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The Gouyou-Beauchamps model



The story of a single lattice path model

Let W be the set of walks in the first
quadrant with steps:




The story of a single lattice path model

Let W be the set of walks in the first
quadrant with steps:

THEOREM
If w, is the number of walks in W of length n, then
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Let W, be the set of weighted walks

in the first quadrant with steps: |
b/a ; i

a

1/a

a/b

wt(w) = a®bt
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N EW TH EOREM Courtiel, Melczer, M., Raschel 16+
Let wy(a, b) be the number of walks in W, ;, of length n. Then

wp(a, b) ~ ...

Proof: Kernel method + Analytic Combinatorics on Several
Variables (ACSV)




GB Walks with 800 steps

Unweighted Weighted, biased out of the first quadrant




Probability version: Exit times

Unweighted model generating function

W(t) =1+ t+3t2 +6t3 +20t* +50t° + 1755 + .

Probability of staying in the quadrant after 6 steps:

wes 175




Probability version: Exit times

Weighted model generating function
1+at+(1+b+a*)t?+ (2ab+a°> +3a)t> + ...
Probability of staying in the quadrant after 3 steps:

ws(a, b) 2ab+ a%+3a

S(1,1)*  (a+al+abl+b1a)3

Inventory: S(x,y) = ax + = + & 4 %

The weightings must be central: The probability of a given walk
depends only on its length and its endpoint. We give explicit conditions
for this in our work.
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Natural Questions

wp(a, b) ~ Cp~"n%

@ How do the weights intervene?
@ What is the range of possible asymptotic behaviour?

© What affects the exponential growth p 7 the critical
exponent o?

© How do parameters like the choice of cone, starting point,
and drift affect the formula?

@ What is the best way to study this?

Our contribution

Use weighted models to understand the source and nature of
combinatorial factors.




Asymptotic enumeration formula

T H EO R E M Courtiel Melczer M. Raschel 16©

As n — oo, the number w,(a, b) of weighted GB walks of
length n, and ending anywhere while staying in

R2 , satisfies, as n — oo,

wp(a, b) =K -

o (14 o(1).

Condition 0 o
a=b=1 4 2
vb<a<b (1+ b)(a>+ b)(ab)™t 0
a<landb<1l 4 5
b>1and vVbh>a 2b+1)Vb 3/2
a>1landa>b (1+a)a! 3/2
b=a?>1 20b+1)Vb 1/2
a=b>1 (1+a)2at 1/2
a=1b<lorb=1a<1 4 3




Asymptotic enumeration formula deluxe

T H EO R E M Courtiel Melczer M. Raschel 16©

As n — oo, the number w,(a, b) of weighted GB walks of
length n, starting from (/, ) and ending anywhere while staying in
R2 , satisfies, as n — oo,

wa(a, b) = k- V(i j) - p7" 0™ (1 4 o(1)).

Condition o1 o
a=b=1 4 2
vb<a<b (1+ b)(a>+b)(ab)™t 0
a<land b<1l 4 5
b>1and vVbh>a 2b+1)Vb 3/2
a>1landa>b (1+a)a! 3/2
b=a?>1 20b+1)Vb 1/2
a=b>1 (1+a)2at 1/2

a=1b<lorb=1ax<l1 4 3



Values for the harmonic function VI7(;, )
amh=l (1) + 1)+ +2)(+2i+3)
6

Vvb<a<b:
4 (4+2i42)) p—(2+2)) ((21+j _ 1) (a1+j + 1) (a2+/+j _ b2+/+/) (az+/+j + b2+/+j) pi-1

_ (82+i+/ _ 1) (82+i+/ + 1) (alﬂ _ b1+1) (al+j + ij)) )

a<l b<l:
A+NA+NE+i+2)2+i+])) (a2 +a?b—4ab+b+1 i a?b? +a?b+4ab+b+1
BT Ga_1)F += G+ 17 :
b>1,vVb> a:
<b3+/+2f(1+f)+ (b1+f—b2+/+f) (3+i+2j)—i—1> 1 . 1
< + iy )
al bi/2+2j (Vb — a)? (Vb + a)?
a>1la>b

Q+i+j) (a7 =) bYa T+ (1+)(1—a )bl



Visualize the asymptotic formula

We can plot the different regions of the formula.

