Weakly asymptotically hyperbolic solutions to the Einstein constraint equations

> Paul T. Allen Lewis & Clark College

> > BIRS, July 2016

- ▶ joint with James Isenberg, John M. Lee, Iva Stavrov Allen
- \blacktriangleright arXiv: 1506.03399, 1506.06090; to appear in CAG, CQG

Motivation

Minkowski spacetime

► Conformal structure:

• Foliate by hyperboloids M:

$$g = \breve{g}, \quad K = -\breve{g}$$

Asymptotically flat/simple spacetime

- Conformal structure asymptotically Minkowskian
- \blacktriangleright CMC hyperboloidal slice M:
 - ▶ At conformal boundary

 $\operatorname{Riem}[g] \to -\operatorname{id}, \quad K \to -g$

- $\operatorname{tr}_g K = -3$
- $\begin{array}{l} \bullet \quad \text{Shear-free condition} \\ \rightarrow \text{ necessary for regular } \mathcal{I}^+ \end{array}$

Goal: Construct CMC hyperboloidal data

Data $(\boldsymbol{g},\boldsymbol{K})$ on \boldsymbol{M} satisfies

- (CMC) extrinsic curvature $K = -g + \Sigma$ with $\operatorname{tr}_g \Sigma = 0$
- ▶ (H) metric g is "asymptotically hyperbolic" and Σ decays
- Constraint equations are satisfied

$$\mathbf{R}[g] - |\Sigma|_g^2 + 6 = 0 \qquad \operatorname{div}_g \Sigma = 0$$

▶ (SF) "Shear-free condition" holds

First work:

- ▶ [ACF] Andersson, Chruściel, Friedrich: $\Sigma \equiv 0$, regularity
- \blacktriangleright [AC1], [AC2] Andersson, Chruściel: $\Sigma\not\equiv 0,$ (SF) necessary Main issues:
 - ▶ regularity at conformal boundary
 - ensuring shear-free condition

Analysis in asymptotically hyperbolic setting

• $M = \operatorname{int}(\overline{M})$

- defining function $\rho \in C^{\infty}(\overline{M})$
- ► weighted spaces $C^{k,\alpha}_{\delta}(M) = \rho^{\delta} C^{k,\alpha}(M)$

Metric g is C^k asymptotically hyperbolic if

- conformally compact: $\overline{g} := \rho^2 g \in C^k(\overline{M})$
- $\blacktriangleright \ |d\rho|_{\overline{g}} \to 1 \text{ at } \partial M \quad \leftrightarrow \quad \text{Riem}[g] \to -\text{id}$

Scalar equation $\Delta u = f$

- $\Delta u = \rho \partial_{\rho} (\rho \partial_{\rho} 2) u + \rho^2 \, \Delta u + \dots$
- ▶ $\Delta : C_{\delta}^{k+2,\alpha} \to C_{\delta}^{k,\alpha}$ Fredholm/invertible for $0 < \delta < 2$
- ▶ resonances at ρ^0 and $\rho^2 \rightsquigarrow \log$ terms in formal expansions

Boundary regularity for Yamabe problem

[ACF] study $\mathbb{R}[\phi^4 g] = -6$ with $\rho^2 g \in C^{\infty}(\overline{M})$ using

$$\Delta_g \phi = \frac{1}{8} \operatorname{R}[g] \phi + \frac{3}{4} \phi^5$$

With $\phi = 1 + u$ this becomes

$$(\rho\partial_{\rho}+1)(\rho\partial_{\rho}-3)u+\cdots = \underbrace{\mathbf{R}[g]+6}_{\mathcal{O}(\rho)} + Q(u).$$

Lessons:

• solution $u \in C_1^{\infty}(M)$

 \rightsquigarrow decay of scalar curvature determines weight

• resonances at ρ^{-1} and ρ^3

 \rightsquigarrow possible that $u \in C^2(\overline{M})$, but not $C^3(\overline{M})$

 \leadsto obstruction to smoothness is "shear tensor"

Boundary regularity for CMC constraints

[AC1],[AC2] extend [ACF] analysis to CMC constraints:

- ► Use conformal method in strongly AH setting $(\rho^2 g \text{ smooth}, C^{k,\alpha} \text{ with } k \ge 2)$
- ► "Generic" solutions have polyhomogeneous formal expansions $\sum_{j,k} a_{j,k} \rho^j (\log \rho)^k$, are not smooth on \overline{M}
- ▶ Smoothness on \overline{M} requires shear-free condition:

$$\rho (\text{traceless } K) = \text{traceless Hess}_{\overline{g}}(\rho) \quad \text{along } \partial M \quad (SF)$$

