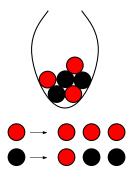
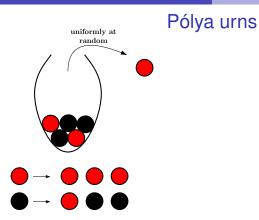
Measure-valued Pólya processes

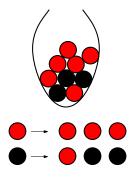
Cécile Mailler –
 (Prob-L@B – University of Bath)

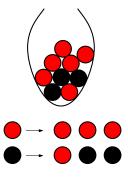
joint work with Jean François Marckert (Bordeaux)

October 27, 2016



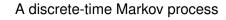






Replacement matrix

$$R = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$$



$$U(n) = \begin{pmatrix} U_1(n) \\ \vdots \\ U_d(n) \end{pmatrix},$$

where $U_i(n)$ is the number of balls of colour *i* in the urn at time *n*.

Replacement matrix $R = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$

Two parameters:

- the initial composition vector U(0)
- the replacement matrix
 R = (R_{i,j})_{1≤i,j≤d}

Asymptotic composition

Standard assumptions:

Tenability

- $||U(0)||_1 > 0$ and
- $R_{i,j} \ge 0$ for all $1 \le i, j \le d$.

Irreducibility

For all $1 \le i, j \le d$, there exists n such that $R_{i,j}^n > 0$.

Under these assumptions, Perron–Frobenius applies and the spectral radius λ of *R* is a simple eigenvalue of *R*.

Theorem [see Athreya & Ney]

If $(U(n))_{n\geq 0}$ is tenable and irreducible, then

 $U(n)/n \rightarrow v_1$, a.s.

where v_1 is a (nicely chosen) positive eigenvector of *R* associated to λ .

Cécile Mailler (Prob-L@B)

A vast literature

Problems

- second/third order convergence theorems
- non-irreducible cases
- random replacement matrix
- multi-drawing

etc.

Methods

- combinatorics
- probability
- stochastic approximation
- analytic combinatorics

Authors

Athreya & Karlin

Janson

Gouet

Flajolet, Dumas & Puyhaubert

Kuba, Mahmoud, Morcrette, Sulzbach

Knape & Neininger

Chauvin, Pouyanne, Sahnoun

etc.

Infinitely many colours?

Available at www.ElsevierMathematics.com POWERED BY BOILDARD (DIRECT) Stochastic Process and their Applications 110 (2004) 177–245

stochastic processes and their applications

www.elsevier.com/locate/sna

Functional limit theorems for multitype branching processes and generalized Pólya urns

Svante Janson*

Department of Mathematics, Uppsala University, PO Box 480, Uppsala S-751 06, Sweden

Received 20 February 2003; received in revised form 11 November 2003; accepted 1 December 2003

These examples suggest the possibility of (and desire for) an extension of the results in this paper to infinite sets of types (with suitable assumptions). Our matrix A would then be replaced by an operator acting in a suitable space, such as $\ell^1(\mathbb{N})$ or $L^2(\mathbb{T})$. It is far from clear how such an extension should be formulated, and we have not pursued this.

Infinitely many colours?

Available at www.ElsevierMathematics.com POWERED BY BOILDARD (DIRECT) Stochastic Process and their Applications 110 (2004) 177–245

stochastic processes and their applications

www.elsevier.com/locate/spa

Functional limit theorems for multitype branching processes and generalized Pólya urns

Svante Janson*

Department of Mathematics, Uppsala University, PO Box 480, Uppsala S-751 06, Sweden

Received 20 February 2003; received in revised form 11 November 2003; accepted 1 December 2003

These examples suggest the possibility of (and desire for) an extension of the results in this paper to infinite sets of types (with suitable assumptions). Our matrix A would then be replaced by an operator acting in a suitable space, such as $\ell^1(\mathbb{N})$ or $L^2(\mathbb{T})$. It is far from clear how such an extension should be formulated, and we have not pursued this.

Bandyopadhyay & Thacker ['13, '14, '16] have set the first stone: we generalise and strengthen their results.

Cécile Mailler (Prob-L@B)

Measure-valued Pólya processes

Measure-valued Pólya processes

We define $(\mathcal{M}_n)_{n\geq 0}$ a sequence of random positive measures on a Polish space \mathcal{P} .

