1

16πΨ2
ηq̊

)
∫

S2

(

△q̊θ
(1)
k − (θ

(1)
k + θ

(1)
ℓ )− 4divq̊(s

(1)
ℓ )
)

Ψηq̊,

where θ
(1)
k , θ

(1)
ℓ , s

(1)
ℓ and q̊ refer to the background foliation {Σλ}.

Remarkably simple dependence on Ψ, τ and ξ.

Integrand with interesting invariance properties under change of geodesic foliation.

Recovers the limit to the Bondi energy when {Σλ} approaches large spheres.
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An approach to the null Penrose inequality

Key object: Functional on spacelike surfaces. M(Σ, ℓ) =

√

|Σ|

16π
−

1

16π

∫

Σ

θℓηΣ,

Physical dimensions of length (energy), but not truly quasi-local (there is ℓ).

However, on a weakly outer trapped surface (θℓ ≤ 0) satisfies M(Σ, ℓ) ≥
√

|Σ|
16π

.

It may interpolate between both sides of the null Penrose inequality

Need to understand its monotonicity properties and its asymptotic behaviour.
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An approach to the null Penrose inequality

Key object: Functional on spacelike surfaces. M(Σ, ℓ) =

√

|Σ|

16π
−

1

16π

∫

Σ

θℓηΣ,

Physical dimensions of length (energy), but not truly quasi-local (there is ℓ).

However, on a weakly outer trapped surface (θℓ ≤ 0) satisfies M(Σ, ℓ) ≥
√

|Σ|
16π

.

It may interpolate between both sides of the null Penrose inequality

Need to understand its monotonicity properties and its asymptotic behaviour.

Lemma

Let N ≃ R× Σ be a null hypersurface with generator along R.

Let Σλ be a foliation by cross sections and scale the null generator so that

k(λ) = −1. Define Qk by ∇kk = Qkk.

For any choice of function ϕ > 0 on Σλ let ℓϕ be null and normal with 〈k, ℓϕ〉 = −ϕ.

Then:

dM(Σλ, ℓ
ϕ)

dλ
=

1
√

64π|Σλ|

∫

Σλ

(−θk)ηΣλ
+

1

16π

∫

Σλ

[

Ein
g (ℓ, k)−

ϕ

2
Scal

Σµ

+ϕ
(

−divΣλ
sℓϕ + |sℓϕ |

2
γΣλ

)

+

(
1

ϕ
k(ϕ)− Qk

)

θℓϕ

]

ηΣλ

Leads naturally to ϕ = const and Qk = 0.
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For ϕ = and Qk = 0:

dM(Σλ, ℓ
ϕ)

dλ
=

∫

Σλ
(−θk)ηΣλ

√
64π|Σλ|

+
1

16π

∫

Σλ

(Eing (ℓϕ, k) + ϕ|sℓϕ |
2
γΣλ

)

ηΣλ
−

ϕχ(Σλ)

8
.

Monotonic under DEC if the (connected) Σ has non-zero genus.

Non-monotonic in the spherical case.

However, there is only one bad term.
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For ϕ = and Qk = 0:

dM(Σλ, ℓ
ϕ)

dλ
=

∫

Σλ
(−θk)ηΣλ

√
64π|Σλ|

+
1

16π

∫

Σλ

(Eing (ℓϕ, k) + ϕ|sℓϕ |
2
γΣλ

)

ηΣλ
−

ϕχ(Σλ)

8
.

Monotonic under DEC if the (connected) Σ has non-zero genus.

Non-monotonic in the spherical case.

However, there is only one bad term.

Concerning the asymptotic behaviour.

Lemma

Let N be past asymptotically flat, {Σλ} a geodesic foliation and ϕ > 0 a constant.

The limit lim
λ→∞

M(Σλ, ℓ
ϕ) is finite if and only if ϕ = 2Rq̂ with Rq̂ :=

√

|Σ|q̂
4π

.

Let ℓ⋆ = Rq̂ℓ. Then lim
λ→∞

M(Σλ, ℓ
⋆) = lim

λ→∞
mH(Σλ) +

1

16π

∫

Σ

θ
(1)
k

(
1

Rq̂

− Rq̂Kq̂

)

ηq̂.

Two interesting cases where the two limits agree:

q̂ has constant curvature, since then Kq̂ = 1/R2
q̂ (approach to large spheres).

