The Conformal Method Gives a Poor Parameterization of Initial Data

James Dilts Joint with Michael Holst, Tamara Kozareva and David Maxwell

UC: San Diego

July 20, 2016

イロン イロン イヨン イヨン

Outline

(Mostly Numerical) Results

3 Conclusions

< 回 > < 回 > < 回 >

э

Einstein Constraint Equations Conformal Method Solvability Results

Einstein Constraint Equations

• Given a (vacuum, 3+1) spacetime, can take a space-like slice. It must satisfy

$$R + (\mathrm{tr}K)^2 - |K|^2 = 0$$
$$\mathrm{div}K - \nabla(\mathrm{tr}K) = 0.$$

- If these are satisfied, can evolve a spacetime. (Choquet-Bruhat '52)
- Can we parameterize all initial data?

Einstein Constraint Equations Conformal Method Solvability Results

The Conformal Method

Main idea: split determined data from freely specifiable data. Given $(M^3, g, \sigma, \tau, N)$, solve

$$8\Delta\phi = R\phi + \frac{2}{3}\tau^{2}\phi^{5} - \left|\sigma + \frac{LW}{2N}\right|^{2}\phi^{-7}$$
$$\operatorname{div}\frac{LW}{2N} = \frac{2}{3}\phi^{6}d\tau$$

for (ϕ, W) . Then

$$\gamma=\phi^4 g$$

 ${\cal K}=\phi^{-2}(\sigma+LW/2N)+rac{ au}{3}\phi^4 g$

solve the Einstein constraint equations.

 τ is the mean curvature, and controls the coupling.

3

Einstein Constraint Equations Conformal Method Solvability Results

Compact Solvability Results

Table: Constant mean curvature (CMC) solvability (Isenberg '95)

	$\tau = 0, \sigma \equiv 0$	$\tau = 0, \sigma \not\equiv 0$	$ au \neq 0, \sigma \equiv 0$	$\tau \neq 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique	None	Unique
Y(g) = 0	"Constants"	None	None	Unique
Y(g) < 0	None	None	Unique	Unique

- Thus, straightforward to parameterize CMC initial data.
- Conjecture was that solvability is the same, even if not CMC.
- Small caveat: must be able to solve a prescribed scalar curvature problem if Y(g) < 0.

< ロ > < 同 > < 三 > < 三 > :

Einstein Constraint Equations Conformal Method Solvability Results

Signs of Weakness

"Near-CMC" if $d\tau$ is small compared to $\tau > 0$.

Table: Near-CMC Solvability, Conjectured Solvability

	$\tau \not\equiv 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique
Y(g) = 0	None	Unique
Y(g) < 0	Unique	Unique

- Maxwell '11: T^3 symmetric data, $Y(g) = 0, \sigma \neq 0$ for a τ that changes sign: Non-existence and Non-uniqueness .
- The-Cang '15: Y(g) > 0, σ with limited support, τ > 0, L(dτ/τ) ≤ (dτ/τ)². Non-existence and Non-uniqueness. σ ≡ 0 solutions.

< ロ > < 同 > < 回 > < 回 > .

Einstein Constraint Equations Conformal Method Solvability Results

Signs of Weakness

"Near-CMC" if $d\tau$ is small compared to $\tau > 0$.

Table: Near-CMC Solvability, Conjectured Solvability

	$ au \not\equiv 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique
Y(g) = 0	None	Unique
Y(g) < 0	Unique	Unique

- Maxwell '11: T^3 symmetric data, $Y(g) = 0, \sigma \neq 0$ for a τ that changes sign: Non-existence and Non-uniqueness .
- The-Cang '15: Y(g) > 0, σ with limited support, τ > 0, L(dτ/τ) ≤ (dτ/τ)². Non-existence and Non-uniqueness. σ ≡ 0 solutions.

Einstein Constraint Equations Conformal Method Solvability Results

Signs of Weakness

"Near-CMC" if $d\tau$ is small compared to $\tau > 0$.

Table: Near-CMC Solvability, Conjectured Solvability

	$\tau \not\equiv 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique
Y(g) = 0	None	Unique
Y(g) < 0	Unique	Unique

- Maxwell '11: T^3 symmetric data, $Y(g) = 0, \sigma \neq 0$ for a τ that changes sign: Non-existence and Non-uniqueness .
- The-Cang '15: Y(g) > 0, σ with limited support, τ > 0, L(dτ/τ) ≤ (dτ/τ)². Non-existence and Non-uniqueness. σ ≡ 0 solutions.