-1

Condition 0 a
a=b=1 4 2
vVb<a<b (14 b)(a®+ b)/(ab) 0
a<landb<1 4 5
b b>1andVb>a 2(b+1)/vb 3/2
a>landa>b (1+a)’/a 3/2
‘ b=a?>1 2(b+1)/Vb 1/2
a=b>1 (1+a)%a! 1/2
a=1b<1lor 4 3

b=1la<1



Visualize the asymptotic formula




Universality classes

A universality class is a family of objects with the same critical
exponent.

Condition a

a=b=1 2

vVb<a<h 0

a<land b<1 5

b b>1and Vb>a 3/2
a>landa>b 3/2

[ b=a>>1 1/2
a=b>1 1/2

a=1b<lorb=1lax<l1 3



Universality classes... as a function of the drift

The drift is the vector sum of the steps: (a—a '+ — 2,2 —

Condition a
a=b=1 2
Vb<a<hb 0
a<landb<1 5
b>1and vVb>a 3/2
a>landa>b 3/2
b=a*>>1 1/2
a=b>1 1/2
a=1b<lorb=1a<1 3



Universality classes... as a function of the drift

The drift is the vector sum of the steps: (a—a 142 -2 2 %)J

@ Is there a diagram like this
for any model?

@ Are the regions always
cones?

@ What can be proved at a
general level?




TECHNIQUE:
ANALYTIC COMBINATORICS
IN SEVERAL VARIABLES
(ACSV)



Strategy

GOAL: wp(a, b) ~ Cp~"'n™®

@ W, ,(t) as a diagonal of a rational function

P(x,y)
(1—zxyS(x Ly ))(x-1)(y—-1)

[t"]Wa(t) = [x"y"2"]

@ Express [t"|W,5(t) as a generalized Cauchy integral.
© Rescale the integral by identifying contributing critical points.
@ Apply fancy theorems to get asymptotic estimates.

Spoiler alert: The inventory of the step set S(x, y) tells almost the
whole story.



Diagonal Expressions

A: The (complete) diagonal operator

AZ <Z n)zpt .- sz) th = Z fo n(n)t".

n>0 \iezd

Bousquet-Mélou, Mishna 10; Kauers Yatchak 15, Melczer, Wilson 16

W(t) = pyz) LR 1R (- 7) (1-X) (1 —xy) (1 +x7)

1—t(x+X+xy+Xy)
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Diagonal Expressions

A: The (complete) diagonal operator

AZ <Z n)zpt .- zjf) th = Z fo n(n)t".

n>0 \iezd

Bousquet-Mélou, Mishna 10; Kauers Yatchak 15, Melczer, Wilson 16

W(t) = pyz) LR 1R (- 7) (1-X) (1 —xy) (1 +x7)

1—t(x+X+xy+Xy)

R(x,y) = yz2(y— b)(a(1X)E;ZyS( bx )(f{))bX)(aHbX)

_ 1 . R(va)
War(t) = 2555 A ((1 - x)(1 —Y))

For free: Excursion generating function

1
B = 2

“AR(x,y)



A diagonal extraction is a contour integral computation

THEOREM: Multivariate Cauchy Integral Formula
Suppose that F(x, y, t) € Q(x, y, t) is analytic at (0,0, 0) with a
power series expansion F(x,y, t) =3, .o ai.nisX"y? t5 at

the origin. Then for all n > 0,
A 1 / F(x,y, t) dxdydt
T 2w)d Jr o (xyt)” xyt

where T is a poly-disk defined by {|x| = €1, |y| = €2, |z] = €3},
for the ¢; sufficiently small.
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The exponential growth

F(x,y, z)= Za,-,j,kx"yfzk
/]\

Valid for points in the disk of convergence D

Absolute convergence = (x,y, z) € D, the sum converges...
so does subseries Y apnn(|xvz|)"

That is, AF = anst” converges for t = |xyz| when

(x,y.z) e D.

