The logarithmic Brunn-Minkowski inequality and Minkowski problem

Gaoyong Zhang
New York University

Conference on Geometric and Analytic Inequalities BIRS, Banff, Canada

July 10 - 15, 2016

Basic concepts in convex geometry

- Convex body K. A compact convex set with nonempty interior in \mathbb{R}^{n}. A complete space in Hausdorff metric. Ovaloids, polytopes.

Basic concepts in convex geometry

- Convex body K. A compact convex set with nonempty interior in \mathbb{R}^{n}. A complete space in Hausdorff metric. Ovaloids, polytopes.
- Support function h_{K}. It is the distance from the origin to the support hyperplane H_{u} with outer normal $u \in \mathbb{S}^{n-1}$.

Convex

Non-smooth

The Brunn-Minkowski Theory

- It studies geometric invariants and geometric measures of convex bodies from both geometric and analytic viewpoints.

The Brunn-Minkowski Theory

- It studies geometric invariants and geometric measures of convex bodies from both geometric and analytic viewpoints.
- Geometric invariants.

Volume V, surface area S, quermassintegrals W_{i}, \ldots

The Brunn-Minkowski Theory

- It studies geometric invariants and geometric measures of convex bodies from both geometric and analytic viewpoints.
- Geometric invariants.

Volume V, surface area S, quermassintegrals W_{i}, \ldots

- Geometric measures. (global analogs of curvatures)

Surface area measure S_{K}, cone volume measure V_{K}, integral Gauss curvature J_{K}, \ldots

Two fundamental theorems

- The Brunn-Minkowski inequality. For convex bodies K, L in \mathbb{R}^{n},

$$
V((1-t) K+t L) \geq V(K)^{1-t} V(L)^{t}
$$

where $(1-t) K+t L=\{(1-t) x+t y: x \in K, y \in L\}, 0 \leq t \leq 1$, is the vector sum, and $V(\cdot)$ is the volume functional (Lebesgue measure). (log concave)
(Brunn, Minkowski, Blaschke)

Two fundamental theorems

- The Brunn-Minkowski inequality. For convex bodies K, L in \mathbb{R}^{n},

$$
V((1-t) K+t L) \geq V(K)^{1-t} V(L)^{t}
$$

where $(1-t) K+t L=\{(1-t) x+t y: x \in K, y \in L\}, 0 \leq t \leq 1$, is the vector sum, and $V(\cdot)$ is the volume functional (Lebesgue measure). (log concave)
(Brunn, Minkowski, Blaschke)

- Solution to the Minkowski problem. For each finite Borel measure μ on \mathbb{S}^{n-1} not concentrated in a closed hemisphere, there exists a unique (up to translation) convex body K so that μ equals the surface area measure S_{K} of K if and only if

$$
\int_{\mathbb{S}^{n}-1} u d \mu(u)=0
$$

(Minkowski, Aleksandrov, Fenchel-Jessen)

Surface area measure

- Surface area measure S_{K}.

$$
\left.\frac{d V(K+t L)}{d t}\right|_{t=0^{+}}=\int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{K}(u)
$$

Surface area measure

- Surface area measure S_{K}.

$$
\left.\frac{d V(K+t L)}{d t}\right|_{t=0^{+}}=\int_{\mathbb{S}^{n-1}} h_{L}(u) d S_{K}(u)
$$

- The differential of volume functional. First mixed volume.

The global concept of reciprocal Gauss curvature,

$$
d S_{K}(u)=\frac{1}{G_{K}(x)} d u
$$

where $G_{K}(x)$ is the Gauss curvature at $x \in \partial K$ with outer unit normal u.

The Minkowski inequality of mixed volume

- The Minkowski inequality. For convex bodies K, L in \mathbb{R}^{n},

$$
\frac{1}{n} \int_{\mathbb{S}^{n}-1} h_{L}(u) d S_{K}(u) \geq V(L)^{\frac{1}{n}} V(K)^{\frac{n-1}{n}}
$$

The Minkowski inequality of mixed volume

- The Minkowski inequality. For convex bodies K, L in \mathbb{R}^{n},

$$
\frac{1}{n} \int_{\mathbb{S}^{n}-1} h_{L}(u) d S_{K}(u) \geq V(L)^{\frac{1}{n}} V(K)^{\frac{n-1}{n}}
$$

- The Minkowski inequality of mixed volume and the Brunn-Minkowski inequality are equivalent.

