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Basic concepts in convex geometry

I Convex body K. A compact convex set with nonempty interior in

Rn. A complete space in Hausdorff metric. Ovaloids, polytopes.
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Basic concepts in convex geometry

I Convex body K. A compact convex set with nonempty interior in

Rn. A complete space in Hausdorff metric. Ovaloids, polytopes.

I Support function hK. It is the distance from the origin to the

support hyperplane Hu with outer normal u ∈ Sn−1.
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The Brunn-Minkowski Theory

I It studies geometric invariants and geometric measures of convex

bodies from both geometric and analytic viewpoints.
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The Brunn-Minkowski Theory

I It studies geometric invariants and geometric measures of convex

bodies from both geometric and analytic viewpoints.

I Geometric invariants.

Volume V , surface area S, quermassintegrals Wi, ...

I Geometric measures. (global analogs of curvatures)

Surface area measure SK, cone volume measure VK, integral Gauss curvature

JK, ...
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Two fundamental theorems

I The Brunn-Minkowski inequality. For convex bodies K,L in Rn,

V ((1− t)K + tL) ≥ V (K)1−tV (L)t,

where (1− t)K+tL = {(1− t)x+ ty : x ∈ K, y ∈ L}, 0 ≤ t ≤ 1, is the vector
sum, and V (·) is the volume functional (Lebesgue measure). (log concave)

(Brunn, Minkowski, Blaschke)

3



Two fundamental theorems

I The Brunn-Minkowski inequality. For convex bodies K,L in Rn,

V ((1− t)K + tL) ≥ V (K)1−tV (L)t,

where (1− t)K+tL = {(1− t)x+ ty : x ∈ K, y ∈ L}, 0 ≤ t ≤ 1, is the vector
sum, and V (·) is the volume functional (Lebesgue measure). (log concave)

(Brunn, Minkowski, Blaschke)

I Solution to the Minkowski problem. For each finite Borel measure

µ on Sn−1 not concentrated in a closed hemisphere, there exists

a unique (up to translation) convex body K so that µ equals the

surface area measure SK of K if and only if∫
Sn−1

u dµ(u) = 0.

(Minkowski, Aleksandrov, Fenchel-Jessen)
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Surface area measure

I Surface area measure SK.

dV (K + tL)

dt

∣∣∣
t=0+

=

∫
Sn−1

hL(u) dSK(u).
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Surface area measure

I Surface area measure SK.

dV (K + tL)

dt

∣∣∣
t=0+

=

∫
Sn−1

hL(u) dSK(u).

I The differential of volume functional. First mixed volume.
The global concept of reciprocal Gauss curvature,

dSK(u) =
1

GK(x)
du,

where GK(x) is the Gauss curvature at x ∈ ∂K with outer unit normal u.
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The Minkowski inequality of mixed volume

I The Minkowski inequality. For convex bodies K,L in Rn,

1

n

∫
Sn−1

hL(u) dSK(u) ≥ V (L)
1
nV (K)

n−1
n .
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The Minkowski inequality of mixed volume

I The Minkowski inequality. For convex bodies K,L in Rn,

1

n

∫
Sn−1

hL(u) dSK(u) ≥ V (L)
1
nV (K)

n−1
n .

I The Minkowski inequality of mixed volume and the Brunn-Minkowski inequality

are equivalent.
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The Minkowski inequality of mixed volume

I The Minkowski inequality. For convex bodies K,L in Rn,

1

n

∫
Sn−1

hL(u) dSK(u) ≥ V (L)
1
nV (K)

n−1
n .

I The Minkowski inequality of mixed volume and the Brunn-Minkowski inequality

are equivalent.

I The isoperimetric inequality. The Minkowski inequality implies

S(K) ≥ nV (B)
1
nV (K)

n−1
n .
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Development of the Brunn-Minkowski theory

I Replace volume by quermassintegrals. (1930s, Aleksandrov, Fenchel)

• General Brunn-Minkowski inequalities for quermassintegrals.
The Aleksandrov-Fenchel inequality.
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Development of the Brunn-Minkowski theory

I Replace volume by quermassintegrals. (1930s, Aleksandrov, Fenchel)

• General Brunn-Minkowski inequalities for quermassintegrals.
The Aleksandrov-Fenchel inequality.

• The Christoffel-Minkowski problem for area measures.
Sufficient conditions (Guan-Ma, 2003).

