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Isoperimetric and functional inequalities

Isoperimetric inequalities for physical quantities like the lowest principal
frequency of vibrating clamped membranes, the electrostatic capacity or
the torsional rigidity
[FABER (1923)], [KRAHN (1924)], [SZEGÖ (1930)], [PÓLYA (1948)]

Best constant in Sobolev inequality
[AUBIN (1976)], [TALENTI (1976)]
. . .

All the above quantities decrease or increase under Schwarz symmetrization.
A key ingredient in finding sharp bounds is the classical isoperimetric property
of the ball.
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Isoperimetric and functional inequalities

First non trivial eigenvalue of the laplacian with homogeneous Neumann
boundary conditions

[SZËGO (1954)], [WEINBERGER (1956)]

Best constant in Sobolev-Poincaré inequalities

[CIANCHI (1989)], [ANDREU - MAZÓN - ROSSI (2004)], [GIRÃO - WETH
(2006)], [BREZIS - VAN SCHAFTINGEN (2008)], [LECKBAND (2010)],
[BOUCHEZ - VAN SCHAFTINGEN (2011)], [ESPOSITO - V.F. - KAWOHL -
NITSCH - TROMBETTI (2012)]
. . .

The reduction to the case of the ball, when possible, is related to isoperimetric
inequalities involving the relative perimeter.
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Sobolev-Poincaré inequality in R2

Sobolev-Poincaré inequality

‖Du‖(K ) ≥ C(K )‖u − ū‖2, u ∈ BV (K ),

where ‖Du‖(K ) is the total variation of u in K , ū is the mean value of u on K
and the best constant C(K ) is given by

C(K ) = |K |1/2 inf
G⊂K

0<|G|<|K |

Per(G; K )√
|G| |K \G|

.

[CIANCHI (1989)]

The constant C(K ) can be related to the relative isoperimetric constant

γ(K ) = inf
G⊂K

0<|G|<|K |

Per(G; K )

(min{|G|, |K \G|})1/2 .
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Sobolev-Poincaré inequality in R2

Theorem
If K is a convex set in R2, we have

γ(K ) ≤ γ(K ]).

where K ] is the disc such that |K ]| = |K |. Equality holds if and only if K is a
disc.

[ESPOSITO - V.F. - KAWOHL - NITSCH - TROMBETTI (2012)]

From the above theorem the following inequality follows:

C(K ) ≤ C(K ]).
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Poincaré trace inequalities in BV

Ω is a bounded connected open set in Rn, n ≥ 2.

If the boundary ∂Ω of Ω is smooth, then a linear operator is defined on the
space BV (Ω) of functions of bounded variation in Ω, which associates with
any function u ∈ BV (Ω) its (suitably defined) boundary trace ũ ∈ L1(∂Ω).

There exists a constant C, depending on Ω, such that

inf
c∈R
‖ũ − c‖L1(∂Ω) ≤ C(Ω)‖Du‖(Ω)

for every u ∈ BV (Ω).

[MAZ’YA (2011)]

We are interested in the minimization of C(Ω).
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Poincaré trace inequalities in BV

We observe that the previous inequality is the case p = 1 (in BV setting) of
the following one

inf
c∈R
‖ũ − c‖Lp(∂Ω) ≤ Cp(Ω)‖Du‖Lp(Ω) (1)

where the extremal functions are solutions to the Stekloff eigenvalue problem
∆pu = 0 in Ω,

Cp(Ω)|Du|p−2 ∂u
∂ν

= |u|p−2u on ∂Ω.

The problem of minimizing the constant Cp(Ω) in (1) has been solved only for
p = 2. The well known Weinstock-Brock inequality asserts that the (unique)
minimizer among sets with fixed measure is the ball.