The Minkowski inequality of mixed volume

- The Minkowski inequality. For convex bodies K, L in \mathbb{R}^{n},

$$
\frac{1}{n} \int_{\mathbb{S}^{n}-1} h_{L}(u) d S_{K}(u) \geq V(L)^{\frac{1}{n}} V(K)^{\frac{n-1}{n}}
$$

- The Minkowski inequality of mixed volume and the Brunn-Minkowski inequality are equivalent.
- The isoperimetric inequality. The Minkowski inequality implies

$$
S(K) \geq n V(B)^{\frac{1}{n}} V(K)^{\frac{n-1}{n}}
$$

Development of the Brunn-Minkowski theory

- Replace volume by quermassintegrals. (1930s, Aleksandrov, Fenchel)
- General Brunn-Minkowski inequalities for quermassintegrals.

The Aleksandrov-Fenchel inequality.

Development of the Brunn-Minkowski theory

- Replace volume by quermassintegrals. (1930s, Aleksandrov, Fenchel)
- General Brunn-Minkowski inequalities for quermassintegrals.

The Aleksandrov-Fenchel inequality.

- The Christoffel-Minkowski problem for area measures. Sufficient conditions (Guan-Ma, 2003).

Development of the Brunn-Minkowski theory

- Replace volume by quermassintegrals. (1930s, Aleksandrov, Fenchel)
- General Brunn-Minkowski inequalities for quermassintegrals.

The Aleksandrov-Fenchel inequality.

- The Christoffel-Minkowski problem for area measures. Sufficient conditions (Guan-Ma, 2003).
- Replace vector sum by L_{p} sum. (1950s, Firey)
- L_{p} Brunn-Minkowski theory. (1990s, Lutwak)
- L_{p} affine isoperimetric and Sobolev inequalities. (Lutwak, LYZ, Cianchi-LYZ, Haberl-Schuster, ...)
- L_{p} Minkowski problem. (Lutwak, Lutwak-Oliker, Chou-Wang, Guan-Lin, Böröczky-LYZ, Zhu, ...)
- The case of $p<1$ is of great interest.

Geometric mean of convex bodies

Geometric mean $K^{1-t} \cdot L^{t}$. The largest convex body whose support function is smaller than $h_{K}^{1-t} h_{L}^{t}$,

$$
K^{1-t} \cdot L^{t}=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq h_{K}^{1-t}(u) h_{L}^{t}(u), u \in \mathbb{S}^{n-1}\right\} .
$$

Geometric mean of convex bodies

Geometric mean $K^{1-t} \cdot L^{t}$. The largest convex body whose support function is smaller than $h_{K}^{1-t} h_{L}^{t}$,

$$
K^{1-t} \cdot L^{t}=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq h_{K}^{1-t}(u) h_{L}^{t}(u), u \in \mathbb{S}^{n-1}\right\} .
$$

- Arithmetic mean $(1-t) K+t L$. It is the convex body whose support function is $(1-t) h_{K}+t h_{L}$.

Geometric mean of convex bodies

Geometric mean $K^{1-t} \cdot L^{t}$. The largest convex body whose support function is smaller than $h_{K}^{1-t} h_{L}^{t}$,

$$
K^{1-t} \cdot L^{t}=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq h_{K}^{1-t}(u) h_{L}^{t}(u), u \in \mathbb{S}^{n-1}\right\} .
$$

- Arithmetic mean $(1-t) K+t L$. It is the convex body whose support function is $(1-t) h_{K}+t h_{L}$.
- Inclusion,

$$
K^{1-t} \cdot L^{t} \subset(1-t) K+t L .
$$

The logarithmic Brunn-Minkowski inequality

Conjecture 1. For origin-symmetric convex bodies K, L, there is the inequality,

$$
V\left(K^{1-t} \cdot L^{t}\right) \geq V(K)^{1-t} V(L)^{t}, \quad 0<t<1
$$

The logarithmic Brunn-Minkowski inequality

Conjecture 1. For origin-symmetric convex bodies K, L, there is the inequality,

$$
V\left(K^{1-t} \cdot L^{t}\right) \geq V(K)^{1-t} V(L)^{t}, \quad 0<t<1 .
$$

- Stronger than the classical Brunn-Minkowski inequality.