When θ
(1)
k is constant. By Gauss-Bonnet

∫

Σ
Kq̂ηq̂ = 4π.
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Geodesic asymptotically Bondi foliations

Definition

Let N be a past asymptotically flat null hypersurface and Σ0 be a cross section.
A geodesic foliation {Σλ} is called geodesic, asymptotically Bondi and associated to Σ0

iff

(i) Σλ=0 = Σ0.

(ii) With k the associated null generator (k(λ) = −1), the leading term θ
(1)
k in

θk = −
2

λ
+

θ
(1)
k

λ2
+ o(λ−2) is constant.
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Geodesic asymptotically Bondi foliations

Definition

Let N be a past asymptotically flat null hypersurface and Σ0 be a cross section.
A geodesic foliation {Σλ} is called geodesic, asymptotically Bondi and associated to Σ0

iff

(i) Σλ=0 = Σ0.

(ii) With k the associated null generator (k(λ) = −1), the leading term θ
(1)
k in

θk = −
2

λ
+

θ
(1)
k

λ2
+ o(λ−2) is constant.

Proposition (Existence and uniqueness)

Assume DEC. Given any cross section Σ0:

(i) There exists a geodesic asymptotically Bondi foliation associated to Σ0.

(ii) This foliation is unique except for trivial constant reparametrizations λ′ = aλ, a ∈ R
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The functional M(Σ, ℓϕ) is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

Bound from above M(Σ0, ℓ
⋆) at the initial weakly outer trapped surface

M(Σ0, ℓ
⋆) ≤ lim

λ→∞
M(Σλ, ℓ

⋆)

To exploit the good terms in the variation formula:

Split M(Σ, ℓϕ) in two: M(Σ, ℓϕ) :=

(√

|Σ|

16π
−

ϕ

4
λ

)

︸ ︷︷ ︸

:=D(Σ,ℓϕ)

+

(
ϕ

4
λ−

1

16π

∫

Σ

θℓϕηΣ

)

︸ ︷︷ ︸

Mb(Σ,ℓϕ)

Mb(Σ, ℓ
ϕ) (introduced by [Bergqvist, ’97]): Monotonic for geodesic null flows + DEC.

D(Σ, ℓ⋆) and Mb(Σ, ℓ
⋆) have finite limits at infinity (for geodesic flows)
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The functional M(Σ, ℓϕ) is not monotonic in the spherical case.

To approach the null Penrose inequality (or variations) we need less:

Bound from above M(Σ0, ℓ
⋆) at the initial weakly outer trapped surface

M(Σ0, ℓ
⋆) ≤ lim

λ→∞
M(Σλ, ℓ

⋆)

To exploit the good terms in the variation formula:

Split M(Σ, ℓϕ) in two: M(Σ, ℓϕ) :=

(√

|Σ|

16π
−

ϕ

4
λ

)

︸ ︷︷ ︸

:=D(Σ,ℓϕ)

+

(
ϕ

4
λ−

1

16π

∫

Σ

θℓϕηΣ

)

︸ ︷︷ ︸

Mb(Σ,ℓϕ)

Mb(Σ, ℓ
ϕ) (introduced by [Bergqvist, ’97]): Monotonic for geodesic null flows + DEC.

D(Σ, ℓ⋆) and Mb(Σ, ℓ
⋆) have finite limits at infinity (for geodesic flows)

Monotonicity of Mb implies automatically Mb(Σ0, ℓ
⋆) ≤ lim

λ→∞
M(Σλ, ℓ

⋆)

Need to understand under which conditions

D(Σ0, ℓ
⋆) ≤ lim

λ→∞
D(Σλ, ℓ

⋆).

Any situation where such bound holds leads immediately to a Penrose-like inequality
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A Penrose-like inequality

Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let N be null and past asymptotically flat. Let {Σλ} be a GAB foliation. Then

D(Σ0, ℓ
⋆) ≤ lim

λ→∞
D(Σλ, ℓ

⋆)

Combining with the limit at infinity of M(Σλ, ℓ
⋆).
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A Penrose-like inequality

Geodesic asymptotically Bondi (GAB) foliations lead to a Penrose-like inequality

Proposition

Let N be null and past asymptotically flat. Let {Σλ} be a GAB foliation. Then

D(Σ0, ℓ
⋆) ≤ lim

λ→∞
D(Σλ, ℓ

⋆)

Combining with the limit at infinity of M(Σλ, ℓ
⋆).

Theorem ([M. & A. Soria, ’16])

Let N be a past asymptotically flat null hypersurface and Σ0 a cross section.

Assume DEC.

