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Geometrostatic manifolds

I Addressed in great detail by Brill and Lindquist in their 1963
paper “Interaction energy in geometrostatics”.

I Solutions of vacuum Einstein-Maxwell constraint equations

R[g ] = 2|E |2g , div(E ) = 0

on R3 r {p1, ..., pn} of the form

g = (χψ)2δ, E = ±gradg (ln(χ/ψ)) .

I “...static” refers to the existence of the electrostatic potential
and vanishing second fundamental form; not suggesting initial
data for static spacetime.
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Explicit Expressions

I The constraints reduce to ∆δχ = 0, ∆δψ = 0.

I Solutions compatible with asymptotically Euclidean behavior
at infinity:

|χ− 1|, |ψ − 1| = O(r−1), |dχ|δ = |dψ|δ = O(r−2).

I Explicit solutions:

χ(x) = 1 +
G

2c2

n∑
i=1

αi

|x − pi |
, ψ(x) = 1 +

G

2c2

n∑
i=1

βi
|x − pi |

.

I Impose αi , βi > 0 for all i .
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Concrete example

I g =

(
1 +

G

2c2
· α
r

)2(
1 +

G

2c2
· β
r

)2

δ with α, β > 0.

I Reissner-Nordström initial data; charged point particle.

r → 0

r = G
2c2

√
αβ

r →∞

I m = (α + β)/2;

I If αβ = 0 we have an asymptotically cylindrical end instead.
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General picture: n charged point particles
I Assuming αi , βi > 0 for all i we have n + 1 asymptotically

Euclidean ends.

|x | → ∞

x → p1
x → p2 x → p3

I |x | → ∞ asymptotic end has ADM mass of

m = 1
2

∑
(αi + βi ).

I Rough idea: If m = 1
2

∑
(αi + βi )→ 0 then χ, ψ → 1 and

(M, g)→ (R3, δ).
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Almost rigidity of PMT in the geometrostatic context

Theorem
(Sormani - I.S, 2015/16) Let (Mk , gk) be a sequence of
geometrostatic (Brill-Lindquist) manifolds with point particles
Pk = {p1, p2, ..., pnk}, and let M ′k denote the exterior portions1 of
Mk . Assume that 0 6∈ Pk for all k and that there is some R0 > 0
such that Pk ⊆ Bδ(0,R0) for all k. Let

mk = mADM(M ′k , gk), σk = min{|p − p′|, |p| | p, p′ ∈ Pk}.

If mk → 0 and mk/σk → 0 then for all R > R0 Bgk (0,R) ⊆ M ′k
converges to Bδ(0,R) ⊆ R3 in the intrinsic flat sense.

1Exterior portion refers to the portion of Mk located outside of the
outermost minimal surface(s).
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Comments on the proof

I Smallness of mk and mk/σk is used to prevent this scenario:

|x | =∞

x = p1 x = p2

I We control the location of the outermost minimal surfaces by
contrasting the Penrose Inequality with quadratic area growth
along minimal surfaces.

I The rest of the proof is a consequence of the estimate of
Lakzian and Sormani. (Similar to what will be shown later in
the talk.)
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Simplification for the rest of today’s talk
I E = 0, χ = ψ, R(g) = 0 and

g =

(
1 +

G

2c2

n∑
i=1

ai
|x − pi |

)4

δ, ai > 0.

I Distinguish “bare mass” mi from “effective mass” ai .

I x = pi asymptotic end has ADM mass of

mi = ai +
G

2c2

∑
j 6=i

aiaj
|pi − pj |

.

I m 6=
∑
i

mi . Instead, we have interaction energy

mc2 −
∑
i

mic
2 ≈ −G

∑
i<j

mimj

|pi − pj |
+ O

(
1

|pi − pj |2

)
.
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Discretizing a continuous distribution of “stuff”

I Consider a function A(x) supported in a box V ; model for a
continuous distribution of “stuff”.