$$
V((1-t) K+t L) \geq V\left(K^{1-t} \cdot L^{t}\right) \geq V(K)^{1-t} V(L)^{t} .
$$

Cone volume measure

- Let K, L be convex bodies in \mathbb{R}^{n} that contain the origin in their interior. Then

$$
\left.\frac{d V\left(K_{t}\right)}{d t}\right|_{t=0}=n \int_{\mathbb{S}^{n-1}} \log h_{L}(u) d V_{K}(u)
$$

where $K_{t}=K \cdot L^{t}$ is the geometric mean that is the maximal convex body so that $\log h_{K_{t}} \leq \log h_{K}+t \log h_{L}$.

Cone volume measure

- Let K, L be convex bodies in \mathbb{R}^{n} that contain the origin in their interior. Then

$$
\left.\frac{d V\left(K_{t}\right)}{d t}\right|_{t=0}=n \int_{\mathbb{S}^{n-1}} \log h_{L}(u) d V_{K}(u)
$$

where $K_{t}=K \cdot L^{t}$ is the geometric mean that is the maximal convex body so that $\log h_{K_{t}} \leq \log h_{K}+t \log h_{L}$.

- Cone volume measure V_{K} is the \log differential of the volume functional.

Cone volume measure of convex polytopes

- If P is a convex polytope containing the origin in its interior with unit normals u_{1}, \ldots, u_{m} and cone volumes v_{1}, \ldots, v_{m}, then the discrete measure on \mathbb{S}^{n-1},

$$
V_{P}=\sum_{i=1}^{m} v_{i} \delta_{u_{i}}
$$

is the cone volume measure of P

The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K, L in \mathbb{R}^{n}, there is the inequality,

$$
\frac{1}{V(K)} \int_{\mathbb{S}^{n-1}} \log \frac{h_{L}}{h_{K}} d V_{K} \geq \frac{1}{n} \log \frac{V(L)}{V(K)}
$$

The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K, L in \mathbb{R}^{n}, there is the inequality,

$$
\frac{1}{V(K)} \int_{\mathbb{S}^{n-1}} \log \frac{h_{L}}{h_{K}} d V_{K} \geq \frac{1}{n} \log \frac{V(L)}{V(K)}
$$

- It is stronger than the classical Minkowski inequality of mixed volumes, and thus it is stronger than the classical isoperimetric inequality for symmetric bodies.

The logarithmic Minkowski inequality

Conjecture 2. For origin-symmetric convex bodies K, L in \mathbb{R}^{n}, there is the inequality,

$$
\frac{1}{V(K)} \int_{\mathbb{S}^{n-1}} \log \frac{h_{L}}{h_{K}} d V_{K} \geq \frac{1}{n} \log \frac{V(L)}{V(K)}
$$

- It is stronger than the classical Minkowski inequality of mixed volumes, and thus it is stronger than the classical isoperimetric inequality for symmetric bodies.
- Answers are affirmative in \mathbb{R}^{2} (Böröczky-Lutwak-Yang-Z., 2012), and in \mathbb{R}^{n} under the condition of coordinates symmetry (Saroglou, 2014).

The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and sufficient conditions for a finite Borel measure μ on \mathbb{S}^{n-1} so that it is the cone volume measure V_{K} of a convex body in \mathbb{R}^{n} ?

The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and sufficient conditions for a finite Borel measure μ on \mathbb{S}^{n-1} so that it is the cone volume measure V_{K} of a convex body in \mathbb{R}^{n} ?

- The geometric equation,

$$
V_{K}=\mu .
$$

The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and sufficient conditions for a finite Borel measure μ on \mathbb{S}^{n-1} so that it is the cone volume measure V_{K} of a convex body in \mathbb{R}^{n} ?

