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Let Ω be a given domain of Rd that we

want to thermically insulate adding around

its boundary a given amount of insulating

material as a thin layer (variable thickness).

• How to measure the efficiency of the de-

sign?

• Is there an optimal way to arrange the in-

sulating material around ∂Ω?

• If also Ω may vary, is there an optimal do-

main Ω among the ones of prescribed Lebesge

measure?
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Two different criteria are possible.

1. Put in Ω a heat source, for instance f =

1, wait enough time, and then measure the

(average) temperature.

2. Fix an initial temperature u0, no heat

source, and see how quick the temperature

decays in time.

We put now the problems in a precise math-

ematical form.
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• Assume that in Ω the conductivity coeffi-

cient is 1, while it is δ in the insulating ma-

terial.

• Describe the shape of the insulator as

Σε =
{
σ + tν(σ) : σ ∈ ∂Ω, 0 ≤ t < εh(σ)

}
.

where the function h takes into account the

variable thickness. The temperature u(t, x)

is assumed to vanish outside Ω ∪Σε.

• Denote by f ∈ L2(Ω) the heat sources.
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Then as t→∞ the temperature u(t, x) solves

the stationary elliptic problem

−∆u = f in Ω

−∆u = 0 in Σε

u = 0 on ∂(Ω ∪Σε)

∂u−

∂ν
= δ

∂u+

∂ν
on ∂Ω.

or equivalently minimizes on H1
0(Ω∪Σε) the

functional

Fε,δ(u) =
1

2

∫
Ω
|∇u|2 dx+

δ

2

∫
Σε

|∇u|2 dx−
∫

Ω
fu dx.
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The asymptotic behavior of the functionals
Fε,δ as ε and δ tend to zero was studied in a
great generality (general functionals) in

E. Acerbi, G. Buttazzo: Reinforcement prob-
lems in the calculus of variations. Ann. Inst.
H. Poincaré Anal. Non Linéaire, 3 (1986),
273–284.

previous analysis in the Dirichlet energy case:

H. Brezis, L. Caffarelli, A. Friedman: Re-
inforcement problems for elliptic equations
and variational inequalities. Ann. Mat. Pura
Appl., 123 (1980), 219–246.
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The only interesting case is ε ≈ δ in which
the Γ-limit functional is (we stress the de-
pendence on h)

F (u, h) =
1

2

∫
Ω
|∇u|2 dx+

1

2

∫
∂Ω

u2

h
dHd−1−

∫
Ω
fu dx.

Therefore the stationary temperature u solves
the minimum problem

E(h) = min
{
F (u, h) : u ∈ H1(Ω)

}
or equivalently the PDE (of Robin type)

−∆u = f in Ω

h
∂u

∂ν
+ u = 0 on ∂Ω.
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We want to find the function h which pro-
vides the best insulating performances, once
the total amount of insulator is fixed, that is
we consider the class

Hm =
{
h : ∂Ω→ R, h ≥ 0,

∫
∂Ω

h dHd−1 = m

}
.

In this first category of problems we minimize
the total energy E(h), which can be written
in terms of the solution u of the PDE above,
multiplying both sides of the PDE by u and
integrating by parts:

E(h) = −
1

2

∫
Ω
fu dx.
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Thus, if the heat sources are uniformly dis-

tributed (i.e. f = 1), minimizing E(h) corre-

sponds to maximizing the average tempera-

ture in Ω. Therefore our first optimization

problem can be written as

min
{
E(h) : h ∈ Hm

}
.

This problem was studied in

G. Buttazzo: Thin insulating layers: the op-

timization point of view. Oxford University

Press, Oxford (1988), 11–19.



The second optimization problem aims to

minimize the decay in time of the temper-

ature, once an initial condition is fixed, with

no heat sources.

It is well known that, by a Fourier analysis,

the long time behavior of the temperature

u(t, x) goes as e−tλ(h), where λ(h) is the first

eigenvalue of the operator A written in a

weak form as

〈Au, φ〉 =
∫

Ω
∇u∇φ dx+

∫
∂Ω

uφ

h
dHd−1.
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The eigenvalue λ(h) is given by the Rayleigh

quotient

λ(h) = inf
u∈H1(Ω)

{∫
Ω |∇u|2 dx+

∫
∂Ω u2/h dHd−1∫

Ω u2 dx

}
and therefore, the second optimization prob-

lem we deal with is

min
{
λ(h) : h ∈ Hm

}
.

We will see that the two problems behave in

a quite different way.
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This second category of problems was pro-

posed in

A. Friedman: Reinforcement of the princi-

pal eigenvalue of an elliptic operator. Arch.

Rational Mech. Anal., 73 (1980), 1–17.

A partial answer (valid only in some regimes

of large values of m) is in

S.J. Cox, B. Kawohl, P.X. Uhlig: On the

optimal insulation of conductors. J. Optim.

Theory Appl., 100 (1999), 253–263.
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Problem 1: energy optimization

The problem we deal with is

min
h∈Hm

min
u∈H1(Ω)

{
1

2

∫
Ω
|∇u|2 dx+

1

2

∫
∂Ω

u2

h
dHN−1 −

∫
Ω
fu dx

}
which, interchanging the two min, gives

min
u∈H1(Ω)

min
h∈Hm

{
1

2

∫
Ω
|∇u|2 dx+

1

2

∫
∂Ω

u2

h
dHN−1 −

∫
Ω
fu dx

}
.

