Constructions of outermost apparent horizons with non-trivial topology

Mattias Dahl

Institutionen för Matematik, Kungl Tekniska Högskolan, Stockholm

BIRS workshop "Geometric Analysis and General Relativity" 16w5054, July 17 to July 22, 2016.

> Joint work with Eric Larsson. http://arxiv.org/abs/1606.08418

- (M^n, g) asymptotically Euclidean Riemannian manifold.
 - A bounding hypersurface is *outer trapped* if mean curvature H < 0 in direction of the asymptotically euclidean end.
 - A domain is a *trapped set* if its boundary is outer trapped.
 - The trapped region ${\mathcal T}$ is the union of all trapped sets.
 - The *outermost apparent horizon* is the boundary of the trapped region.
- **Theorem.** (Eichmair and others) Assume $n \leq 7$. If $\mathcal{T} \neq \emptyset$ then (M^n, g) has an outermost apparent horizon Σ which is
 - a smooth stable minimal hypersurface,
 - outer area minimizing.

- **Theorem.** (Hawking, Galloway-Schoen, Galloway) An outermost apparent horizon has a metric of positive scalar curvature.
- Is existence of a PSC metric only obstruction for a bounding manifold to be an outermost apparent horizon?
- Examples:
 - Emparan-Reall Black rings, Black Saturn, etc...,
 - Schwartz $S^p \times S^q$.
- Construction of PSC metrics on compact manifolds:
 - Schoen-Yau, Gromov-Lawson: codim \geq 3 surgery,
 - Carr: "tubes" around codim \geq 3 embedded cell complexes.

• $S \subset \mathbb{R}^n$ smooth submanifold, dim(S) = m, $\epsilon > 0$,

$$U_{\epsilon}(x) \coloneqq 1 + \epsilon^{n-m-2} \int_{S} |x-y|^{-(n-2)} dy.$$

• Riemannian metric on $\mathbb{R}^n \setminus S$

$$g_{\epsilon} := U_{\epsilon}^{4/(n-2)}\delta,$$

where δ is the Euclidean metric.

- $\Delta U_{\epsilon} = 0 \Rightarrow (\mathbb{R}^n \setminus S, g_{\epsilon})$ is scalar flat.
- $U \to 1$ at infinity $\Rightarrow (\mathbb{R}^n \setminus S, g_{\epsilon})$ is asymptotically Euclidean.

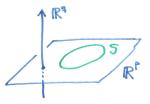
Theorem

Theorem (D.-Larsson)

Let $p \ge 1$ and $q \ge 2$. Suppose that $n = p + q \le 7$. Let

$$S \subset \mathbb{R}^p \times \{0\} \subset \mathbb{R}^p \times \mathbb{R}^q = \mathbb{R}^n.$$

be a smooth, embedded, compact submanifold of dimension m < p. For small $\epsilon > 0$ it holds that $(\mathbb{R}^n \setminus S, g_{\epsilon})$ has an outermost apparent horizon Σ_{ϵ} , which is diffeomorphic to a tube around S.



Works also if S has components of different dimensions,

Mattias Dahl (KTH - Stockholm)

Outermost apparent horizons

Proof: rescaling and localization

For
$$(x, \epsilon) \in \mathbb{R}^n \times \mathbb{R}^+$$
 define $\varphi_{x,\epsilon} \colon T_x \mathbb{R}^n \to \mathbb{R}^n$
 $\varphi_{x,\epsilon}(\zeta) \coloneqq \exp_x^{\delta}(\epsilon \zeta) = "x + \epsilon \zeta"$

If $x \in S$ and $\epsilon \to 0$ then

$$\epsilon^{\gamma-m} \int_{\mathcal{S}} |\varphi_{\mathsf{x},\epsilon}(\zeta) - \mathsf{y}|^{-\gamma} \, d\mathsf{y} \to \int_{\mathcal{T}_\mathsf{x}\mathcal{S}} |\zeta - \eta|^{-\gamma} \, d\eta$$

$$\begin{array}{c} T_{x} \mathbb{R}^{n} \\ \hline & & \\ & &$$

and

$$\epsilon^{-2}(\varphi_{\mathsf{x},\epsilon})^*(g_\epsilon) \to U^{4/(n-2)}_{\infty}\delta$$

where

$$U_\infty(\zeta) \coloneqq 1 + \int_{\mathcal{T}_{\mathsf{x}} \mathsf{S}} |\zeta - \eta|^{-(n-2)} \, d\eta.$$

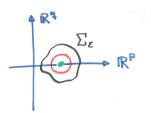
T_xS S

Proof: inner bound

Proposition. $\exists C_{\text{inner}}$ so that the tubular hypersurface $\text{Tub}(S, C_{\text{inner}}\epsilon)$ is outer trapped in $(\mathbb{R}^n \setminus S, g_{\epsilon})$.