Two parameters:

- the initial composition M₀ (a positive measure on P);
- the replacement measures
 (*R_x*)_{x∈P} (a set of positive
 measures on *P*).

dictionary

- \mathcal{P} is the set of colours;
- M_n is the composition of the urn at time *n*;
- For any borelian set \mathcal{B} of \mathcal{P} , $\mathcal{M}_n(\mathcal{B})$ is the mass of balls whose colour is in \mathcal{B} in the urn at time n.

Definition of the Markov process $(M_n)_{n\geq 0}$

At time n + 1, one picks a colour $\xi_{n+1} \in \mathcal{P}$ with respect to $\mathcal{M}_n/\mathcal{M}_n(\mathcal{P})$; and set $\mathcal{M}_{n+1} = \mathcal{M}_n + \mathcal{R}_{\xi_{n+1}}$.

Definition of the Markov process $(\mathcal{M}_n)_{n\geq 0}$

At time n + 1, one picks a colour $\xi_{n+1} \in \mathcal{P}$ with respect to $\mathcal{M}_n/\mathcal{M}_n(\mathcal{P})$; and set $\mathcal{M}_{n+1} = \mathcal{M}_n + \mathcal{R}_{\xi_{n+1}}$.

The original *d*-colour Pólya urn process can be seen as a MVPP:

$$\mathcal{M}_0 = \sum_{i=1}^d U_i(0)\delta_i$$
 and $\mathcal{R}_i = \sum_{i=1}^d R_{i,i}\delta_i$.

Definition of the Markov process $(\mathcal{M}_n)_{n\geq 0}$

At time n + 1, one picks a colour $\xi_{n+1} \in \mathcal{P}$ with respect to $\mathcal{M}_n/\mathcal{M}_n(\mathcal{P})$; and set $\mathcal{M}_{n+1} = \mathcal{M}_n + \mathcal{R}_{\xi_{n+1}}$.

Remarks:

- We can now allow the colour set to be infinite, but also **uncountable**.
- The composition measure M_n can be atom free (meaning that all balls have infinitesimal weight).

Under what assumptions can we obtain a nice convergence result?

Convergence of measures: $\mu_n \rightarrow \mu$ weakly iff

for all bounded continuous functions $f : \mathcal{P} \to \mathbb{R}$, $\int f d\mu_n \to \int f d\mu$.

The companion Markov chain

Let $(\mathcal{M}_n)_{n\geq 0}$ be the MVPP of replacement measures $(\mathcal{R}_x)_{x\in \mathcal{P}}$.

The companion Markov chain

Let $(W_n)_{n\geq 0}$ be the Markov chain on \mathcal{P} of initial distribution $\mathcal{M}_0/\mathcal{M}_0(\mathcal{P})$; and Kernel $K(x, \cdot) = \mathcal{R}_x$ (for all $x \in \mathcal{P}$).

In other words, conditionally on $W_n = x$, W_{n+1} has distribution \mathcal{R}_x .

Definition:

A Markov chain $(Q_n)_{n\geq 0}$ on \mathcal{P} is said (a_n, b_n) -convergent if

$$\frac{Q_n-b_n}{a_n} \Rightarrow \gamma.$$

We say that it is (a_n, b_n) -**ergodic** if the limit distribution γ does not depend on the initial distribution of Q_0 .

Main result

Let $(\mathcal{M}_n)_{n\geq 0}$ be a MVPP of initial composition \mathcal{M}_0 and replacement measures $(\mathcal{R}_x)_{x\in\mathcal{P}}$. Denote by $(W_n)_{n\geq 0}$ its companion Markov chain.

Assumptions:

•
$$0 < \mathcal{M}_0(\mathcal{P}) < \infty$$
,

- $\mathcal{R}_x(\mathcal{P}) = 1$ for all $x \in \mathcal{P}$ (balance hypothesis),
- $(W_n)_{n\geq 0}$ is (a_n, b_n) -ergodic with limit distribution γ ,
- for all $x \in \mathcal{P}$, for all $\varepsilon_n = o(\sqrt{n})$,

$$\lim_{n\to\infty}\frac{b_{n+x\sqrt{n}+\varepsilon_n}-b_n}{a_n}=f(x) \text{ and } \lim_{n\to\infty}\frac{a_{n+x\sqrt{n}+\varepsilon_n}}{a_n}=g(x),$$

where f and g are two measurable functions.