< ロ > < 同 > < 回 > < 回 > .

 $\begin{array}{l} \mbox{Introduction to Results} \\ S^1 \times S^2, \ S^1 \ \mbox{dependent} \ (Y(g) > 0) \\ S^1 \times S^2, \ \mbox{latitude dependent} \ (Y(g) > 0) \\ S^2 \times H^2, \ \mbox{latitude dependent} \end{array}$

Introduction to Results

Table: Conjectured Solvability

	$\tau \not\equiv 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique
Y(g) = 0	None	Unique
Y(g) < 0	Unique	Unique

Table: Observed far-from-CMC Solvability, $\tau > 0$

	$ au ot\equiv 0, \sigma \equiv 0$	$ au ot\equiv 0, \sigma ot\equiv 0$
Y(g) > 0		
Y(g) = 0		
Y(g) < 0		

э

 $\begin{array}{l} \mbox{Introduction to Results} \\ S^1 \times S^2, \ S^1 \ \mbox{dependent} \left(Y(g) > 0 \right) \\ S^1 \times S^2, \ \mbox{latitude dependent} \left(Y(g) > 0 \right) \\ S^2 \times H^2, \ \mbox{latitude dependent} \end{array}$

Introduction to Results

Table: Conjectured Solvability

	$\tau \not\equiv 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	None	Unique
Y(g) = 0	None	Unique
Y(g) < 0	Unique	Unique

Table: Observed far-from-CMC Solvability, au > 0

	$ au eq 0, \sigma \equiv 0$	$\tau \not\equiv 0, \sigma \not\equiv 0$
Y(g) > 0	Existence	Non-existence
	Non-uniqueness	Non-uniqueness
Y(g) = 0	Existence	Non-existence
	Non-uniqueness	Non-uniqueness
Y(g) < 0	Non-existence	Non-existence
	Non-uniqueness	Non-uniqueness

(日) (同) (日) (日) (日)

э

 $\begin{array}{l} \mbox{Introduction to Results} \\ S^1 \times S^2, \ S^1 \ \mbox{dependent} \left(Y(g) > 0 \right) \\ S^1 \times S^2, \ \mbox{latitude dependent} \left(Y(g) > 0 \right) \\ S^2 \times H^2, \ \mbox{latitude dependent} \end{array}$

Methodology

- Bifurcation theory attempts to describe the family of solutions as a parameter(s) change.
- AUTO is a program for exploring ODE bifurcations numerically.
- We reduced the conformal method to an ODE by symmetry, e.g. on $S^1 \times S^2$.
- Usually used $\tau = b\xi^a$, with $\xi > 0$, sup $\xi = 1$.
 - b gives size

• a gives "distance" from CMC, since $d\tau^a/\tau^a = a d\tau/\tau$.

Introduction to Results $S^1 \times S^2$, S^1 dependent (Y(g) > 0) $S^1 \times S^2$, latitude dependent (Y(g) > 0) $S^2 \times H^2$, latitude dependent

 $S^1 imes S^2$, S^1 dependent (Y(g) > 0)

- $\tau = b\xi^a$, $\xi > 0$. Unique solutions for all b and a.
- Theorem: There are no S¹ dependent solutions to the "limit equation" (which suggests existence/uniqueness is generic.)
- Also, no τ 's that satisfy The-Cang's conditions.

イロト イポト イヨト イヨト

Introduction to Results $S^1 \times S^2$, S^1 dependent (Y(g) > 0) $S^1 \times S^2$, latitude dependent (Y(g) > 0) $S^2 \times H^2$, latitude dependent

$S^1 imes S^2$, latitude dependent (Y(g) > 0)

For all $\tau = b\xi^a$ we tested, get same generic picture for "large" *a*.

- Agrees with The-Cang's results.
- However, none of his conditions seem to be necessary.

<ロ> <同> <同> < 同> < 同>

Introduction to Results $S^1 \times S^2$, S^1 dependent (Y(g) > 0) $S^1 \times S^2$, latitude dependent (Y(g) > 0) $S^2 \times H^2$, latitude dependent

$S^1 imes S^2$, latitude dependent (Y(g) > 0)

For all $\tau = b\xi^a$ we tested, get same generic existence plot.

- Why does this bend? Why does larger a allow solutions?
- Unique solutions below a horizontal line, which defines "near-CMC". Numerically related to "the" solution of the limit equation. What is this value?