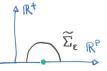
$$H^{\delta}_{\mathsf{Tub}(S,C\epsilon)} = (n-m-1)(C\epsilon)^{-1} + O(1)$$
$$H^{g_{\epsilon}}_{\mathsf{Tub}(S,C\epsilon)} = U^{-2/(n-2)}_{\epsilon} \left(H^{\delta}_{\mathsf{Tub}(S,C\epsilon)} + 2\frac{n-1}{n-2}d(\ln U_{\epsilon})(\nu) \right)$$

 $\Rightarrow \text{ horizon } \Sigma_{\epsilon} \text{ in } (\mathbb{R}^n \setminus S, g_{\epsilon}) \text{ outside } \text{Tub}(S, C_{\text{inner}} \epsilon).$



Proof: the horizon after symmetry

 $\mathsf{SO}(q)$ -symmetry of $(\mathbb{R}^p \times \mathbb{R}^q, g_\epsilon) \Rightarrow \Sigma_\epsilon$ has quotient $\tilde{\Sigma}_\epsilon$ in $\mathbb{R}^p \times \mathbb{R}^+$.



Height function z = projection on \mathbb{R}^+ .

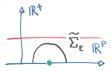
$$H^{g_{\epsilon}}_{\Sigma} = U^{-2/(n-2)}_{\epsilon} \left((q-1) \frac{dz(\nu)}{z} + H^{\delta}_{\tilde{\Sigma}} + 2 \frac{n-1}{n-2} d(\ln U_{\epsilon})(\nu) \right)$$

 \Rightarrow equation for $\tilde{\Sigma}$:

$$(q-1)rac{dz(ilde{
u})}{z}+H^{\delta}_{ ilde{\Sigma}}+2rac{n-1}{n-2}d(\ln U_{\epsilon})(ilde{
u})=0.$$

Proof: upper bound

Proposition. $\exists C_{upper} \text{ so that } z(x) < C_{upper} \epsilon \text{ for } x \in \Sigma_{\epsilon}.$



Proof: evaluate

$$(q-1)rac{dz(ilde{
u})}{z}+H^{\delta}_{ ilde{\Sigma}}+2rac{n-1}{n-2}d(\ln U_{\epsilon})(ilde{
u})=0.$$

at maximum of z.

• Construct surfaces graph(W_a) rotationally symmetric in \mathbb{R}^p around $x_0 \in \mathbb{R}^p$ solving

$$eta rac{dz(
u)}{z} + H^{\delta}_{ ext{graph}(W_{a})} = 0,$$

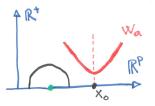
with minimum at height a above x_0 .

• $W_a(x) \coloneqq w_a(|x-x_0|)$ for w_a satisfying

$$\begin{cases} \frac{\ddot{w}_{a}(t)}{1+(\dot{w}_{a}(t))^{2}} = \frac{\beta}{w_{a}(t)} - \frac{\dot{w}_{a}(t)}{t},\\ w_{a,\delta}(0) = a, \quad \dot{w}_{a,\delta}(0) = 0. \end{cases}$$

• Regularize ODE \Rightarrow existence and properties of solutions w_a .

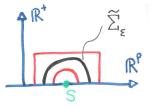
• Contradiction if graph(W_a) tangent to Σ_{ϵ} far from S.



Proposition. ∃C_{side} so that the horizontal distance from Σ_ε to S is at most C_{side}ε.

Proof: convergence

• Bounds scaling $\sim \epsilon$.



• Study convergence of rescaled Σ_{ϵ} . For $\epsilon_k o 0$ and $x \in S$ set

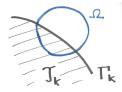
$$h_k \coloneqq \epsilon_k^{-2} \left(\varphi_{\mathsf{x},\epsilon_k}
ight)^* \left(\mathsf{g}_{\epsilon_k}
ight) o h_\infty \coloneqq U_\infty^{4/(n-2)} \delta$$

and

$$\Gamma_k \coloneqq (\varphi_{x,\epsilon_k})^{-1} (\Sigma_{\epsilon_k}).$$

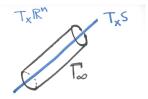
Proof: convergence (continued)

- Theorem. (Schoen-Simon, Wickramasekera) n ≤ 7, Γ_k smooth stable minimal surface for metric h_k,
 - uniform area bound,
 - all intersect a compact set,
 - \Rightarrow subsequence converges smoothly to Γ_{∞} stable minimal for h_{∞} .
- Outward area minimizing property \Rightarrow uniform area bound.



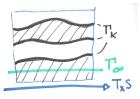
$$\mathsf{Vol}(\mathsf{\Gamma}_k \cap \Omega) \leq \mathsf{Vol}(\partial \Omega)$$

- In the metric h_{∞} we have foliation of $T_x \mathbb{R}^n \setminus T_x S$ by CMC cylinders around $T_x S$.
- Maximum principle argument $\Rightarrow \Gamma_\infty$ is the unique zero mean curvature cylinder.



Proof: identifying the limit (continued)

• $\Gamma_k \to \Gamma_\infty$ smooth convergence with multiplicities $\Rightarrow \Gamma_k$ finite number of graphs over the limit.



- Outward area minimizing \Rightarrow only one graph over $\Gamma_{\infty} =$ cylinder around $T_x S$.
- Patching $\Rightarrow \Sigma_{\epsilon_k}$ diffeomorphic to tube around *S*.