[WEINSTOCK (1954)], [BROCK (2001)]
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Poincaré trace inequalities in BV

A property of L1 norms ensures that the infimum

inf
c∈R
‖ũ − c‖L1(∂Ω)

is attained when c agrees with the median of ũ on ∂Ω, given by

med∂Ωũ = sup{t ∈ R : Hn−1({ũ > t}) > Hn−1(∂Ω)/2}

[CIANCHI - PICK (2003)]

Thus, the above trace inequality is equivalent to

‖ũ −med∂Ωũ‖L1(∂Ω) ≤ Cmed(Ω)‖Du‖(Ω)

for every u ∈ BV (Ω), where Cmed(Ω) denotes the optimal – smallest possible
– constant which renders the inequality true.
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Poincaré trace inequalities in BV

The constant Cmed(Ω) can be characterized as a genuinely geometric quantity
associated with Ω, namely,

Cmed(Ω) = sup
E⊂Ω

min{Hn−1(∂ME ∩ ∂Ω) ,Hn−1(∂Ω \ ∂ME)}
Hn−1(∂ME ∩ Ω)

,

where the supremum is extended
over all measurable sets E ⊂ Ω with
positive Lebesgue measure and
∂ME denotes the essential boundary
of E .

[MAZ’YA (2011)]

E

Ω

∂Ω \ ∂ME

←− ∂ME ∩ Ω

∂ME ∩ ∂Ω
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Some related problems

In studying the quality of transportation networks like waterways, railroad
systems, or urban street systems one introduces the dilation of the network
which is defined as Cmed.

[EBBERS-BAUMANN - GRÜNE - KLEIN (2006)]

Also the definition of distortion of a curve is related to Cmed, and it turns out to
be useful in determining the thickest curve of prescribed length in a knot
class. Such curves are of interest to chemists and biologists modeling
polymers and DNA.

[KUSNER - SULLIVAN (1998)]
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Poincaré trace inequalities in BV
A stronger version of Poincaré trace inequality holds, when med∂Ωũ is
replaced with the mean value ũ∂Ω of ũ over ∂Ω, defined as

ũ∂Ω =
1

Hn−1(∂Ω)

∫
∂Ω

ũ dHn−1(x) .

The relevant inequality reads

‖ũ − ũ∂Ω‖L1(∂Ω) ≤ Cmv(Ω)‖Du‖(Ω)

for every u ∈ BV (Ω), where Cmv(Ω) is the optimal constant in the above
inequality.

Observe that one has
Cmed(Ω) ≤ Cmv(Ω)

for every domain Ω.

Both Cmed(Ω) and Cmv(Ω) are invariant under dilations of Ω, and hence they
only depend on the shape of Ω, but not on its size.
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Poincaré trace inequalities in BV

The constant Cmv(Ω) can be characterized as a genuinely geometric quantity
associated with Ω, namely,

Cmv(Ω) =
2

Hn−1(∂Ω)
sup
E⊂Ω

Hn−1(∂ME ∩ ∂Ω) Hn−1(∂Ω \ ∂ME)

Hn−1(∂ME ∩ Ω)
,

where the supremum is extended
over all measurable sets E ⊂ Ω with
positive Lebesgue measure.

[CIANCHI (2012)]
E

Ω

∂Ω \ ∂ME

←− ∂ME ∩ Ω

∂ME ∩ ∂Ω

V. Ferone (Università di Napoli Federico II) TRACE INEQUALITIES IN BV BIRS, Banff 12 / 32



Poincaré trace inequalities in BV

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, Crelle (to appear)])
We have:

Cmed(Ω) ≥
√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

. (2)

Moreover, equality holds in (2) if and only if Ω is equivalent to a ball, up to a
set of Hn−1 measure zero.

Remark. The constant which appears in (2) coincides with

nωn

2ωn−1
,

where ωn = π
n
2 /Γ(1 + n

2 ) is the Lebesgue measure of the unit ball in Rn. The
supremum which defines Cmed(Ω) is attained at a half-ball in this case.

[BOKOWSKI - SPERNER (1979)], [ESCOBAR (1999)], [MAZ’YA (2011)]
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Poincaré trace inequalities in BV
Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, Crelle (to appear)])
If n ≥ 3, then

Cmv(Ω) ≥
√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

, (3)

and the equality holds in (3) if and only if Ω is equivalent to a ball, up to a set
of Hn−1 measure zero.
If n = 2, then

Cmv(Ω) ≥ 2, (4)

and the equality holds in (4) if Ω is a disc. However there exist open sets Ω,
that are not equivalent to a disc, for which equality yet holds in (4).