I Subdivide the box V into little boxes of size 1
n ; place an

individual particle of appropriate “size”/“mass”

ai = A(pi )
1
n3

into the center pi of each subdivision.

I Consider the corresponding Brill-Lindquist (vacuum) metric:(
1 +

G

2c2

∑ ai
|x − pi |

)4

δ.

I Investigate what happens in the limit as n→∞. Dust?
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Dust?

I As n→∞:

1 +
G

2c2

∑ ai
|x − pi |

→ 1 +
G

2c2

∫
p

A(p)

|x − p|
dvolR3︸ ︷︷ ︸

θ(x)

I Naively: (
1 +

G

2c2

∑ ai
|x − pi |

)4

δ −→ θ(x)4δ.

I The metric gA(x) = θ(x)4δ satisfies

R(gA) =
16πG

c2
Aθ−5︸ ︷︷ ︸
%

... Dust?
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Why naive?

gn :=

(
1 +

G

2c2

∑ ai
|x − pi |

)4

δ looks something like so:
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Locating the “canonical” minimal surfaces

Theorem
(I.S, 2015/6) Let A(x) ≥ 0 be a smooth function, compactly
supported in a box V . There exists a constant C and a natural
number n0 such that for all n ≥ n0 and all center points q of a
(1/n)-box in the subdivision of V with A(q) 6= 0 the metric gn has
a minimal surface in the region(

G

2c2
θ(q)−1 − C

n

)
· A(q)

n3
≤ |x − q| ≤

(
G

2c2
θ(q)−1 +

C

n

)
· A(q)

n3
.

......

r ≈ G

2c2
θ(q)−1A(q)

n3
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Regarding the proof

I Zoom in / blow things up at q; do so at the rate of A(q)/n3.

I If n� 1 (uniformly in q) the blown up metric is
approximately equal to the Schwarzschild metric:(

θ(q) +
G

2c2
· 1

|u|

)4

δ =

(
1 +

G

2c2
· θ(q)−1

|u|

)4

θ(q)4δ,

I Have precise information about fall-off rates.

I Do an Implicit-Function-Theorem-type-argument to see that
the blown up metric has a minimal surface at about

|u| =
G

2c2
θ(q)−1; then rescale back.
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Cutting at “canonical” minimal surfaces: (Mn, gn)

|x | → ∞

I The total Euclidean volume of “cut-outs” is on the order of
n3 · ( 1

n3 )3 ∼ 1
n6 ; serves as a hint that some kind of limit of

(Mn, gn) as n→∞ is possible.

I Warning: the above need not be outermost minimal from the
standpoint of |x | → ∞.
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Our theorem

Theorem
(C. Sormani - I.S, 2016) If R is sufficiently large then
M1,n = Bδ(p0,R) ∩Mn equipped with the metric

gn =

(
1 +

G

2c2

∑ ai
|x − pi |

)4

δ

converges in the intrinsic flat sense to M2 = Bδ(p0,R) equipped
with

gA =

(
1 +

G

2c2

∫
p

A(p)

|x − p|

)4

δ.
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Intrinsic flat distance: brief reminder

(M1, g1) and (M2, g2) with g1 ≈ g2 over a subset W ⊂ M1 ∩M2.

small

M1 rW

M2 rW

(W , g1)

(W , g2)

Lakzian-Sormani estimate on dF (M1,M2):

Volg1(M1 \W ) + Volg2(M2 \W )

+“small”
(
Volg1(W ) + Volg2(W ) + Volg1(∂W ) + Volg2(∂W )

)
.
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About the proof; part 1

I To apply Lakzian-Sormani we need Wn on which gn ≈ gA;

Mn

Wn

I Wn = Bδ(0,R) r
(
∪iBδ(pi ,A(pi )

1
n2 )
)
;

I Recall that the “canonical” minimal surface is located
more-or-less on the order of A(pi )

1
n3 ;

I ‖gn − gA‖L∞(Wn) = O( 1
n ).
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About the proof; part 2

I gn and gA are bounded by a uniform multiple of δ on
M1,n ⊆ M2;