▶ (SF) is necessary for spacetime develoment with regular \mathcal{I}^+

▶ "Most" solutions constructed in [AC1] do not satisfy (SF) Needed:

- ▶ a regularity class where the conformal method closes
- ▶ a way to build shear-free condition in to conformal method

CMC conformal method

Fix a metric g and tensor traceless tensor μ. Seek initial data of the form

$$\phi^4 g, \quad \Sigma = \phi^{-2}(\mu + \mathcal{D}_g W); \qquad \mathcal{D}_g W = \text{ tracefree } \mathcal{L}_W g$$

 \blacktriangleright Constraints satisfied in ϕ and W satisfy the elliptic system

$$\mathcal{D}_g^* \mathcal{D}_g W = -\operatorname{div}_g \mu$$
$$\Delta_g \phi = \frac{1}{8} \operatorname{R}[g] \phi - \frac{1}{8} |\mu + \mathcal{D}_g W|_g^2 \phi^{-7} + \frac{3}{4} \phi^5$$

- ▶ Want a regularity class of metrics that is
 - ▶ strong enough for elliptic theory and defining (SF)
 - weak enough that $g \mapsto \phi^4 \lambda$ closes
- ▶ Want a conformally invariant expression of (SF)

Regularity classes: previous work

Andersson & Chruściel [AC1]

- "... introduce a large number of function spaces, probably more than seems reasonable at first sight"
- ▶ detailed description of boundary regularity

Gicquaud & Sakovich [GS]

local Sobolev spaces

Intermediate Hölder spaces

Fix metric $\overline{h} \in C^{\infty}(\overline{M})$; associated AH metric $h = \rho^{-2}\overline{h}$ on M

► For covariant 2-tensors: $|u_{\cdot\cdot}|_{\overline{h}} = \rho^{-2} |u_{\cdot\cdot}|_h$ thus

$$u \in L^{\infty}(\overline{M}) \quad \leftrightarrow \quad u \in L^{\infty}_{2}(M) = \rho^{2} L^{\infty}(M)$$

•
$$u \in C^k(\overline{M})$$
 if $\mathcal{L}_{\overline{X}_1} \dots \mathcal{L}_{\overline{X}_l} u \in C^0(\overline{M})$ for $l \leq k$, $|\overline{X}_j|_{\overline{h}} \lesssim 1$
• $u \in C^k(M)$ if $\mathcal{L}_{X_1} \dots \mathcal{L}_{X_l} u \in C^0(M)$ for $l \leq k$, $|X_j|_h \lesssim 1$

Hybrid spaces: 2-tensor $u\in \mathscr{C}^{k,\alpha;m}(M)$ if

$$\underbrace{\mathcal{L}_{X_1}\dots\mathcal{L}_{X_p}}_{p\leq k-m}\underbrace{\mathcal{L}_{\overline{X}_1}\dots\mathcal{L}_{\overline{X}_q}}_{q\leq m} u\in C_2^{0,\alpha}(M)$$

 $\mathscr{C}^{k,\alpha;m}(M)$ is intermediate to $C^{k,\alpha}_2(M)$ and $C^{k,\alpha}(\overline{M})$

Note: These are not the V_b spaces of Melrose-Mazzeo

Weakly asymptotically hyperbolic metrics

Mantra

- "high" interior regularity
- "low" boundary regularity

Defn: g is weakly asymptotically hyperbolic of class $\mathscr{C}^{k,\alpha;1}$ if

$$\begin{array}{lll} \bullet \ \overline{g} = \rho^2 g \in \mathscr{C}^{k,\alpha;1}(M) \\ \bullet \ \overline{g} \in C_2^{k,\alpha}(M) & \longrightarrow & \overline{g} \in L^{\infty}(\overline{M}) \\ \bullet \ \mathcal{L}_{\overline{X}} \overline{g} \in C_2^{k-1,\alpha}(M) & \longrightarrow & \overline{g} \in W^{1,\infty}(\overline{M}) \subset C^{0,1}(\overline{M}) \end{array}$$

$$\bullet \ |d\rho|_{\overline{g}} = 1 \text{ along } \partial M \\ \bullet \ \operatorname{Riem}[g] \to -\operatorname{id} \end{array}$$

A—, Isenberg, Lee, Stavrov Allen

▶ Such regularity is sufficient for elliptic theory

Elliptic theory

Previous work in asymptotically hyperbolic setting

- ▶ edge calculus [Mazzeo]
- ▶ geometric approach: [Andersson], [Lee]
- ▶ all require at least C^2 conformal compactification

We adapt the geometric approach of [Lee]