Remark. Also in this case the lower bounds which appear in (3) and (4)
coincide with the values of Cmv computed on a ball. When n ≥ 3, Cmv is
attained at a half-ball, when n = 2, Cmv is attained in the limit, considering any
sequence of circular segments whose measure converges to 0 (on the
half-circle the ratio is π/2).
[CIANCHI (2012)]
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An example

Let us consider a stadium-shaped domain

SR,d = convex hull of two discs of equal radii R, with centers at distance d ,

with semi-perimeter p = d + πR.

In order to calculate Cmv(SR,d ) one can reduce the analysis to subsets of SR,d
bounded by a chord which is orthogonal to the flat parts of SR,d .
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An example

If d ≤ (4− π)R

Cmv(SR,d ) = 2. ` `d

R

-�

If d > (4− π)R

Cmv(SR,d ) =
d + πR

2R
> 2. ` `d

R

-�
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Further Poincaré trace inequalities in BV

We have considered also two “unconventional” Poincaré trace inequalities
where the mean value and the median of ũ on ∂Ω is substituted by the mean
value and the median of u on Ω.

Let us denote by Kmv (Ω) the optimal constant in the inequality

‖ũ −mvΩ(u)‖L1(∂Ω) ≤ Kmv (Ω)‖Du‖(Ω) (5)

for u ∈ BV (Ω).

Our first result asserts that Kmv (Ω) agrees with the isoperimetric constant

Hmv (Ω) = sup
E⊂Ω

|E |Hn−1(∂Ω \ ∂ME) + |Ω \ E |Hn−1(∂ME ∩ ∂Ω)

|Ω|Hn−1(∂ME ∩ Ω)
. (6)
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‖ũ −mvΩ(u)‖L1(∂Ω) ≤ Kmv (Ω)‖Du‖(Ω) (5)

for u ∈ BV (Ω).

Our first result asserts that Kmv (Ω) agrees with the isoperimetric constant

Hmv (Ω) = sup
E⊂Ω

|E |Hn−1(∂Ω \ ∂ME) + |Ω \ E |Hn−1(∂ME ∩ ∂Ω)

|Ω|Hn−1(∂ME ∩ Ω)
. (6)

V. Ferone (Università di Napoli Federico II) TRACE INEQUALITIES IN BV BIRS, Banff 17 / 32



Further Poincaré trace inequalities in BV

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])
Let Ω be an admissible domain in Rn, with n ≥ 2. Then

Kmv (Ω) = Hmv (Ω). (7)

Equality holds in (5) for some nonconstant function u if and only if the
supremum is attained in (6) for some set E. In particular, if E is an extremal
set in (6), then the function aχE + b is an extremal function in (5) for every
a ∈ R \ {0} and b ∈ R.
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Further Poincaré trace inequalities in BV
Analogously, let Kmed (Ω) be the optimal constant in the inequality

‖ũ −medΩ(u)‖L1(∂Ω) ≤ Kmed (Ω)‖Du‖(Ω) (8)

for u ∈ BV (Ω). The isoperimetric constant which now comes into play is
defined as

Hmed (Ω) = sup
E ⊂ Ω

|E| ≤ |Ω|/2

Hn−1(∂ME ∩ ∂Ω)

Hn−1(∂ME ∩ Ω)
. (9)

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])
Let Ω be an admissible domain in Rn, with n ≥ 2. Then

Kmed (Ω) = Hmed (Ω). (10)

Equality holds in (8) for some nonconstant function u if and only if the
supremum is attained in (9) for some set E. In particular, if E is an extremal in
(9), then the function aχE + b is an extremal in (8) for every a ∈ R \ {0} and
b ∈ R.
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Further Poincaré trace inequalities in BV
We have started to calculate the constants Kmv (Ω) and Kmed (Ω) when Ω = B
is a ball.

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])
Let n ≥ 2. Then

Hmv (B) =
nωn

2ωn−1
.

Half-balls are extremal sets for Kmv (B).