The minimum with respect to h is easy to
compute explicitly and, for a fixed u ∈ H1(Ω),
is reached for

h = m
|u|∫

∂Ω |u| dHd−1
.
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Then, problem 1 can be rewritten as

min
u∈H1(Ω)

{
1

2

∫
Ω
|∇u|2 dx+

1

2m

( ∫
∂Ω
|u| dHd−1

)2
−
∫

Ω
fu dx

}
.

The existence of a solution for this problem

follows by the Poincaré-type inequality∫
Ω
u2 dx ≤ C

[∫
Ω
|∇u|2 dx+

( ∫
∂Ω
|u| dHd−1

)2
]

which implies the coercivity of the functional

above. The solution is also unique, thanks

to the result below.
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Theorem Assume Ω is connected. Then the
functional

F (u) =
1

2

∫
Ω
|∇u|2 dx+

1

2m

( ∫
∂Ω
|u| dHd−1

)2

is strictly convex on H1(Ω), hence for every
f ∈ L2(Ω) the minimization problem above
admits a unique solution.

Corollary By uniqueness, if Ω = BR in Rd

and f = 1 the optimal solution u is radial:

u(r) =
R2 − r2

2d
+ c

(
c =

m

d2ωdR
d−2

)
.

The optimal thickness hopt is then constant.
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If Ω is not connected the optimal insulation

strategy is different. Let Ω = BR1
∪ BR2

in

Rd (union of two disjoint balls), and f = 1.

• If R1 = R2 = R any choice of h constant

around BR1
and on BR2

is optimal;

• if R1 6= R2 then the optimal choice is

to concentrate all the insulator around the

largest ball, with constant thickness, leaving

the smallest ball unprotected.
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Problem 2: eigenvalue optimization

The problem we deal with is now

min
h∈Hm

min
u∈H1(Ω)

{∫
Ω |∇u|2 dx+

∫
∂Ω u2/h dHd−1∫

Ω u2 dx

}
and again, interchanging the two min:

min
u∈H1(Ω)

min
h∈Hm

{∫
Ω |∇u|2 dx+

∫
∂Ω u2/h dHd−1∫

Ω u2 dx

}
.

The min in h is reached again for

h = m
|u|∫

∂Ω |u| dHd−1

and so we obtain the optimization problem
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min
u∈H1(Ω)


∫
Ω |∇u|2 dx+ 1

m

( ∫
∂Ω |u| dHd−1

)2

∫
Ω u2 dx

 .

Again, the existence of a solution ū easily fol-

lows from the direct methods of the calculus

of variations, and the optimal hopt is

hopt = m
ū∫

∂Ω ū dHd−1
.

Question: If Ω is a ball, is hopt constant?

19



Note that the convexity of the auxiliary prob-

lem does not occur anymore.

Theorem Let Ω = BR. There exists m0 > 0

such that:

• if m > m0 ū is radial, hence hopt is constant;

• if m < m0 ū is not radial, hence hopt is not

constant.

Let us give a quick idea of the proof of the

symmetry breaking (the first part is more in-

volved).
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Set for every m > 0

Jm(u) =

∫
Ω |∇u|2 dx+ 1

m

( ∫
∂Ω |u| dσ

)2

∫
Ω u2 dx

;

λm = min
{
Jm(u) : u ∈ H1(Ω)

}
;

λN = min
{
J∞(u) : u ∈ H1(Ω),

∫
Ω
u dx = 0

}
;

first nonzero Neumann eigenvalue of −∆ ;

λD = min
{
J∞(u) : u ∈ H1

0(Ω)
}

;

first Dirichlet eigenvalue of −∆ .

21



Observe that λm is decreasing in m and

λm → 0 as m→∞,
λm → λD as m→ 0.

The Neumann eigenvalue λN is then in be-

tween and λm0 = λN for a suitable m0. This

m0 is the threshold value in the statement.

If m < m0 assume by contradiction that ū is

radial; we take ū+εv as a test function, with

v the first Neumann eigenfunction. We may

take
∫
B ū

2 dx =
∫
B v

2 dx = 1.
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We have that ū and v are orthogonal, and
also that

∫
∂B v dσ = 0. Then

λm = Jm(u) ≤ Jm(u+ εv) =
λm + ε2λN

1 + ε2

which implies λm ≤ λN in contradiction to
the fact that λm > λN for m < m0.

The conclusion for a circular domain is that
the insulation giving the slowest decay of
the temperature is by a constant thickness if
we have enough insulating material. On the
contrary, for a small amount of insulator, the
best thickness in nonconstant.
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• When the dimension d = 1 no symmetry

breaking occurs. In fact when d = 1 the first

nontrivial Neumann eigenvalue λN coincides

with the first Dirichlet eigenvalue λD.

• The shape optimization problem related to

problems 1 and 2:

min
{
E(h,Ω) : h ∈ Hm, |Ω| = M

}
min

{
λ(h,Ω) : h ∈ Hm, |Ω| = M

}
look very difficult and we do not have at the

moment an existence result of an optimal

shape.
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It would be very interesting to prove (or dis-

prove) that for both problems an optimal

shape exists and that it is a ball in the first

case while it is not a ball (for small m) in the

second case.
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