- The geometric equation,

$$
V_{K}=\mu .
$$

- The PDE on \mathbb{S}^{n-1},

$$
\operatorname{det}\left(h_{i j}+h \delta_{i j}\right)=\frac{f}{h} .
$$

The logarithmic Minkowski problem

The logarithmic Minkowski problem. What are the necessary and sufficient conditions for a finite Borel measure μ on \mathbb{S}^{n-1} so that it is the cone volume measure V_{K} of a convex body in \mathbb{R}^{n} ?

- The geometric equation,

$$
V_{K}=\mu .
$$

- The PDE on \mathbb{S}^{n-1},

$$
\operatorname{det}\left(h_{i j}+h \delta_{i j}\right)=\frac{f}{h}
$$

- Affine problem. The general case for measures is much harder than the case for functions. Existence of solutions involves measure concentration.

Measure concentration

The subspace concentration condition. A finite Borel measure μ on \mathbb{S}^{n-1} satisfies the condition:

For any m-dimensional subspace $\xi \subset \mathbb{R}^{n}, 0<m<n$, there is

$$
\frac{\mu\left(\xi \cap \mathbb{S}^{n-1}\right)}{\mu\left(\mathbb{S}^{n-1}\right)} \leq \frac{m}{n}
$$

with equality only if μ is concentrated on complementary subspaces $\xi_{m} \cup \xi_{n-m}$.

Measure concentration

The subspace concentration condition. A finite Borel measure μ on \mathbb{S}^{n-1} satisfies the condition:

For any m-dimensional subspace $\xi \subset \mathbb{R}^{n}, 0<m<n$, there is

$$
\frac{\mu\left(\xi \cap \mathbb{S}^{n-1}\right)}{\mu\left(\mathbb{S}^{n-1}\right)} \leq \frac{m}{n}
$$

with equality only if μ is concentrated on complementary subspaces $\xi_{m} \cup \xi_{n-m}$.

- A measure that has a positive continuous density satisfies the subspace concentration condition. A measure that concentrates most of its mass on the equator does not satisfies the subspace concentration condition.

Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on \mathbb{S}^{n-1} is the cone volume measure of an origin-symmetric convex body in \mathbb{R}^{n} if and only if it satisfies the subspace concentration condition.
(Böröczky-Lutwak-Yang-Z., 2012)

Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on \mathbb{S}^{n-1} is the cone volume measure of an origin-symmetric convex body in \mathbb{R}^{n} if and only if it satisfies the subspace concentration condition.
(Böröczky-Lutwak-Yang-Z., 2012)

- Solving singular PDE with measure concentration.

Solution to the symmetric log Minkowski problem

Theorem. A non-zero finite even Borel measure on \mathbb{S}^{n-1} is the cone volume measure of an origin-symmetric convex body in \mathbb{R}^{n} if and only if it satisfies the subspace concentration condition.
(Böröczky-Lutwak-Yang-Z., 2012)

- Solving singular PDE with measure concentration.
- Asymmetric case. Partial results. (Zhu, 2014; Böröczky-Zhu, 2015)

Solving a log minimization problem

- The functional $\Phi: C_{e}^{+}\left(\mathbb{S}^{n-1}\right) \rightarrow \mathbb{R}$ is defined by

$$
\Phi(f)=\frac{1}{|\mu|} \int_{\mathbb{S}^{n-1}} \log f(u) d \mu(u)-\frac{1}{n} \log V([f])
$$

where $[f]=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq f(u), u \in \mathbb{S}^{n-1}\right\}$ is the Wulff shape, $f \in$ $C_{e}^{+}\left(\mathbb{S}^{n-1}\right)$ is positive.

Solving a log minimization problem

- The functional $\Phi: C_{e}^{+}\left(\mathbb{S}^{n-1}\right) \rightarrow \mathbb{R}$ is defined by

$$
\Phi(f)=\frac{1}{|\mu|} \int_{\mathbb{S}^{n}-1} \log f(u) d \mu(u)-\frac{1}{n} \log V([f])
$$

where $[f]=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq f(u), u \in \mathbb{S}^{n-1}\right\}$ is the Wulff shape, $f \in$ $C_{e}^{+}\left(\mathbb{S}^{n-1}\right)$ is positive.