 $\begin{array}{l} \mbox{Introduction to Results} \\ S^1 \times S^2, S^1 \mbox{ dependent } (Y(g) > 0) \\ S^1 \times S^2, \mbox{ latitude dependent } (Y(g) > 0) \\ S^2 \times H^2, \mbox{ latitude dependent } \end{array}$

$S^2 \times H^2$, latitude dependent

- As expected, existence and uniqueness for $S^1 imes H^2$, $au = b \xi^a$.
- Instead we look at $S^2 \times H^2$, with a compactified H^2 . Yamabe class changes as the size of S^2 changes.
- Same picture for Y(g) > 0 data.
- For $\sigma \not\equiv 0$, similar results for Y(g) = 0, Y(g) < 0 data.

 $\begin{array}{l} \mbox{Introduction to Results} \\ S^1 \times S^2, \, S^1 \mbox{ dependent } (Y(g) > 0) \\ S^1 \times S^2, \mbox{ latitude dependent } (Y(g) > 0) \\ S^2 \times H^2, \mbox{ latitude dependent} \end{array}$

$S^2 \times H^2$, latitude dependent

• Can find a fold for all Yamabe classes if $\sigma \equiv 0$.

イロト イポト イヨト イヨト

э

The Conformal Method is Complicated

Table: Observed far-from-CMC Solvability, au > 0

	$ au eq 0, \sigma \equiv 0$	$ au eq 0, \sigma eq 0$
Y(g) > 0	Existence	Non-existence
	Non-uniqueness	Non-uniqueness
Y(g) = 0	Existence	Non-existence
	Non-uniqueness	Non-uniqueness
Y(g) < 0	Non-existence	Non-existence
	Non-uniqueness	Non-uniqueness

- The conjectured solvability was very wrong for far-from-CMC data.
- If you want a simple 1-1 correspondence between specified data and initial data, the conformal method doesn't work.
- Much of this picture has not been proven analytically.

- 4 同 6 4 日 6 4 日 6

The Conformal Method is Complicated What else could we try?

Why do folds appear?

$$8\Delta\phi = R\phi + \frac{2}{3}\tau^{2}\phi^{5} - \left|\sigma + \frac{LW}{2N}\right|^{2}\phi^{-7}$$
$$\operatorname{div}\frac{LW}{2N} = \frac{2}{3}\phi^{6}d\tau$$

- $\phi^{\rm 5}$ is critical exponent from e.g. the Yamabe problem.
- τ^2 is good sign, but the *LW* term is a bad sign.
- When far-from-CMC, the bad sign apparently wins out.

Theorem (Premoselli '14)

Consider the case where τ^2 is replaced by $\frac{2}{3}\tau_0^2 - 2\Lambda < 0$, and σ by $a\sigma$. Then there is an $a_* > 0$ such that

- if $a > a_*$ there are no solutions.
- if $a = a_*$ there is exactly one solution.
- if 0 < a < a_{*} there are at least two solutions.

The Conformal Method is Complicated What else could we try?

Why do folds appear?

$$8\Delta\phi = R\phi + \frac{2}{3}\tau^{2}\phi^{5} - \left|\sigma + \frac{LW}{2N}\right|^{2}\phi^{-7}$$
$$\operatorname{div}\frac{LW}{2N} = \frac{2}{3}\phi^{6}d\tau$$

- $\phi^{\rm 5}$ is critical exponent from e.g. the Yamabe problem.
- τ^2 is good sign, but the *LW* term is a bad sign.
- When far-from-CMC, the bad sign apparently wins out.

Theorem (Premoselli '14)

Consider the case where τ^2 is replaced by $\frac{2}{3}\tau_0^2 - 2\Lambda < 0$, and σ by $a\sigma$. Then there is an $a_* > 0$ such that

- if $a > a_*$ there are no solutions.
- if $a = a_*$ there is exactly one solution.
- if $0 < a < a_*$ there are at least two solutions.

 $\mathcal{O} \land \mathcal{O}$

The Conformal Method is Complicated What else could we try?

What else could we try?

- Examine variations of the conformal method.
- Do all (maximal) spacetimes have CMC slices? No.
- Perhaps generic spacetimes have CMC slices. Or perhaps near-CMC slices?
- Maybe there are straightforward conditions required for no CMC slices? (e.g., the initial manifold doesn't allow a Yamabe non-negative metric)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you!

・ロト ・回ト ・ヨト ・ヨト

æ