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Introduction The conformal constraint equations

The conformal method

One of most efficient methods to find solutions to the Einstein constraint
equations is the conformal method developed by Lichnerowicz [Lic44] and
Choquet-Bruhat–York [CBY80].

We specify on a given compact Riemannian manifold (M.g) of dimension n ≥ 3 :
a mean curvature τ (a smooth function) and a transverse-traceless tensor σ (i.e. a
symmetric, trace-free, divergence-free (0, 2)-tensor). Then we look for ϕ and W
satisfying

4(n− 1)

n− 2
∆ϕ+ Scalϕ = −

n− 1

n
τ2ϕN−1 + |σ + LW |2 ϕ−N−1 (1a)

−
1

2
L∗LW =

n− 1

n
ϕNdτ. (1b)

Here N = 2n/(n− 2) and L is the conformal Killing operator defined by

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij .

These coupled equations are called the conformal constraint equations.

If (ϕ,W ) is a solution to (1),
(
M,ϕN−2g, τnϕ

N−2g + ϕ−2 (σ + LM)
)

satisfies the
Einstein constraint equations.

Problem : The study of solutions to the conformal constraint equations (1)
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Introduction The conformal constraint equations

The conformal method

One of most efficient methods to find solutions to the Einstein constraint
equations is the conformal method developed by Lichnerowicz [Lic44] and
Choquet-Bruhat–York [CBY80].

We specify on a given compact Riemannian manifold (M.g) of dimension n ≥ 3 :
a mean curvature τ (a smooth function) and a transverse-traceless tensor σ (i.e. a
symmetric, trace-free, divergence-free (0, 2)-tensor). Then we look for ϕ and W
satisfying

4(n− 1)

n− 2
∆ϕ+ Scalϕ = −

n− 1

n
τ2ϕN−1 + |σ + LW |2 ϕ−N−1 (1a)

−
1

2
L∗LW =

n− 1

n
ϕNdτ. (1b)

Here N = 2n/(n− 2) and L is the conformal Killing operator defined by

LWij = ∇iWj +∇jWi −
2

n
∇kWkgij .

These coupled equations are called the conformal constraint equations.

If (ϕ,W ) is a solution to (1),
(
M,ϕN−2g, τnϕ

N−2g + ϕ−2 (σ + LM)
)

satisfies the
Einstein constraint equations.

Problem : The study of solutions to the conformal constraint equations (1)

BIRS Workshop: Geometric Analysis and General Relativity Université François Rabelais de Tours 20 July 2016 4 / 14
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Introduction The conformal constraint equations

The study of the conformal constraint equations

The complete achievements :

([Ise95]) The CMC case, i.e. when τ is constant,

([IM96]) The near-CMC case, i.e. when dτ/τ is small.

The largely unanswered questions :

Existence of solutions to the conformal constraint equations with freely
specified mean curvature τ (the far-from-CMC case)

Nonexistence or nonuniqueness of the solution(s).

We will summarize recent results on the next slide.

BIRS Workshop: Geometric Analysis and General Relativity Université François Rabelais de Tours 20 July 2016 5 / 14
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Recent Results In the Viewpoint of Fixed Point Theorems

Construct a continuous compact mapping

Let T : C0 −→ C0 be defined as follows

ϕ W ψ,
Vector eq. Lichnerowicz eq.

T

where

4(n− 1)

n− 2
∆ψ + Scalψ = −

n− 1

n
τ2ψN−1 + |σ + LW |2 ψ−N−1 [Lichnerowicz Eq]

−
1

2
L∗LW =

n− 1

n
ϕNdτ. [Vector Eq]

Proposition 2.1

T is a continuous compact mapping.
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Recent Results In the Viewpoint of Fixed Point Theorems

Recent Results and Related Questions

Applying Schauder’s fixed point theorem to T , Holst-Nagy-Tsogtgerel in
[HNT08] show that for a given (M, g) with the positive Yamabe invariant

||σ||L∞ small =⇒ (1) has a solution.

Question : How to improve the smallness assumption on σ ?
Applying Schaefer’s fixed point theorem to T

Case 1 : T has a

fixed point.

Case 2 : xn = tnT (tn, xn) and

||xn|| → ∞

Question

[DGH12] : If

τ has constant

sign

(1) has a solution.
∃α ∈ (0, 1] and V 6= 0 s.t.

−
1

2
L
∗
LV = α

√
n− 1

n
|LV |

dτ

τ
(LMα)

Is it still true

for arbitrary

τ ?

[Ngu] : There

exists (g, τ, σ)

such that

(1) has a solution

((((((((hhhhhhhh(1) has a solution

∃{tn} converging to 0 s.t. (1)

associated to (g, tnτ, σ) has

at least two solutions.

Is it still true

for all t small

enough ?