Main result

Theorem [MM++]

Under all these assumptions,

$$n^{-1}\mathcal{M}_n(a_{\log n} \cdot b_{\log n}) \rightarrow \nu$$
 in probability,

where ν is the distribution of $\Gamma g(\Lambda) + f(\Lambda)$, where $\Gamma \sim \gamma$ and $\Lambda \sim \mathcal{N}(0, 1)$ are independent.

NB: in a general Polish space, addition and division by a scalar might not be defined. We set x - 0 = x and x/1 = x for all $x \in \mathcal{P}$.

Examples:

- the *d*-colour case: our result implies that U(n)/n → v₁ in probability;
- your favourite ergodic Markov chain will define a convergent MVPP.

The random walk case

If \mathcal{R}_x is the distribution of $x + \Delta$ where Δ is a real random variable, of finite mean *m*, then $(W_n)_{n\geq 0}$ is a random walk with i.i.d. increments:

if Δ has finite variance σ², then (W_n)_{n≥0} is (√n, mn)-ergodic and converges to γ = N(0, σ²).
 Thus, in probability

$$n^{-1}\mathcal{M}_n(\sqrt{\log n} + m\log n) \to \mathcal{N}(0, \sigma^2 + m^2)$$

(it also holds in higher dimensions)

if P(Δ ≥ u) ~ u^{-α} with α < 2, then (W_n)_{n≥0} is (n^{1/α}, b_n)-ergodic with b_n = 0 if α < 1 and mn otherwise, and its limit law, γ, is alpha-stable. In both cases, in probability

$$n^{-1}\mathcal{M}_n((\log n)^{1/\alpha}\cdot) \to \gamma.$$

The random walk case

If \mathcal{R}_x is the distribution of $x + \Delta$ where Δ is a real random variable, of finite mean *m*, then $(W_n)_{n\geq 0}$ is a random walk with i.i.d. increments:

 if Δ has finite variance σ², then (W_n)_{n≥0} is (√n, mn)-ergodic and converges to γ = N(0, σ²). Thus, if there exists δ > 0 such that Ee^{δΔ} < ∞, then, almost surely

$$n^{-1}\mathcal{M}_n(\sqrt{\log n} + m\log n) \to \mathcal{N}(0, \sigma^2 + m^2)$$

(it also holds in higher dimensions)

• if $\mathbb{P}(\Delta \ge u) \sim u^{-\alpha}$ with $\alpha < 2$, then $(W_n)_{n\ge 0}$ is $(n^{1/\alpha}, b_n)$ -ergodic with $b_n = 0$ if $\alpha < 1$ and *mn* otherwise, and its limit law, γ , is alpha-stable. In both cases, in probability

$$n^{-1}\mathcal{M}_n((\log n)^{1/\alpha} \cdot) \to \gamma.$$

A corollary on the profile of the random recursive tree

The sequence $(RRT_n)_{n\geq 0}$ is the Markov chain defined as

• RRT₀ = { \varnothing };

• To get RRT_{n+1} , take RRT_n , pick one of its nodes uniformly at random and attach a new child to this node.

RRT_n is the *n*-node random recursive tree;

If \mathcal{R}_x is the distribution of $x + \Delta$ with Δ having exponential moments, then $n^{-1}\mathcal{M}_n(\sqrt{\log n} + m\log n) \rightarrow \mathcal{N}(0, \sigma^2 + m^2)$ a.s.

Corollary [MM++]: (take Δ = 1 a.s. in the theorem)

Let $\operatorname{Prof}_n = n^{-1} \sum_{u \in \operatorname{RRT}_n} \delta_{|u|}$, where |u| is the height of u (distance to the root). We have

$$\operatorname{Prof}_n(\sqrt{\log n} + \log n) \to \mathcal{N}(0, 1)$$
 a.s.