B
E

V. Ferone (Università di Napoli Federico II) TRACE INEQUALITIES IN BV BIRS, Banff 20 / 32



Further Poincaré trace inequalities in BV
We have started to calculate the constants Kmv (Ω) and Kmed (Ω) when Ω = B
is a ball.

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])
Let n ≥ 2. Then

Hmv (B) =
nωn

2ωn−1
.

Half-balls are extremal sets for Kmv (B).

B
E

V. Ferone (Università di Napoli Federico II) TRACE INEQUALITIES IN BV BIRS, Banff 20 / 32



Further Poincaré trace inequalities in BV

Theorem ([CIANCHI - V.F. - NITSCH - TROMBETTI, preprint])
Let n ≥ 2 . Then there exists a half-moon shaped set E which is extremal for
Hmed (B).

B
E
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An approach to the proof of the first result

Theorem
We have:

Cmed(Ω) ≥
√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

. (11)

Moreover, equality holds in (11) if and only if Ω is equivalent to a ball, up to a
set of Hn−1 measure zero.
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An approach to the proof of the first result

Suppose Ω is convex. We have to estimate from below the quantity

Cmed(Ω) = sup
E⊂Ω

min{Hn−1(∂ME ∩ ∂Ω) ,Hn−1(∂Ω \ ∂ME)}
Hn−1(∂ME ∩ Ω)

.

We denote by Hν the half-space, with boundary having normal vector ν, such
that

Hn−1(∂M(Hν ∩ Ω) ∩ ∂Ω) =
Per(Ω)

2
,

and we put
h(ν) = Hn−1(∂M(Hν ∩ Ω) ∩ Ω).

We can use E = Hν ∩ Ω in the ratio above to get

Cmed(Ω) ≥ Per(Ω)

2
1

min
H half-space

Hn−1(∂M (H∩Ω)∩∂Ω)= Per(Ω)
2

Hn−1(∂M(H ∩ Ω) ∩ Ω)
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An approach to the proof of the first result

On the other hand, using Cauchy formula, we have

min
H half-space

Hn−1(∂M (H∩Ω)∩∂Ω)= Per(Ω)
2

Hn−1(∂M(H ∩ Ω) ∩ Ω) ≤ 1
nωn

∫
Sn−1

h(ν) dν ≤

≤ 1
nωn

∫
Sn−1
Hn−1(ΠνΩ) dν =

1
nωn

ωn−1Per(Ω),

then
Cmed(Ω) ≥ nωn

2ωn−1

and the proof of the inequality is complete.
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An approach to the proof of the first result
If equality holds in the previous inequality, that is,

Cmed(Ω) = sup
E⊂Ω

min{Hn−1(∂ME ∩ ∂Ω) ,Hn−1(∂Ω \ ∂ME)}
Hn−1(∂ME ∩ Ω)

=
nωn

2ωn−1
,

all the inequalities used above hold as equalities and we have

Hn−1(∂M(Hν ∩ Ω) ∩ Ω) = Hn−1(Πν(Ω)) = Per(Ω)
ωn−1

nωn
, ∀ν ∈ Sn−1.

It follows that Ω is, in fact, strictly
convex. Indeed, assume, by
contradiction, that there exists a
straight line intersecting ∂Ω in a
whole segment Σ.
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nωn
, ∀ν ∈ Sn−1.

It follows that Ω is, in fact, strictly
convex. Indeed, assume, by
contradiction, that there exists a
straight line intersecting ∂Ω in a
whole segment Σ. It results

Hn−1(∂M(Hν∩Ω)∩Ω) < Hn−1(Πν(Ω)).

Hν ∩ Ω

Ω

Σ

↖
∂M(Hν ∩ Ω) ∩ Ω
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An approach to the proof of the first result

By the strict convexity of Ω, we have:

Hn−1(Iν(Ω)) = Hn−1(∂Ω ∩ Hν) = Per(Ω)/2, ∀ν ∈ Sn−1,

where Iν(Ω) denotes the illuminated portion of Ω. In particular,

Hn−1(Iν(Ω)) = Hn−1(I−ν(Ω)), ∀ν ∈ Sn−1.