AF converges for SUP(.y.7)D |xyz|. = a bound for the radius
of convergence of AF.

Here, the bound is provably tight.

TL;DR

P = SuD(X,y,Z)G@ |XyZ|




The Critical Points
In this story, the critical points of 2{:¥:2)

Hix.y.2) satisfy

H(x,y,z) =0; Hx(x,y.2) = Hy(x,y,2), Hx(x,y,2)=H.(x,y,2)
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The Critical Points

In this story, the critical points of &&:2)

H(x.y.z)

satisfy
H(x,y,z) =0; Hx(x,y,z)=Hy(x,y,z), Hx(x.y,z)=H,(x,y,2)

For our lattice path models,
H(x,y,z) = (1 —xyzS(x Ly ) (x - 1)(y — 1)

The equations imply that a critical point is of the form

1
(X'y' XyS(X‘l.y‘1)>
where (x, y) = (xs, ¥s) satisfies

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

1
o= Sup(xyy’z)eﬁ |XyZ| = W

Punchline J




Critical points as a function of a and b

Inventory:

1
S = _— _— _
(x,y)=ax+ ~to,

Global minimum of S(x, y):

(53)

Critical point:

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Exponential growth:

1
Ixvz| = c——

= sup
P S(XSvyS)

(X,y,z)eﬁ



Critical points as a function

Inventory:

1 ax by
) = —+t—+—=
(x,y)= ax+ v by + x

Global minimum of S(x, y):

(53)

a> 17

Q@a=b=1= pl=511)=4
1

Q@ a<landb<l =
Q@a>landa>b —

of aand b
Critical point:

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Exponential growth:

1

p= sup |XyZ\:W
S1JS

(X,y,z)eﬁ

Il
N

~— ~—
|

LT o=

2(a+1)



Critical points as a function

of aand b

Inventory: Critical point:
ax by X = argmin S(x, y).
S(Xv)/)_ax‘kf‘f'w-f—afx (X5, ys) XZgl.yZI (x,¥)
Global minimum of S(x, y): Exponential growth:
1
11 p— szl = o
a' b (x,y,z)e@ (XS'yS)
a>17
Q@a=b=1= plt=511)=4
Q@ a<landb<l = p*1:5(%,%):4
@ a>landa>b = pt=5(12)=2a+1

COROLLARY

The exponential growth changes smoothly, as the evaluation of a

Laurent polynomial.




The constant and the critical exponent

T H EO R E M Hormander; Pemantle, Wilson

Suppose that the functions A(8) and ¢(0) in d variables are smooth in a
neighbourhood N of the origin and that ¢ has a critical point at 8 =0
plus some technical conditions. Then for any integer M > 0 there exist
effective constants Gy, ..., Cuy such that

o\ 92 M
/ A(8) e @) qg = <n> det(#) 2> " GenF 40 (M1
X k=0

Co = ¢(0); If A(B) vanishes to order L at the origin then (at least) the
constants C, ..., CL%J are all zero.




The constant and the critical exponent

THEOREM Hormander; Pemantle, Wilson

Suppose that the functions A(8) and ¢(0) in d variables are smooth in a
neighbourhood N of the origin and that ¢ has a critical point at 8 =0
plus some technical conditions. Then for any integer M > 0 there exist
effective constants Gy, ..., Cuy such that

o\ 92 M
/ A(8) e @) qg = <n> det(#) 2> " GenF 40 (M1
X k=0

Co = ¢(0); If A(B) vanishes to order L at the origin then (at least) the
constants C, ..., CL%J are all zero.