[BST – Chauvin, Drmota, Jabbour-Hattab '01] [PORT – Katona '05]

In a nutshell

Main results - summary

Theorem [MM++]

Under our set of assumptions,

$$n^{-1}\mathcal{M}_n(a_{\log n} \cdot b_{\log n}) \rightarrow \nu$$
 in probability,

where ν is the distribution of $\Gamma g(\Lambda) + f(\Lambda)$, where $\Gamma \sim \gamma$ and $\Lambda \sim \mathcal{N}(0, 1)$ are independent.

Theorem [MM++]

If \mathcal{R}_x is the distribution of $x + \Delta$, where Δ is a real random variable with mean *m* and variance σ^2 . If there exists $\delta > 0$ such that $\mathbb{E}e^{\delta\Delta} < \infty$, then, almost surely,

$$n^{-1}\mathcal{M}_n(\sqrt{\log n} + m\log n) \to \mathcal{N}(0, \sigma^2 + m^2).$$

In a nutshell

Main results - summary

Theorem [MM++]

Under our set of assumptions,

$$n^{-1}\mathcal{M}_n(a_{\log n} \cdot b_{\log n}) \rightarrow \nu$$
 in probability,

where ν is the distribution of $\Gamma g(\Lambda) + f(\Lambda)$, where $\Gamma \sim \gamma$ and $\Lambda \sim \mathcal{N}(0, 1)$ are independent.

Theorem [MM++]

If \mathcal{R}_x is the distribution of $x + \Delta$, where Δ is a real random variable with mean *m* and variance σ^2 . If there exists $\delta > 0$ such that $\mathbb{E}e^{\delta\Delta} < \infty$, then, almost surely,

$$n^{-1}\mathcal{M}_n(\sqrt{\log n} + m\log n) \to \mathcal{N}(0, \sigma^2 + m^2).$$

Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$,

where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Note that
$$\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$$
,
where ξ_i is the colour drawn at time

wnere ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = \mathbf{1}.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer u uniformly at random in $\{0, ..., i\}$;
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to $\mathcal{R}_{\xi_{i+1}}$.

Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^{\prime \prime} \mathcal{R}_{\xi_i}$,

where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

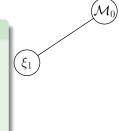
- pick an integer u uniformly at random in $\{0, ..., i\}$;
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to $\mathcal{R}_{\xi_{i+1}}$.

Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*. Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .

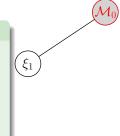


Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*. Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .



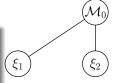
Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .



Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .

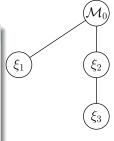
Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .

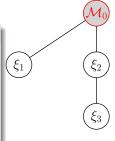


Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*. Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .

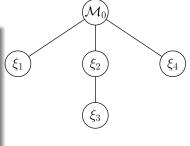


Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*. Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .



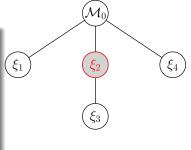
Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*.

Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .

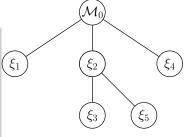


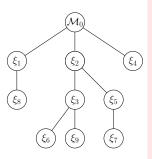
Note that $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n \mathcal{R}_{\xi_i}$, where ξ_i is the colour drawn at time *i*. Assume for the proof that $\mathcal{M}_0(\mathcal{P}) = 1.$

Let us couple the MVPP with a branching Markov chain on the random recursive tree:

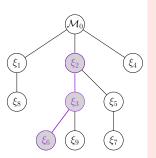
Main idea:

- pick an integer *u* uniformly at random in {0,...,*i*};
- if u = 0, pick ξ_{i+1} according to \mathcal{M}_0 ;
- otherwise, pick ξ_{i+1} according to \mathcal{R}_{ξ_u} .



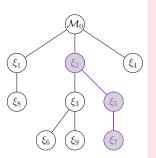


• the underlying tree is the random recursive tree;



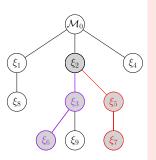
- the underlying tree is the random recursive tree;
- the labels are a branching Markov chain of the same Kernel as the companion Markov chain: i.e.

the sequence of labels along each branch has the same law as the companion Markov chain (kernel $K(x, \cdot) = \mathcal{R}_x$);



- the underlying tree is the random recursive tree;
- the labels are a branching Markov chain of the same Kernel as the companion Markov chain: i.e.

the sequence of labels along each branch has the same law as the companion Markov chain (kernel $K(x, \cdot) = \mathcal{R}_x$);



- the underlying tree is the random recursive tree;
- the labels are a branching Markov chain of the same Kernel as the companion Markov chain: i.e.

the sequence of labels along each branch has the same law as the companion Markov chain (kernel $K(x, \cdot) = \mathcal{R}_x$);

two distinct branches are independent.