The above property implies that Ω is centrally symmetric.

Finally, on calling B the ball with the same perimeter as Ω, we infer that

Hn−1(Πν(Ω)) = Hn−1(Πν(B)), ∀ν ∈ Sn−1.

Hence, we conclude that Ω is a ball.

(The last two assertions come from well known results about convex bodies
[GROEMER (1996)])
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The general case
If we do not suppose that Ω is convex the Cauchy surface area formula cannot
be used and a weaker version of it is needed.

Theorem ([FEDERER (1969)], [CIANCHI - V.F. - NITSCH - TROMBETTI, Crelle (to

appear)])
Let G be a set of finite perimeter and finite Lebesgue measure in Rn. Then

Per(G) =
1

2ωn−1

∫
Sn−1

(∫
ν⊥
H0((∂MG)νz ) dHn−1(z)

)
dHn−1(ν), (12)

where we use the notation Eν
z = {r ∈ R : z + rν ∈ E}. In particular,

Per(G) ≥ 1
ωn−1

∫
Sn−1
Hn−1(Πν(G)+) dν , (13)

where Πν(E)+ = {z ∈ ν⊥ : L1(Eν
z ) > 0}. Moreover, the following facts are

equivalent:
(i) The equality holds in (13);
(ii) G is equivalent to a convex set, up to sets of Lebesgue measure zero;
(iii) The set G1 of points of density 1 with respect to G is convex.
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The general case

G

z

(∂MG)νz
6ν

C
C
C
C
C
C
C
CO

@
@I

∫
ν⊥
H0((∂MG)νz ) dHn−1(z) ≥ 2Hn−1(Πν(G)+).
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An approach to the proof of the second result

Theorem
If n ≥ 3, then

Cmv(Ω) ≥
√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

, (14)

and the equality holds in (14) if and only if Ω is equivalent to a ball, up to a set
of Hn−1 measure zero.
If n = 2, then

Cmv(Ω) ≥ 2, (15)

and the equality holds in (15) if Ω is a disc. However there exist open sets Ω,
that are not equivalent to a disc, for which equality yet holds in (15).
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An approach to the proof of the second result

When n ≥ 3, we have observed that

Cmv(Ω) ≥ Cmed(Ω)

≥
√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

, (16)

and the inequality is proved. The assertion concerning the case of equality
follows as well.

When n = 2, inequality (16) still holds true, but the right-hand side does not
coincide with the constant Cmv computed on a ball. Indeed,

√
π

n
2

Γ( n+1
2 )

Γ( n+2
2 )

∣∣∣∣∣
n=2

=
π

2
< 2.
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An approach to the proof of the second result
In order to prove that, when n = 2, Cmv(Ω) ≥ 2 we consider a reference frame
such that the origin O belongs to the boundary of Ω and

Ω ⊂ {(x , y) ∈ R2 : y > 0}.

Ω

O
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An approach to the proof of the second result
In order to prove that, when n = 2, Cmv(Ω) ≥ 2 we consider a reference frame
such that the origin O belongs to the boundary of Ω and

Ω ⊂ {(x , y) ∈ R2 : y > 0}.

Given ε > 0, consider the open set

Ω(ε) = {(x , y) ∈ Ω : y < ε}.

We have:

H1(∂MΩ(ε) ∩ Ω) ≤ H1(∂MΩ(ε) ∩ ∂Ω)

and

lim
ε→0+

H1(∂Ω \ ∂MΩ(ε)) = Per(Ω).

. . . . . . . . . . .

Ω

O
ε6?

Ω(ε)
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An approach to the proof of the second result

It follows:

Cmv(Ω) ≥ lim
ε→0+

2
H1(∂Ω)

H1(∂Ω(ε) ∩ ∂Ω)H1(∂Ω \ ∂Ω(ε))

H1(∂Ω(ε) ∩ Ω)

≥ lim
ε→0+

2H1(∂Ω \ ∂Ω(ε))

H1(∂Ω)
= 2 .

V. Ferone (Università di Napoli Federico II) TRACE INEQUALITIES IN BV BIRS, Banff 32 / 32