- The minimization problem,

$$
\inf \left\{\Phi(f): f \in C_{e}^{+}\left(\mathbb{S}^{n-1}\right)\right\}
$$

Solving a log minimization problem

- The functional $\Phi: C_{e}^{+}\left(\mathbb{S}^{n-1}\right) \rightarrow \mathbb{R}$ is defined by

$$
\Phi(f)=\frac{1}{|\mu|} \int_{\mathbb{S}^{n-1}} \log f(u) d \mu(u)-\frac{1}{n} \log V([f])
$$

where $[f]=\left\{x \in \mathbb{R}^{n}: x \cdot u \leq f(u), u \in \mathbb{S}^{n-1}\right\}$ is the Wulff shape, $f \in$ $C_{e}^{+}\left(\mathbb{S}^{n-1}\right)$ is positive.

- The minimization problem,

$$
\inf \left\{\Phi(f): f \in C_{e}^{+}\left(\mathbb{S}^{n-1}\right)\right\}
$$

- Solving the minimization problem. Convergence (compactness) and non-degeneracy (positivity). (Delicate estimates of integrals)

Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}. If $V_{K}=V_{L}$, then K and L have dilated vector summands.
(Firey, BLYZ)

Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}. If $V_{K}=V_{L}$, then K and L have dilated vector summands.
(Firey, BLYZ)

- Affirmative in \mathbb{R}^{2}. (Gage, 1993; Stancu, 2003; Böröczky-LYZ, 2012)

Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}. If $V_{K}=V_{L}$, then K and L have dilated vector summands.
(Firey, BLYZ)

- Affirmative in \mathbb{R}^{2}. (Gage, 1993; Stancu, 2003; Böröczky-LYZ, 2012)
- If L is a ball in \mathbb{R}^{n}, then the solution is affirmative. (Firey, 1974, worn stone problem. He asked if the symmetry assumption could be removed.)

Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}. If $V_{K}=V_{L}$, then K and L have dilated vector summands.
(Firey, BLYZ)

- Affirmative in \mathbb{R}^{2}. (Gage, 1993; Stancu, 2003; Böröczky-LYZ, 2012)
- If L is a ball in \mathbb{R}^{n}, then the solution is affirmative. (Firey, 1974, worn stone problem. He asked if the symmetry assumption could be removed.)
- Let K be a smooth convex body in \mathbb{R}^{3} that contains the origin and B a ball in \mathbb{R}^{3} centered at the origin. If $V_{K}=V_{B}$ then $K=B$. (Andrews, 1999, curvature flow. Open in higher dimensions. Partial results (Guan-Ni, 2013))

Uniqueness of the log Minkowski problem

Conjecture 3. Let K and L be origin-symmetric convex bodies in \mathbb{R}^{n}. If $V_{K}=V_{L}$, then K and L have dilated vector summands.
(Firey, BLYZ)

- Affirmative in \mathbb{R}^{2}. (Gage, 1993; Stancu, 2003; Böröczky-LYZ, 2012)
- If L is a ball in \mathbb{R}^{n}, then the solution is affirmative. (Firey, 1974, worn stone problem. He asked if the symmetry assumption could be removed.)
- Let K be a smooth convex body in \mathbb{R}^{3} that contains the origin and B a ball in \mathbb{R}^{3} centered at the origin. If $V_{K}=V_{B}$ then $K=B$. (Andrews, 1999, curvature flow. Open in higher dimensions. Partial results (Guan-Ni, 2013))
- Conjecture 3 and solution to the log minimization problem implies Conjecture 2.

The B-conjecture of the log concave measures

Conjecture 4. If γ is a log concave measure in \mathbb{R}^{n} and L is an origin-symmetric convex body in \mathbb{R}^{n}, then the function,

$$
f(t)=\gamma\left(e^{t} L\right)
$$

is log concave in $(0, \infty)$.

The B-conjecture of the log concave measures

Conjecture 4. If γ is a \log concave measure in \mathbb{R}^{n} and L is an origin-symmetric convex body in \mathbb{R}^{n}, then the function,

$$
f(t)=\gamma\left(e^{t} L\right)
$$

is log concave in $(0, \infty)$.

- It is true for the Gaussian measure. (Banaszczyk, Latala (2002), Cordero-Fradelizi-Maurey (2004))

Equivalence

Conjectures 1-4 are equivalent.

Thank you!