Let $(\operatorname{RRT}_n)_{n\geq 0}$ be the random recursive tree sequence. Let $(X(u), u \in \operatorname{RRT}_n)_{n\geq 0}$ be the branching Markov chain of initial distribution \mathcal{M}_0 and kernel $K(x, \cdot) = \mathcal{R}_x$.

Then, in distribution, $\mathcal{M}_n = \mathcal{M}_0 + \sum \mathcal{R}_{X(u)}$.

 $U \in RRT_n \setminus \{\emptyset\}$

Let $(\operatorname{RRT}_n)_{n\geq 0}$ be the random recursive tree sequence. Let $(X(u), u \in \operatorname{RRT}_n)_{n\geq 0}$ be the branching Markov chain of initial distribution \mathcal{M}_0 and kernel $K(x, \cdot) = \mathcal{R}_x$.

Then, in distribution, $\mathcal{M}_n = \mathcal{M}_0 + \sum_{u \in \operatorname{RRT}_n \setminus \{\emptyset\}} \mathcal{R}_{X(u)}$.

In fact, $n^{-1}\mathcal{M}_n = \mathcal{R}_{X(U_n)}$, where U_n is a node chosen uniformly at random in RRT_n. (We set $\mathcal{R}_{X(\emptyset)} = \mathcal{M}_0$.)

It is enough to prove that $\mathcal{R}_{X(U_n)}(a_{\log n} \cdot b_{\log n}) \Rightarrow \nu$, which implies $\mathcal{R}_{X(U_n)}(a_{\log n} \cdot b_{\log n}) \rightarrow \nu$ in probability

> Recall that ν is the (deterministic) law of $\Gamma g(\Lambda) + f(\Lambda)$ where $\Lambda \sim \mathcal{N}(0, 1)$ and $\Gamma \sim \gamma$ are independent.

Lemma:

Let $(\mu_n)_{n\geq 0}$ be a sequence of random probability measures. For all *n*, take (A_n, B_n) i.i.d. of distribution μ_n .

If $(A_n, B_n) \Rightarrow (A, B)$, where *A* and *B* are i.i.d. with **deterministic** distribution μ , then $\mu_n \Rightarrow \mu$.

Proposition [MM++]

Take U_n and V_n two independent uniform nodes of RRT_n, and denote by K_n the height of their deepest common ancestor, then, when $n \rightarrow \infty$,

$$\left(\frac{|U_n| - \log n}{\sqrt{\log n}}, \frac{|V_n| - \log n}{\sqrt{\log n}}, K_n\right) \Rightarrow (\Lambda_1, \Lambda_2, G),$$

where $\Lambda_1,\Lambda_2\sim\mathcal{N}(0,1)$ and $\textit{G}\sim \mathrm{Geom}(1\!/\!2)$ are independent.

[marginals Dobrow '96 and Kuba & Wagner '10]

Conclusion

We have:

- generalised Pólya urns to infinitely-many (and even uncountably-many) colours;
- proved first order convergence in probability;
- proved convergence almost sure in some particular case;
- proved almost sure convergence of the profile of the RRT;
- defined and studied Branching Markov Chains.

Open problems:

- fluctuations around the limit?
- non-balanced urns? (i.e. $\mathcal{R}_{X}(\mathcal{P}) \neq 1$)
- o characterise a.s. convergence?

Conclusion

We have:

- generalised Pólya urns to infinitely-many (and even uncountably-many) colours;
- proved first order convergence in probability;
- proved convergence almost sure in some particular case;
- proved almost sure convergence of the profile of the RRT;
- defined and studied Branching Markov Chains.

Open problems:

- Iluctuations around the limit?
- non-balanced urns? (i.e. $\mathcal{R}_{X}(\mathcal{P}) \neq 1$)
- o characterise a.s. convergence?

Thanks!!