Then

√

|Σ0|

16π
−

1

16π

∫

Σ0

θℓ⋆ηΣ0
≤ lim

λ→∞
mH(Σλ),

where the limit is taken along the GAB foliation {Σλ} associated to Σ0.

In particular, if Σ0 is weakly outer trapped:

√

|Σ0|

16π
≤ lim

λ→∞
mH(Σλ).

This is the null Penrose inequality whenever, in addition, the GAB foliation Σλ

approaches large spheres.
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Key ingredient in the proof:

F (Σλ) =
|Σλ|

(

8πR2
q̂λ+

∫

Σ
θ
(1)
k ηq̂

)2 monotonically increasing for GAB foliations + DEC.

Monotonicity of F (Σλ) is useful for general geodesic foliations because (with no
additional assumptions):

dF (Σλ)

dλ
≥ 0 =⇒ D(Σ0, ℓ

⋆) ≤ lim
λ→∞

D(Σλ, ℓ
⋆).

Can one find conditions ensuring monotonicity of D(Σλ, ℓ) or F (Σλ) in the case of
foliations approaching large spheres? Renormalized area method
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F (Σλ) =
|Σλ|

(

8πR2
q̂λ+

∫

Σ
θ
(1)
k ηq̂

)2 monotonically increasing for GAB foliations + DEC.

Monotonicity of F (Σλ) is useful for general geodesic foliations because (with no
additional assumptions):

dF (Σλ)

dλ
≥ 0 =⇒ D(Σ0, ℓ

⋆) ≤ lim
λ→∞

D(Σλ, ℓ
⋆).

Can one find conditions ensuring monotonicity of D(Σλ, ℓ) or F (Σλ) in the case of
foliations approaching large spheres? Renormalized area method

Need to strengthen slightly the definition of asymptotic flatness.

Definition

A null hypersurface is strongly past asymptotically flat if, in addition to being past
asymptotically flat, the first fundamental form of N admits an expansion

γ = λ2
q̂ + λh +Ψ0 + o1(1) ∩ o

X
2 (1), q̂ > 0, h,Ψ0 Lie constant.

Consequence: θk = − 2
λ
+

θ
(1)
k

λ2 +
θ
(2)
k

λ2 + o(λ−2).
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Sufficient conditions for the renormalized area method

Studying the variation of D(Σλ, ℓ) along the foliation

Theorem ([M. & A. Soria, ’16])

Let N be strong past asymptotically flat null hypersurface and assume DEC. Let {Σλ}
be a geodesic foliation approaching large spheres.

Assume the two conditions

(i)

(∫

S2

θ
(1)
k ηq̊

)2

− 8π

∫

S2

(

θ
(1)
k

)2

ηq̊ − 8π

∫

S2

θ
(2)
k ηq̊ ≥ 0

(ii)

∫

Σλ

(

−2θkRic
g (k, k) + 2(Πk)ABRAB +

d

dλ
Ric

g (k, k)

)

ηΣλ
≤ 0, ∀λ ≥ 0

hold, where Πk is the trace-free part of the null second fundamental form K k and

RAB = Riem
g (XA, k,XB , k). Then

√

|Σ0|

16π
−

1

16π

∫

Σ0

θℓ ηΣ0
≤ EB EB Bondi energy associated to {Σλ}. (2)

If, in addition, Σ0 is weakly outer trapped, the Penrose inequality EB ≥
√

|Σ0|
16π

holds.
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Applications

Method particularly well-adapted to vacuum + shear-free case Πk = 0.

We can recover and strengthen the result by Sauter.

Theorem ([M. & A. Soria, ’16])

Let N be a shear-free, past asymptotically flat null hypersurface in a vacuum (M, g).

Let Σ0 be a cross section and select k along Σ0 so that the corresponding geodesic

foliation {Σλ} approaches large spheres.

Define F > 0 by F 2 = −2(θk |Σ0)
−1 and decompose sℓ = s⊥ℓ + γdF .

Then, the Bondi energy associated to {Σλ} satisfies

EB =

√

|Σ0|

16π
−

1

16π

∫

Σ0

θℓηΣ0

+
1

8π

(∫

S2

(

F
2 + |dF |2q̊

)

ηq̊ −

√

4π

∫

S2

F 2ηq̊

︸ ︷︷ ︸

≥0 by Beckner

+
1

3

∫

S2

F
2|s⊥ℓ |2 +

(1 + γF 2)2

F 2
|dF |2ηq̊

︸ ︷︷ ︸

≥0

)

.

Method also well-suited for the Minkowski spacetime −→ Shell-Penrose inequality in
Minkowski for a large class of cases.
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