Rix.y) = U=l oeerse)




A WORD OR TWO ON CENTRAL
WEIGHTS



Central weights are ideal for generating functions

© 00 ©

Central weights: the weight depends only on the endpoint:
equiprobable

THM: wt((/,))) = aoaiaé

PROP: The complete generating function of a weighted
model is an algebraic substitution of the unweighted model.

The finiteness of the group of a model is unchanged by
central weights.



Generating function connections

a(x,yit Z t" Y (H af’s(w)> k2

w walk ending se8
at (k,£) with n steps

PROPOSITION

Let Qa(x,y;z) be the generating function of walks with a central

weighting as = B[]%_, a”(s and Q(x, y; z) the generating
function of unweighted walks with the same set of steps. Then

Qa(x,¥:2) = Q(arx, a2y; a0z). (1) |

COR: This generates an infinite colletion of non-D-finite models.




A Wider Picture



Context: Small step 2D lattice models

Walks with small steps in the quarter plane

Mireille Bousquet-Mélou and Marni Mishna

ABSTRACT. Let 8 C {—1,0,1}2\ {(0,0)}. We address the enumeration of
plane lattice walks with steps in 8, that start from (0,0) and remain in the
first quadrant {(i,5) : 4 > 0,5 > 0}. A priori, there are 28 models of this type,
but some are trivial. Some others are equivalent to models of walks confined
to a half-plane, and can therefore be treated systematically using the kernel
method, which leads to a generating function that is algebraic.

o T s o "
Bostan, Kauers 09
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Foire Aux Questions

What is the next (easiest) way to generalize small step walks?
length of step? dimension? ANSWER: weights. kauers, vatchak 15

Are some weights better than others?
ANSWER: Yes. Central weights are the best.

What are the generating functions for the non-D-finite models?
ANSWER: 777 Something similar in structure to a diagonal of a
D-finite function..?

What is the interaction between asymptotics and the drift of a
model? Is the connection clear? ANSWER: Rather

Efficient random generation? ANSWER: Yes Jonnson, Yeats, M. 13+;

Lumbroso, M., Ponty 16




CO n_]eCtU re Garbit, Mustafa, Raschel 16™
Suppose that 8 is a non-singular step set. Let

(Xs, ¥s) = argmin S(x, y).
x>1,y>1

Then the asymptotic growth of the number of walks in the first
quadrant is given by the following table.

o Sx(xs,ys) =0 or Sx(xs,ys) > 0 and
VS(xs.y5) =0 Sy(xs,ys) =0 Sy(xs,ys) >0
(%, y5) = (1,1) S(1,1)" n=P1/2 S(1,1)"n~1/2 S(1,1)"n0
balanced axial free

x*=lory*=1 S(xs, ys)" n—P1/2-1 min{S(xs, 1), S(1,ys)}" n=3/2  (not possible)

transitional directed
xs >1and ys > 1 S(xs, ys)"n~P171 (not possible) (not possible)
reluctant
Sxy(Xs,
c= o (X5 ) p1 = m/ arccos(—c)

o \/Sxx (Xs.,¥5) Syy (Xs.¥5)

BARELY OPEN: Prove in case of a finite orbit sum.



Drift diagrams for other models

Kreweras Gessel Tandem

OPEN: The regions are not always cones! What's the story?
(Sam)



Conclusion

Main result
Asymptotic enumeration formula for weighted
Gouyou-Beauchamps model

Implications
@ Simplified context for ACSV: good entry point?
@ Understanding of the mechanism of how drift drives asymptotics
@ New harmonic functions

@ Discovery of universality classes

Probably true

The location of the critical point of the INVENTORY defines the
universality classes of the weighted walks.

The Non-D-finite generating functions of lattice walks are
diagonals of something of similar structure.









