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Outermost apparent horizons

(Mn, g) asymptotically Euclidean Riemannian manifold.

A bounding hypersurface is outer trapped if mean curvature H < 0 in
direction of the asymptotically euclidean end.
A domain is a trapped set if its boundary is outer trapped.
The trapped region T is the union of all trapped sets.
The outermost apparent horizon is the boundary of the trapped region.

Theorem. (Eichmair and others) Assume n ≤ 7. If T 6= ∅ then
(Mn, g) has an outermost apparent horizon Σ which is

a smooth stable minimal hypersurface,
outer area minimizing.
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Positive scalar curvature

Theorem. (Hawking, Galloway-Schoen, Galloway) An outermost
apparent horizon has a metric of positive scalar curvature.
Is existence of a PSC metric only obstruction for a bounding manifold
to be an outermost apparent horizon?
Examples:

Emparan-Reall Black rings, Black Saturn, etc...,
Schwartz Sp × Sq.

Construction of PSC metrics on compact manifolds:
Schoen-Yau, Gromov-Lawson: codim ≥ 3 surgery,
Carr: “tubes” around codim ≥ 3 embedded cell complexes.
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Constructing examples

S ⊂ Rn smooth submanifold, dim(S) = m, ε > 0,

Uε(x) := 1 + εn−m−2
∫
S
|x − y |−(n−2) dy .

Riemannian metric on Rn \ S

gε := U4/(n−2)
ε δ,

where δ is the Euclidean metric.
∆Uε = 0 ⇒ (Rn \ S , gε) is scalar flat.
U → 1 at infinity ⇒ (Rn \ S , gε) is asymptotically Euclidean.
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Theorem

Theorem (D.-Larsson)
Let p ≥ 1 and q ≥ 2. Suppose that n = p + q ≤ 7. Let

S ⊂ Rp × {0} ⊂ Rp × Rq = Rn.

be a smooth, embedded, compact submanifold of dimension m < p.
For small ε > 0 it holds that (Rn \ S , gε) has an outermost apparent
horizon Σε, which is diffeomorphic to a tube around S .

Works also if S has components of different dimensions.
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Proof: rescaling and localization

For (x , ε) ∈ Rn × R+ define ϕx ,ε : TxRn → Rn

ϕx ,ε(ζ) := expδx(εζ) = “x + εζ”

If x ∈ S and ε→ 0 then

εγ−m
∫
S
|ϕx ,ε(ζ)− y |−γ dy →

∫
TxS
|ζ − η|−γ dη

and
ε−2(ϕx ,ε)

∗(gε)→ U4/(n−2)
∞ δ

where
U∞(ζ) := 1 +

∫
TxS
|ζ − η|−(n−2) dη.
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Proof: inner bound

Proposition. ∃Cinner so that the tubular hypersurface Tub(S ,Cinnerε) is
outer trapped in (Rn \ S , gε).

Hδ
Tub(S ,Cε) = (n −m − 1)(Cε)−1 + O(1)

Hgε
Tub(S,Cε) = U−2/(n−2)

ε

(
Hδ

Tub(S ,Cε) + 2
n − 1
n − 2

d(lnUε)(ν)

)

⇒ horizon Σε in (Rn \ S , gε) outside Tub(S ,Cinnerε).

Mattias Dahl (KTH - Stockholm) Outermost apparent horizons July 2016 7 / 15



Proof: the horizon after symmetry

SO(q)-symmetry of (Rp × Rq, gε) ⇒ Σε has quotient Σ̃ε in Rp × R+.

Height function z = projection on R+.

Hgε
Σ = U−2/(n−2)

ε

(
(q − 1)

dz(ν)

z
+ Hδ

Σ̃
+ 2

n − 1
n − 2

d(lnUε)(ν)

)
⇒ equation for Σ̃:

(q − 1)
dz(ν̃)

z
+ Hδ

Σ̃
+ 2

n − 1
n − 2

d(lnUε)(ν̃) = 0.
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Proof: upper bound

Proposition. ∃Cupper so that z(x) < Cupperε for x ∈ Σε.

Proof: evaluate

(q − 1)
dz(ν̃)

z
+ Hδ

Σ̃
+ 2

n − 1
n − 2

d(lnUε)(ν̃) = 0.

at maximum of z .
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Proof: sideways bound

Construct surfaces graph(Wa) rotationally symmetric in Rp around
x0 ∈ Rp solving

β
dz(ν)

z
+ Hδ

graph(Wa) = 0,

with minimum at height a above x0.
Wa(x) := wa(|x − x0|) for wa satisfying

ẅa(t)

1 + (ẇa(t))2 =
β

wa(t)
− ẇa(t)

t
,

wa,δ(0) = a, ẇa,δ(0) = 0.

Regularize ODE ⇒ existence and properties of solutions wa.

Mattias Dahl (KTH - Stockholm) Outermost apparent horizons July 2016 10 / 15



Proof: sideways bound (continued)

Contradiction if graph(Wa) tangent to Σε far from S .

Proposition. ∃Cside so that the the horizontal distance from Σε to S
is at most Csideε.
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Proof: convergence

Bounds scaling ∼ ε.

Study convergence of rescaled Σε. For εk → 0 and x ∈ S set

hk := ε−2
k (ϕx ,εk )∗ (gεk )→ h∞ := U4/(n−2)

∞ δ

and
Γk := (ϕx ,εk )−1 (Σεk ).
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Proof: convergence (continued)

Theorem. (Schoen-Simon, Wickramasekera) n ≤ 7, Γk smooth stable
minimal surface for metric hk ,

uniform area bound,
all intersect a compact set,

⇒ subsequence converges smoothly to Γ∞ stable minimal for h∞.
Outward area minimizing property ⇒ uniform area bound.

Vol(Γk ∩ Ω) ≤ Vol(∂Ω)
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Proof: identifying the limit

In the metric h∞ we have foliation of TxRn \ TxS by CMC cylinders
around TxS .
Maximum principle argument ⇒ Γ∞ is the unique zero mean
curvature cylinder.
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Proof: identifying the limit (continued)

Γk → Γ∞ smooth convergence with multiplicities ⇒ Γk finite number
of graphs over the limit.

Outward area minimizing ⇒ only one graph over Γ∞ = cylinder
around TxS .
Patching ⇒ Σεk diffeomorphic to tube around S .
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