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Einstein Constraint Equations

Given a (vacuum, 3+1) spacetime, can take a space-like slice.
It must satisfy

R + (trK )2 − |K |2 = 0

divK −∇(trK ) = 0.

If these are satisfied, can evolve a spacetime.
(Choquet-Bruhat ’52)

Can we parameterize all initial data?
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The Conformal Method

Main idea: split determined data from freely specifiable data.
Given (M3, g , σ, τ,N), solve

8∆φ = Rφ+
2

3
τ2φ5 −

∣∣∣∣σ +
LW

2N

∣∣∣∣2 φ−7

div
LW

2N
=

2

3
φ6dτ

for (φ,W ). Then
γ = φ4g

K = φ−2(σ + LW /2N) +
τ

3
φ4g

solve the Einstein constraint equations.
τ is the mean curvature, and controls the coupling.
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Compact Solvability Results

Table: Constant mean curvature (CMC) solvability (Isenberg ’95)

τ = 0, σ ≡ 0 τ = 0, σ 6≡ 0 τ 6= 0, σ ≡ 0 τ 6= 0, σ 6≡ 0
Y (g) > 0 None Unique None Unique
Y (g) = 0 “Constants” None None Unique
Y (g) < 0 None None Unique Unique

Thus, straightforward to parameterize CMC initial data.

Conjecture was that solvability is the same, even if not CMC.

Small caveat: must be able to solve a prescribed scalar curvature
problem if Y (g) < 0.
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Signs of Weakness

“Near-CMC” if dτ is small compared to τ > 0.

Table: Near-CMC Solvability, Conjectured Solvability

τ 6≡ 0, σ ≡ 0 τ 6≡ 0, σ 6≡ 0
Y (g) > 0 None Unique
Y (g) = 0 None Unique
Y (g) < 0 Unique Unique

Maxwell ’11: T 3 symmetric data, Y (g) = 0, σ 6≡ 0 for a τ that
changes sign: Non-existence and Non-uniqueness .

The-Cang ’15: Y (g) > 0, σ with limited support, τ > 0,
L(dτ/τ) ≤ (dτ/τ)2. Non-existence and Non-uniqueness. σ ≡ 0
solutions.
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Methodology

Bifurcation theory attempts to describe the family of solutions
as a parameter(s) change.
AUTO is a program for exploring ODE bifurcations
numerically.
We reduced the conformal method to an ODE by symmetry,
e.g. on S1 × S2.
Usually used τ = bξa, with ξ > 0, sup ξ = 1.

b gives size
a gives ”distance” from CMC, since dτ a/τ a = a dτ/τ .
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S1 × S2, S1 dependent (Y (g) > 0)

τ = bξa, ξ > 0. Unique solutions for all b and a.
Theorem: There are no S1 dependent solutions to the “limit
equation” (which suggests existence/uniqueness is generic.)
Also, no τ ’s that satisfy The-Cang’s conditions.
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S1 × S2, latitude dependent (Y (g) > 0)

For all τ = bξa we tested, get same generic picture for “large” a.

Agrees with The-Cang’s results.
However, none of his conditions seem to be necessary.
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S1 × S2, latitude dependent (Y (g) > 0)

For all τ = bξa we tested, get same generic existence plot.

Why does this bend? Why does larger a allow solutions?
Unique solutions below a horizontal line, which defines
“near-CMC”. Numerically related to “the” solution of the
limit equation. What is this value?
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S2 × H2, latitude dependent

As expected, existence and uniqueness for S1 × H2, τ = bξa.
Instead we look at S2 × H2, with a compactified H2. Yamabe
class changes as the size of S2 changes.
Same picture for Y (g) > 0 data.
For σ 6≡ 0, similar results for Y (g) = 0, Y (g) < 0 data.
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S2 × H2, latitude dependent

Can find a fold for all Yamabe classes if σ ≡ 0.
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The Conformal Method is Complicated

Table: Observed far-from-CMC Solvability, τ > 0

τ 6≡ 0, σ ≡ 0 τ 6≡ 0, σ 6≡ 0

Y (g) > 0
Existence

Non-uniqueness
Non-existence

Non-uniqueness

Y (g) = 0
Existence

Non-uniqueness
Non-existence

Non-uniqueness

Y (g) < 0
Non-existence

Non-uniqueness
Non-existence

Non-uniqueness

The conjectured solvability was very wrong for far-from-CMC data.
If you want a simple 1-1 correspondence between specified data and
initial data, the conformal method doesn’t work.
Much of this picture has not been proven analytically.
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Why do folds appear?

8∆φ = Rφ+
2

3
τ 2φ5 −

∣∣∣∣σ +
LW

2N

∣∣∣∣2 φ−7

div
LW

2N
=

2

3
φ6dτ

φ5 is critical exponent from e.g. the Yamabe problem.
τ 2 is good sign, but the LW term is a bad sign.
When far-from-CMC, the bad sign apparently wins out.

Theorem (Premoselli ’14)

Consider the case where τ 2 is replaced by 2
3τ

2
0 − 2Λ < 0, and σ by aσ.

Then there is an a∗ > 0 such that

if a > a∗ there are no solutions.

if a = a∗ there is exactly one solution.

if 0 < a < a∗ there are at least two solutions.
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What else could we try?

Examine variations of the conformal method.
Do all (maximal) spacetimes have CMC slices? No.
Perhaps generic spacetimes have CMC slices. Or perhaps
near-CMC slices?
Maybe there are straightforward conditions required for no
CMC slices? (e.g., the initial manifold doesn’t allow a Yamabe
non-negative metric)
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Thank you!
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