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(€2 need to be connected)

we have
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“Why this weird zero-mean condition?”

Case p=2
The familiar Poincaré inequality without boundary conditions is

CQ/|U—UQ|2§/|VU|2
Q Q
/|u—uQ|2:min/]u—t|2
Q teR Jo

Natural analogue for p # 2

Ca mln/ \u—t]p</ |VulP (%)

The optimal t, € R is such that

Q

the inequality () is equivalent to the one previously mentioned

Now recall that
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Anticipating the conclusions
We will see that

Lp =~ (diameter)™P
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Remarks

> the infimum is attained on bounded convex sets, by
Rellich-Kondrasov Theorem

» The functions attaining the infimum 1,(S2) verify

—Apu = 11p(Q) |u/P~2u 4+ Neumann boundary conditions

where —A,u = —div (|Vu|P~2 Vu) is the p—Laplacian

In other words, they are Neumann eigenfunctions of the
p—Laplacian
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A minmax characterization of 1,

1p(€2) can be seen also as the second critical value of

UH/Q\WP on S,,(Q):{ue WhP(Q) - /Q|u|p:1}

Proposition
Consider the set of continuous loops

M={y:S' = 8,(Q) : odd & continuous}

then
pp(2) = inf  max /|Vu|’J

Y€l u€lm(y)

Remark

This is the non-Hilbertian generalization of the minmax
characterization of the first nontrivial Neumann eigenvalue of
the Laplacian (seen in Dorin’s talk)
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NO if Q is not connected, because 11,(2) = 0 (as in Dorin’s talk)

NO if Q connected and not convex (see figure)

.|

Figure : pp(Q:) = 0

YES if Q convex bounded (Payne-Weinberger,
Ferone-Nitsch-Trombetti)

Tp P
Q) > | —=
#p(82) (diam(Q))
Estimate is sharp for the sequence of collapsing rectangles

R, =10,1] x [0,n7"]
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Szegd-Weinberger
For a general open set

@) < o) ()"

Known for p =2 only! For p # 2 is unknown (some results for
p =1 and p = co by Esposito-Ferone-Kawohl-Nitsch-Trombetti)

This is not always useful!

If 2] < 1, the upper bound blows-up. But for the sequence of
collapsing rectangles

R, =0,1] x [0, nfl] we have  sup pp(Rp) < +o0
neN
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Question: for a general 1 < p < oo

Maybe an upper bound in terms of the diameter only? At least for
convex sets

Notation
For an open set Q C RV, we set

Ap(2) = inf {/ |VulP /|u|f’:1}
uewy (@) UJa Q

First Dirichlet eigenvalue of the p—Laplacian



2. A sharp upper bound



A sharp upper bound



A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo, for every Q C RN convex we have

(@) < Mp(eat) ()



A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo, for every Q C RN convex we have

(@) < Mp(eat) ()

Inequality is strict, but the estimate is sharp.




A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo, for every Q C RN convex we have

(@) < Mp(eat) ()

Inequality is strict, but the estimate is sharp.

Indeed, there exist {Dp}nen € RN open convex sets such that

1. diam(D,) =2
2. D, collapse to a segment

3. pp(Dn) = Ap(Br) (B1 is the ball of radius 1)
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on each cap, we place the Dirichlet eigenfunction F of B;

more precisely, we take the test function
u=F(x—x0)1lq, — cF(x —x1)1lq,

with ¢ > 0 constant such that [, |u[P™?u =0

| wepse [ wep
Qo Q1

1p(82) <
NG ANGE
Q o

(recall that F is radial)

of course

we only need to estimate the numerator
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» for the numerator, we have

/ \VFyP—/ div (F|VF|P72VF) — /FAF
Qo

_/ F\vaMa + Ap(B1) / |F|P
QoNoN

(see picture)
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> repeat the same trick for the other spherical cap Q3

> in conclusion, we get

| wrpe [ wep
np() < = -
/ F e | 1P
p(B1) / |F|P + cP Ap(B1) / |F|P

INGETNGE
Qo (931

» first inequality is strict, since the test function can not be
an eigenfunction (by Harnack's inequality) O

= )‘p(Bl)
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The previous inequality is strict because of two facts:

1. by convexity, we had
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/ FIVFP~ <0
QN0 Ovg

To be sharp, one should have on the part of Q2

which intersects the caps
By radiality of F, this part of 99 should be “conical”

2. by convexity, the two caps can not cover the whole Q. There
is a region where the test function u vanishes, i.e. it can not
solve the equation

To be sharp, one should make  “collapse”
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Proof of the sharpness.

» take the following sequence of “shrinking kites” {Dj,}nen

» vague idea: the variational characterization of 1, (D)
converges to the minimization of a 1D weighted Rayleigh
quotient, which is the same defining the first Dirichlet
eigenfunction on the ball (which is radial, i.e. 1D)
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A shape optimization problem (without solution)

Corollary
The shape optimization problem

sup{pp(2) : Q convex, diam(Q2) = c}
does not admit a solution. A maximizing sequence is given by

the “shrinking kites” {Dp}pnen

Proof.
From the previous estimate, we have

2o

1p(€2) < Ap(ball of radius 1) <i>

The upper bound on the right is asymptotically attained by the
sequence {Dp}nen O
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Summary

e Both shape optimization problems

sup{/p(2) : Q convex, diam(Q2) = c}
and

inf{up(Q) : Q convex, diam(Q) = c}
do not admit solution

e In both cases, optimizing sequences undergo a concentration
phenomenon and collapse to a segment
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Comparison of constants