BIRS Workshop: Geometric Analysis and General Relativity Université François Rabelais de Tours 20 July 2016 7 / 14
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Recent Results In the Viewpoint of Fixed Point Theorems

Recent Results and Related Questions

Applying Schauder’s fixed point theorem to T , Holst-Nagy-Tsogtgerel in
[HNT08] show that for a given (M, g) with the positive Yamabe invariant

||σ||L∞ small =⇒ (1) has a solution.

Question : How to improve the smallness assumption on σ ?

Applying Schaefer’s fixed point theorem to T

Case 1 : T has a

fixed point.

Case 2 : xn = tnT (tn, xn) and

||xn|| → ∞

Question

[DGH12] : If

τ has constant

sign

(1) has a solution.
∃α ∈ (0, 1] and V 6= 0 s.t.

−
1

2
L
∗
LV = α

√
n− 1

n
|LV |

dτ

τ
(LMα)

Is it still true

for arbitrary

τ ?

[Ngu] : There

exists (g, τ, σ)

such that

(1) has a solution

((((((((hhhhhhhh(1) has a solution

∃{tn} converging to 0 s.t. (1)

associated to (g, tnτ, σ) has

at least two solutions.

Is it still true

for all t small

enough ?

BIRS Workshop: Geometric Analysis and General Relativity Université François Rabelais de Tours 20 July 2016 7 / 14
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Part 2.

The half-continuity method
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The Half-Continuity Method Foundation and Technique

Idea

Recall that

Theorem 3.1 (Schaefer’s fixed point theorem)

T : [0, 1]×X −→ X is a continuous compact mapping. At least one of the
following assertions is true

(i) ∃x∗ ∈ X : x∗ = T (1, x∗),

(ii) There exists (tn, xn) such that xn = tnT (tn, xn) and ||xn|| → ∞.

A question arising from Schaefer’s fixed point theorem

Question 3.2

Can we replace the assertion (ii) by the following one :

(ii)’ There exists (tn, xn) such that xn = tnT (tn, xn) and xn satisfies a certain
expected property (CEP(xn) for short).

We will provide the so-called half-continuity method for addressing the question
above.
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The Half-Continuity Method Foundation and Technique

Half-Continuity

Definition 3.3

A map T : C −→ X is said to be half-continuous if for each x ∈ C with
x 6= T (x) there exists p ∈ X∗ and a neighborhood W of x in C such that

〈p, T (y)− y〉 > 0

for all y ∈W with y 6= T (y).

Remark 3.4 ([TK10], Proposition 3.2)

Every continuous map T : C → X is half-continuous.

The following is our foundation.

Theorem 3.5 ([TK10] or [Bic06])

Let C be a nonempty closed convex subset of a Banach space X. If T : C → C is
half-continuous and T (C) is precompact, then T has a fixed point.
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The Half-Continuity Method Foundation and Technique

Technique

Suppose that

CEP(x) is implied by
←−−−−−−−−

F (t, x) = 0,

where the function F : [0, 1]×X −→ R satisfies the following conditions :

(a) F is continuous,

(b) F (0, 0) < 0,

(c) sup
{
||T (t, x)||L∞ : F (t, x) ≤ 0

}
≤ C.

We will address the question as follows.
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The Half-Continuity Method Application to the Conformal Equations

Improving the Recent Results

Improvement 1 :

Theorem 3.6 (Holst–Nagy–Tsogtgerel [HNT09])

For a given (M, g) with the positive Yamabe invariant

||σ||L∞ small =⇒ (1) has a solution.

Question 1 : Is the smallness assumption on σ improved with L2-norm ?

Answer : YES, it is. We obtain that for a given (M, g) with the positive Yamabe
invariant

||σ||L2 small =⇒ (1) has a solution.
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The Half-Continuity Method Application to the Conformal Equations

Improving the Recent Results

Improvement 2 :

Theorem 3.7 (Dahl–Gicquaud–Humbert [DGH12]){
|τ | > 0
(LMα) has no non-zero solution

=⇒ (1) has a solution.

Question 2 : Is Theorem 3.7 still true for an arbitrary τ ?

Answer : YES.

Improvement 3 : (joint work with David Maxwell)

Theorem 3.8 (N [Ngu])

For a given (M, g) with the positive Yamabe invariant and α large :{
∃c > 0 :

∣∣L (
dτ
τ

)∣∣ ≤ c ∣∣ dτ
τ

∣∣2
|τ | > 0

=⇒
{
∃{tn} converging to 0,
(1) w.r.t. (g, tnτ

α, σ) has two solutions.

Question 3 : Can Theorem 3.8 be extended to all t small enough ?

Answer : YES.
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(1) w.r.t. (g, tnτ

α, σ) has two solutions.

Question 3 : Can Theorem 3.8 be extended to all t small enough ?

Answer : YES.
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Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations
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