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Stirling Numbers (of the 2" Kind)

{7} = number of partitions of {1,2,...,n} with k subsets
= number of ways to nest n matryoshkas so you can still see k

n|k=1 2 3 4 5 6

1 1

2 11

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1
{1,2,3}
{1yu{2,3}, {2}u{1,3}, {3}uU{L,2}
{1}u{2ru{s}
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Uniform Sampling of Partitions

o ted K

k} {k}
— 1 parts k parts
Procedure for a uniform partition of {1,...,n} with k parts:

n—1
o Bernoulli RV X, with P(X,x = 1) = k{{:}}
k
o If X, x =1, then sample a partition of {1,...,n— 1} with k
parts and add the n-th element to one

@ Otherwise sample a partition of {1,...,n—1} with k —1 parts 6
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Number of Classes in a Population

Population of unknown size
Partitioned into 6 distinct classes (equally likely)
Draw a random sample of size n (multinomially distributed)

We observe k different classes

Minimum variance unbiased estimator (MVUE) for 0 is
(Charalambides 1968)

ifn>20




Ratios
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Convergence of series (ratio test)

Statistical tests (likelihood ratio test, variance ratio test)
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e Optimality of heuristics




Ratios

Monotonicity, concavity and convexity

Convergence of series (ratio test)

Statistical tests (likelihood ratio test, variance ratio test)
Conditional probability, correlation coefficient

Optimality of heuristics

Fast, efficient computation

Precise results

For two-parameter ratios: uniform result
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First Example

Using Stirling’s formula:

2m (nx )X
Fn+x) Vs ("85) §

" ey

Is there a cancellation-free approach?

o0
MNn+x)= / e tt" 1g(t)dt with g(t) = t*
0
Expand g(t) at t = n:

r(n—|-x):/ e_tt”_l(nx+...)dt:nxr(n)_|_...
0
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Growth of Stirling Numbers
For % in a closed subinterval of (0, 1):

|
e~
where p is the saddle point:
1—e™?” k
5 ——
Similarly for % goingtoOorl

We expect (see Harris 1968)

-1 (=1 —n+lp _ 1)k__1
{nk } ~ kP ! (ep 1) V2mko? NB

|
{Z} %p n(ep - 1)k1/27:1|..k0.2 n

Cancellations occur:

L
AEE . Small

Large



Stirling Numbers

o Growth of {Z}

Laplace 1814: k< n
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Stirling Numbers

o Growth of {J}:
Laplace 1814: k< n

o Moser-Wyman 1958: n— k = o(y/n) and n — k — o
o Temme 1993: uniform expansion for 1 < k < n
o .
n—1
o Ratios U}

{i

e Ahuja 1972, Berg 1975: via recursions

o Harris 1968, Hennecart 1994, Holst 1981: asymptotics of the
first main term
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p(z)=e*—1, a=%k

n
Cauchy’s integration formula

"= e ey

_ (=Dt 1 k—n-1
= 2 |z|:qu(z) z zdz

Taylor expansion of z = p+ (z — p):

n—11 (n—-1)!1 k_—n—
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1
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Direct Approach

k
p)n against p n=1,...,100

Hard part: Error analysis to guarantee a uniform error!




Summary

Cancellations occur: L
arge
~ Small

Large

Bypass cancellations:

——
Large Small

/ 2711 4(2)" £(2) dz ~ £(p) / 21 (2)" dz
~—~

[ 7 L(2)*F(2) d
[z 19(z)k dz

~ f(p)




Other Examples

@ MVUE for the variance of 0:

)

@ MVUE for sequential capturing until r marked individuals are
caught:
ey
k+ (T
k

In network theory

Extending Markov chains




Refining the Asymptotics

k{" . 1} - a{:}fo(p) + Error

where fy(z) = z and

o n! 1 k _—n—1
Error = ak! omi ., o(z) z (fo(z) — fo(p)) dz




Refining the Asymptotics

k{" . 1} - a{:}fo(p) + Error

where fy(z) = z and

o n! 1 k _—n—1
Error = ak! omi ., o(z) z (fo(z) — fo(p)) dz

Apply integration by parts:

a n 1 e
Error PR jI{Z|:pZ '¢(2)"fi(z) dz
with
o) = 2 S DO ) =1




Full Asymptotic Expansion

Theorem (Hwang—K.)
Uniformly for 1 < k <n

K"
{

holds with fy(z) = z and

= afy(p) + aﬁ(p)% + -+ afm_1(p) +0(n™™)

nm—l

fia(2) = 25 L= IE)

Under suitable technical conditions on ¢ also applicable to

[2"]¢(2)".




Full Asymptotic Expansion: Stirling Numbers
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Other Examples with Statistical Applications

"] 6(2)" f(2)

——
Large Small

o B-analogues of {]}: ¢(z) = €2 — 1, f(2) = &7

e Binomial coefficient (}) and Lah numbers: ¢(z) = 1%

1-z'
flz)y=1
o Non-central Stirling numbers of the 2" kind: ¢(z) = % — 1,
f(z)=¢e"

@ Associative Stirling numbers of the 2" kind:
p(z)=e"—1—2z f(z)=1

@ Many three term recurrences: s, x = axSp—1,k + bkSp—1,k—1

° ...
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Stirling Numbers of the 1%t Kind

m counts permutations of {1,...,n} with k cycles

n nl 1 he1 P
=—_— n d
M Kl 2ri }ﬁzpz olz)" dz
with ¢(z) = log ;= and
1-— 1
p 1—p
Formally, we have
n—1
”[ k ]

(4]

1
~ptf(p)s

for1 < k <n.
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Stirling Numbers of the 1%t Kind

n—1
n 1 k
(M - ﬂ(p);)nz against —,  n=1,..,100

(4]

18




Precomputing the Coefficients
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Precomputing the Coefficients

Evaluate at z=p

fo(z) =z
d fi(z) — fi(p)
Y

fj+1(z) = ZE )\(Z) (p) A(Z)

by using the rule of de I'Hospital.
Computer said no: memory overflow even for .

d A(2)(z - p)

i) = 670 50y 30 s

—+

1 2, \ Ap)
Efmz (P)P)\,(p)

and similar for f,g,l), f,,(12), .
fo, ..., fip in less than half an hour (depending on ¢)
fo(z) = z and f; very fast




What else?

@ X, with probability generating function
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@ X, with probability generating function
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What else?

@ X, with probability generating function

[Zn]et¢(z)
[27]e7@)
@ Variance
[2"](6(2)? + ¢(2))e??) [27]6(2)e??) 2
V= [z7]e?(2) B < [z7]e%(2) )

@ Cancellation occur

@ Same recursive approach works here too




Conclusion

@ Computation of ratios of Stirling numbers
@ precise
e and efficient
@ Precomputation of f; in reasonable time (if necessary)
@ Also applicable to many other combinatorial sequences
@ Formula is uniform, so no knowledge about the relation
between n and k necessary
@ Approach also useful for a direct computation of the variance




Conclusion

@ Computation of ratios of Stirling numbers
@ precise
e and efficient
@ Precomputation of f; in reasonable time (if necessary)
@ Also applicable to many other combinatorial sequences
@ Formula is uniform, so no knowledge about the relation
between n and k necessary
@ Approach also useful for a direct computation of the variance

Thank you for your attention!