I Replace vector sum by Lp sum. (1950s, Firey)

• Lp Brunn-Minkowski theory. (1990s, Lutwak)
• Lp affine isoperimetric and Sobolev inequalities. (Lutwak, LYZ, Cianchi-LYZ,

Haberl-Schuster, ...)
• Lp Minkowski problem. (Lutwak, Lutwak-Oliker, Chou-Wang, Guan-Lin,

Böröczky-LYZ, Zhu, ... )
• The case of p < 1 is of great interest.
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Geometric mean of convex bodies

Geometric mean K1−t · Lt. The largest convex body whose support

function is smaller than h1−t
K htL,

K1−t · Lt = {x ∈ Rn : x · u ≤ h1−t
K (u)htL(u), u ∈ Sn−1}.
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Geometric mean of convex bodies

Geometric mean K1−t · Lt. The largest convex body whose support

function is smaller than h1−t
K htL,

K1−t · Lt = {x ∈ Rn : x · u ≤ h1−t
K (u)htL(u), u ∈ Sn−1}.

I Arithmetic mean (1− t)K + tL. It is the convex body whose support function
is (1− t)hK + thL.

I Inclusion,
K1−t · Lt ⊂ (1− t)K + tL.
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The logarithmic Brunn-Minkowski inequality

Conjecture 1. For origin-symmetric convex bodies K,L, there is the

inequality,

V (K1−t · Lt) ≥ V (K)1−tV (L)t, 0 < t < 1.
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The logarithmic Brunn-Minkowski inequality

Conjecture 1. For origin-symmetric convex bodies K,L, there is the

inequality,

V (K1−t · Lt) ≥ V (K)1−tV (L)t, 0 < t < 1.

I Stronger than the classical Brunn-Minkowski inequality.

V ((1− t)K + tL) ≥ V (K1−t · Lt) ≥ V (K)1−tV (L)t.
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Cone volume measure

I Let K,L be convex bodies in Rn that contain the origin in their

interior. Then

dV (Kt)

dt

∣∣∣
t=0

= n

∫
Sn−1

log hL(u) dVK(u),

where Kt = K · Lt is the geometric mean that is the maximal convex body so

that log hKt ≤ log hK + t log hL.
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Cone volume measure

I Let K,L be convex bodies in Rn that contain the origin in their

interior. Then

dV (Kt)

dt

∣∣∣
t=0

= n

∫
Sn−1

log hL(u) dVK(u),

where Kt = K · Lt is the geometric mean that is the maximal convex body so

that log hKt ≤ log hK + t log hL.

I Cone volume measure VK is the log differential of the volume functional.
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Cone volume measure of convex polytopes

I If P is a convex polytope containing the origin in its interior with

unit normals u1, . . . , um and cone volumes v1, . . . , vm, then the

discrete measure on Sn−1,

VP =

m∑
i=1

vi δui
,

is the cone volume measure of P�

�

�
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The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K,L in Rn, there

is the inequality,

1

V (K)

∫
Sn−1

log
hL
hK

dVK ≥
1

n
log

V (L)

V (K)
.
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The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K,L in Rn, there

is the inequality,

1

V (K)

∫
Sn−1

log
hL
hK

dVK ≥
1

n
log

V (L)

V (K)
.

I It is stronger than the classical Minkowski inequality of mixed volumes, and thus
it is stronger than the classical isoperimetric inequality for symmetric bodies.
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The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K,L in Rn, there

is the inequality,

1

V (K)

∫
Sn−1

log
hL
hK

dVK ≥
1

n
log

V (L)

V (K)
.

I It is stronger than the classical Minkowski inequality of mixed volumes, and thus
it is stronger than the classical isoperimetric inequality for symmetric bodies.

I Answers are affirmative in R2 (Böröczky-Lutwak-Yang-Z., 2012), and in Rn

under the condition of coordinates symmetry (Saroglou, 2014).
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The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and

sufficient conditions for a finite Borel measure µ on Sn−1 so that it

is the cone volume measure VK of a convex body in Rn?
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The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and

sufficient conditions for a finite Borel measure µ on Sn−1 so that it

is the cone volume measure VK of a convex body in Rn?

I The geometric equation,
VK = µ.

I The PDE on Sn−1,

det(hij + hδij) =
f

h
.
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The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and

sufficient conditions for a finite Borel measure µ on Sn−1 so that it

is the cone volume measure VK of a convex body in Rn?

I The geometric equation,
VK = µ.

I The PDE on Sn−1,

det(hij + hδij) =
f

h
.