I By Lakzian-Sormani dF (M1,n,M2) is controlled by

Volδ(M2 \Wn) + (
√
λnR + R√

n
)︸ ︷︷ ︸

“small”

(
Volδ(Wn) + Volδ(∂Wn)

)

I Need:
I Smallness of Volδ(M2 \Wn);

I Smallness of λn;

I Boundedness of Volδ(Wn) + Volδ(∂Wn).
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About the proof; part 3

x

y
Wn

M1,n

M2

I λn = sup
x ,y∈Wn

|dM1,n(x , y)− dM2(x , y)|

I Estimates:
I Volδ(M2 \Wn) = O(n3( 1

n2 )3) = O( 1
n3 );

I λn = O(R
n ) by a direct brute force computation;

I Volδ(Wn) = O(R3);

I Volδ(∂Wn) = O(R2) + O(n3( 1
n2 )2) = O(R2).
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Is “every” dust a limit of Brill-Lindquist data? (Pt 1)

I Is every compactly supported, conformally flat, asymptotically
Euclidean, time-symmetric, dust initial data a limit of
Brill-Lindquist data?

I Yes: Suppose g = θ4δ with compactly supported
R(g) = 16πG

c2 % ≥ 0. Our construction for

A = %θ5

recovers this particular g .

I The relationship A = ρθ5 comes from combining

θ = 1 + G
2c2

∫
y

A(y)
|x−y | dvolδ and R(g) = −8θ−5∆δθ =

16πG

c2
%.
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Interaction

I In some sense both Advolδ and %dvolg communicate density.

I Expression θ = 1 + G
2c2

∫
y

A(y)
|x−y | dvolδ suggests that A is

density with respect to the Euclidean metric. Naively one
might expect A = %θ6, and not A = %θ5. Discrepancy is due
to interaction energy:

I Here Advolδ = %θ−1dvolg corresponds to “effective mass
density”.

I This is to be distinguished from %dvolg which corresponds to
“bare mass density”.

I The expression

∫
%θ−1dvolg −

∫
%dvolg is the continuous

version of Brill-Lindquist formula for interaction energy.
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Is “every” dust a limit of Brill-Lindquist data? (Pt 2)

I What if somebody just prescribes a compactly supported
continuous distribution of “dust particles” on R3? Is it
realizable (as a limit of Brill-Lindquist data)?

I Not a well phrased question: everything depends on whether
you are prescribing dust using metric-dependent or
metric-independent quantities.

I Metric-dependent approach: Prescribe a scalar (density)
function %; the constraint equation states R(g) = 16πG

c2 %.

I Metric-independent approach: Prescribe a 3-form ω. The
constraint equation states R(g)dvolg = 16πG

c2 ω.
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Is “every” dust a limit of Brill-Lindquist data? (Pt 3)

These questions reduce to the questions of solvability of ....

I Metric-dependent approach: ∆δθ = −4π
G

2c2
%θ5 with θ → 1.

This problem does not have solutions when % is large enough.

(E.g. when
G

2c2

∫
y

%(y)

|x − y |
dvolδ ≥ 1.)

I Metric-independent approach: ∆δθ = −4π
G

2c2
ω0θ

−1 with

θ → 1 and ω = ω0dvolδ. Here the exponent of −1 works in
our favor!
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Is “every” dust a limit of Brill-Lindquist data? (Pt 4)

Corollary

Let ω be a compactly supported 3-form on R3. Then there is a
unique conformally flat, asymptotically Euclidean, time-symmetric
initial data gω with R(gω) dvolgω = 16πG

c2 ω. Furthermore, gω arises
as a pointed intrinsic flat limit of Brill-Lindquist data.

So roughly speaking:

I One can prescribe as much “stuff” on R3 as one might like.
However, the conformal factor will spread things apart,
increase volume and make the density of “stuff” relatively low.

I Thanks to David Maxwell for pointing us in the direction of
using ω instead of %.
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Thank you for your attention!
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