- ▶ Let g weakly AH of class $\mathscr{C}^{k,\alpha;1}$
- \blacktriangleright P is a second-order geometric elliptic operator arising from g then

$$P: C^{k,\alpha}_{\delta}(M) \to C^{k-2,\alpha}_{\delta}(M)$$
$$P: W^{k,p}_{\delta}(M) \to W^{k-2,p}_{\delta}(M)$$

are Fredholm of index zero for all δ in "Fredholm range"

Elliptic theory, continued

Key ideas of proof

- ▶ Fredholm range determined by model operator \breve{P} , corresponding to hyperbolic metric.
- Interior $C^{k,\alpha}$ regularity \longrightarrow elliptic estimates, etc.
- ▶ Boundary $C^{0,1}$ regularity \longrightarrow parametrix construction

Application to constraint equations

- ▶ We can solve the elliptic system in the conformal method
- ▶ Method closes: If g is weakly AH, then $\phi^4 g$ also weakly AH.

The shear-free condition

We want to enforce

$$\rho \Sigma = \operatorname{traceless} \operatorname{Hess}_{\overline{q}} \rho \quad \text{along } \partial M. \tag{SF}$$

Two issues:

- ▶ g weakly AH of class $\mathscr{C}^{k,\alpha;1}$ only implies $\overline{g} \in C^{0,1}(\overline{M})$
- ▶ Want to enforce (SF) in conformally invariant manner

Define g weakly AH of class $\mathscr{C}^{k,\alpha;2}$ if $\overline{g} \in \mathscr{C}^{k,\alpha;2}(M)$

- ▶ $\overline{g} \in W^{2,\infty}(\overline{M}) \subset C^{1,1}(\overline{M}) \quad \rightsquigarrow (SF)$ condition defined
- ▶ solution map $g \mapsto \phi^4 g$ closes (with some work; scalar curvature)

Conformally-invariant shear-free condition

Define traceless tensor

$$\mathcal{H}_{\overline{g}}(\rho) = |d\rho|_{\overline{g}}^{6} \underbrace{\mathcal{D}_{\overline{g}}(|d\rho|_{\overline{g}}^{-2} \operatorname{grad}_{\overline{g}} \rho)}_{+\frac{1}{2}|d\rho|_{\overline{g}} \operatorname{div}_{\overline{g}}(|d\rho|_{\overline{g}} \operatorname{grad}_{\overline{g}} \rho)} (d\rho \otimes d\rho - \frac{1}{3}|d\rho|_{\overline{g}}^{2} \overline{g})$$

► Conformal covariance $\mathcal{H}_{\theta \overline{g}}(\rho) = \theta^{-2} \mathcal{H}_{\overline{g}}(\rho)$

• If g is AH of class
$$\mathscr{C}^{k,\alpha;2}$$
 then

 $\mathcal{H}_{\overline{g}}(\rho) = \text{traceless Hess}_{\overline{g}} \rho \quad \text{along } \partial M$

Build in (SF) to $\rho \Sigma = \rho \phi^{-2} (\mu + \mathcal{D}_g W)$

- Require $\mathcal{H}_{\overline{g}}(\rho)$ to be leading order term of $\rho\mu$
- ▶ solve for "correction" $\mathcal{D}_g W$ in more highly weighted space

Summary

Defined $\mathscr{C}^{k,\alpha;m}$ weakly asymptotically hyperbolic metrics

- ▶ high interior regularity; limited boundary regularity
- ▶ Fredholm theory for associated elliptic operators
- ▶ Yamabe and CMC conformal method solution maps close

In the $\mathscr{C}^{k,\alpha;2}$ weakly AH setting we can

- incorporate shear-free condition in to CMC conformal method
- construct (and indeed parametrize) CMC hyperboloidal data

References

- ▶ with James Isenberg, John M. Lee, Iva Stavrov Allen:
 - ▶ arXiv:1506.03399. Weakly asymptotically hyperbolic manifolds, to appear in CAG.
 - ▶ arXiv:1506.06090 The shear-free condition and constant-mean-curvature hyperboloidal initial data, to appear in CQG.
- Other works cited
 - ▶ [Andersson] Indiana Univ. Math. J. 42(4), 1993.
 - ▶ [AC1] Dissertationes Math. 355:100, 1996.
 - ▶ [AC2] Phys. Rev. Lett. 70(19), 1993.
 - ▶ [ACF] Comm. Math. Phys. 149(3), 1992.
 - ▶ [GS] Comm. Math. Phys. 310(3), 2012.
 - ▶ [Lee] Mem. Amer. Math. Soc. 183(864), 2006.
 - ▶ [Mazzeo] Comm. Partial Diff. Equations 16(10), 1991.