I Affine problem. The general case for measures is much harder than the case for

functions. Existence of solutions involves measure concentration.
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Measure concentration

The subspace concentration condition. A finite Borel measure µ on

Sn−1 satisfies the condition:

For any m-dimensional subspace ξ ⊂ Rn, 0 < m < n, there is

µ(ξ ∩ Sn−1)

µ(Sn−1)
≤ m

n
,

with equality only if µ is concentrated on complementary subspaces

ξm ∪ ξn−m.
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Measure concentration

The subspace concentration condition. A finite Borel measure µ on

Sn−1 satisfies the condition:

For any m-dimensional subspace ξ ⊂ Rn, 0 < m < n, there is

µ(ξ ∩ Sn−1)

µ(Sn−1)
≤ m

n
,

with equality only if µ is concentrated on complementary subspaces

ξm ∪ ξn−m.

I A measure that has a positive continuous density satisfies the subspace

concentration condition. A measure that concentrates most of its mass on

the equator does not satisfies the subspace concentration condition.
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Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on Sn−1 is the

cone volume measure of an origin-symmetric convex body in Rn if

and only if it satisfies the subspace concentration condition.

(Böröczky-Lutwak-Yang-Z., 2012)
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Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on Sn−1 is the

cone volume measure of an origin-symmetric convex body in Rn if

and only if it satisfies the subspace concentration condition.

(Böröczky-Lutwak-Yang-Z., 2012)

I Solving singular PDE with measure concentration.
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Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on Sn−1 is the

cone volume measure of an origin-symmetric convex body in Rn if

and only if it satisfies the subspace concentration condition.

(Böröczky-Lutwak-Yang-Z., 2012)

I Solving singular PDE with measure concentration.

I Asymmetric case. Partial results. (Zhu, 2014; Böröczky-Zhu, 2015)
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Solving a log minimization problem

I The functional Φ : C+
e (Sn−1)→ R is defined by

Φ(f) =
1

|µ|

∫
Sn−1

log f(u) dµ(u)− 1

n
log V ([[[f ]]]),

where [[[f ]]] = {x ∈ Rn : x · u ≤ f(u), u ∈ Sn−1} is the Wulff shape, f ∈
C+

e (Sn−1) is positive.
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1

|µ|

∫
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log f(u) dµ(u)− 1

n
log V ([[[f ]]]),

where [[[f ]]] = {x ∈ Rn : x · u ≤ f(u), u ∈ Sn−1} is the Wulff shape, f ∈
C+

e (Sn−1) is positive.

I The minimization problem,

inf
{

Φ(f) : f ∈ C+
e (Sn−1)

}
.

15



Solving a log minimization problem

I The functional Φ : C+
e (Sn−1)→ R is defined by

Φ(f) =
1

|µ|

∫
Sn−1

log f(u) dµ(u)− 1

n
log V ([[[f ]]]),

where [[[f ]]] = {x ∈ Rn : x · u ≤ f(u), u ∈ Sn−1} is the Wulff shape, f ∈
C+

e (Sn−1) is positive.

I The minimization problem,

inf
{

Φ(f) : f ∈ C+
e (Sn−1)

}
.

I Solving the minimization problem. Convergence (compactness)

and non-degeneracy (positivity). (Delicate estimates of integrals)
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Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies

in Rn. If VK = VL, then K and L have dilated vector summands.

(Firey, BLYZ)
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Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies

in Rn. If VK = VL, then K and L have dilated vector summands.

(Firey, BLYZ)

I Affirmative in R2. (Gage, 1993; Stancu, 2003; Böröczky-LYZ, 2012)

I If L is a ball in Rn, then the solution is affirmative. (Firey, 1974, worn stone

problem. He asked if the symmetry assumption could be removed.)

I Let K be a smooth convex body in R3 that contains the origin and B a ball in
R3 centered at the origin. If VK = VB then K = B. (Andrews, 1999, curvature
flow. Open in higher dimensions. Partial results (Guan-Ni, 2013))

I Conjecture 3 and solution to the log minimization problem implies Conjecture

2.
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The B-conjecture of the log concave measures

Conjecture 4. If γ is a log concave measure in Rn and L is an

origin-symmetric convex body in Rn, then the function,

f(t) = γ(etL),

is log concave in (0,∞).
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The B-conjecture of the log concave measures

Conjecture 4. If γ is a log concave measure in Rn and L is an

origin-symmetric convex body in Rn, then the function,

f(t) = γ(etL),

is log concave in (0,∞).

I It is true for the Gaussian measure. (Banaszczyk, Latala (2002), Cordero-

Fradelizi-Maurey (2004))
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Equivalence

Conjectures 1 – 4 are equivalent.
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Thank you!
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