Corollary (weak Szegé-Weinberger)
Forl < p < oo and Q C RN convex, we have

1p(£2) < Ap(R2)
Proof-

Use the previous estimate +  “Faber-Krahn with diameter” [J

Remark
In the quadratic case p = 2, the previous is a consequence of

2
12(2) < pa(B) (:a) § (Szeg6-Weinberger)
2
[BI\ ™
A2(Q) > \a(B) o] (Faber-Krahn)

A clue of a potentially exhisting Szegé-Weinberger for p # 2
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A lower bound

We mentioned the sharp lower bound

We show how to prove a weaker result

Theorem
Let1 < p < oo and Q € RN an open bounded convex set. Then
p—1 P
20 Q
(dmm(Q)) < up(2)
Remark

The estimate is not sharp, but the proof is however interesting. It
is actually a corollary of a more general interpolation inequality,
proved by Optimal Transport

The proof uses Optimal Transport tools, so let us recall...
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Let Q ¢ RN be a compact convex set

Definition (Wasserstein distance)
If po, p1 are probabilities on €, we set

M(po, p1) = {*y probability on Q x Q with marginals pg and ,01}

Then for 1 < o < oo we define the a— Wasserstein distance

1
Wa(po, p1) := min { (/ [x —y[* dv) Ly € ”(po,pl)}
QAxQ

Definition (Wasserstein space)

“space of probabilities on 2

Wa(Q) = endowed with the a—Wasserstein distance”

(This is a complete and separable metric space)
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Theorem (Wasserstein geodesics)

Let 1 < oo < 0o and let Q € RN be an open bounded convex set.
For every po,p1 € W, (Q2) there exists an absolutely
continuous curve {it}cp0,1] in Wa(Q2) and a vector field

v € LY(Q; pt) such that

> po=po and p1=p1;
> the continuity equation holds in distributional sense
8t/JJt + diV(Vt [Lt) = 0, in Q

> we have

1
1 1 o
[ e = ([ ol ) = Waton. )

Remark
The curve p; is a geodesic in W, (2), driven by the velocity field v
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Theorem
Let1 < p < oo and Q € RN an open bounded convex set. Then

<dzm(g)> < 1p(®)



An expedient estimate



An expedient estimate

Lemma (B.-Santambrogio)
letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

/ ’ q—1
looll?, . + [loLll?., p
/fo’(ﬂo —p1) £ Wes (0, 1) [ V6usqey | — Bt

p—




An expedient estimate

Lemma (B.-Santambrogio)
letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

/ ’ q—1
looll?, . + [loLll?., p
/fo’(ﬂo —p1) £ Wes (0, 1) [ V6usqey | — Bt

p—

Proof.



An expedient estimate

Lemma (B.-Santambrogio)

letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

qg—1
P

lpoll%, o + loall%,
/QQS(PO —p) < Wp%q(/?o’m) HV(bHLp(Q) L7(2) 5 Ly (Q)

Proof.
© Use Wasserstein geodesics and the continuity equation



An expedient estimate

Lemma (B.-Santambrogio)
letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

/ ’ q—1
looll?, . + [loLll?., p
/fo’(ﬂo —p1) £ Wes (0, 1) [ V6usqey | — Bt

p—

Proof.

© Use Wasserstein geodesics and the continuity equation

/¢(P0—P1)=/01/(V¢,vt> dpe dt



An expedient estimate

Lemma (B.-Santambrogio)
letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

/ ’ q—1
looll?, . + [loLll?., p
/fo’(ﬂo —p1) £ Wes (0, 1) [ V6usqey | — Bt

p—

Proof.

© Use Wasserstein geodesics and the continuity equation

1 1
— = v d dt< V p P
Jowo—m = [ [V dude<1vollz [ il ey,



An expedient estimate
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An expedient estimate

Lemma (B.-Santambrogio)
letl<p<ooandl<qg<p. Let Q C RN be an open convex
set. Let ¢ smooth and let pg, p1 probabilities. Then

/ ’ g—1
looll?, . + [loLll?., p
/QQS(PO —p) < WLq(POJ)l) HV(bHLp(Q) L7(2) 5 Ly (Q)

p—

Proof.

© Use Wasserstein geodesics and the continuity equation

1 1
Jowo—m= [ [ o ducde<iolz, [ Il e,
<[vell, 2., Wse, (o p1)

o Use Holder inequality and geodesic convexity of t — ||t [
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Transport proof of the lower bound
Proof.

» Take ¢ such that /|¢>|"_2¢ = 0. In particular

J1o26, = [1ole200 =3 [1o17

> define
B
[16m20- " oo

and optimally transport pg on p1

> i.e. use the expedient estimate with py and p1, observe that
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> to eliminate the Wasserstein distance, we use that Q is
bounded

W_s_(po, p1) < diam(Q)
p—q

“the maximal displacement of mass is not longer than the
diameter”

» simple manipulations lead to the Nash-type inequality

p—q+1 dlam(Q)p . pP—q
(/QW) < diamF /Q|v¢" </Q!¢" )

» take the limit g * p to conclude

Remark
Taking g * p implies that we use the expedient estimate with

W (po, p1)

i.e. we use the co—Wasserstein distance to prove the estimate
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A more general result

We can use the previous proof even for unbounded convex sets
(for example RN) and obtain the following interpolation
functional inequality

Theorem [B.-Santambrogio]

Letl<p<ooandl<q<p. Let Q C RN be an open convex
set. For every ¢ such that

[l 2o—0
Q
we have

p—q+1 p—q
(Lrol) " <2 (o, [ 1x-xalsloe)" " [ o

Remark
The lower bound on 1, and the Nash-type inequality are
consequences of this general result



4. Some generalizations



General Poincaré constants



General Poincaré constants

If 1 < g < p*, we can define

. . P . q __ q—2,, _
@)= ot [ vapacs =1, [ rzu—of



General Poincaré constants

If 1 < g < p*, we can define

. . P . q __ q—2,, _
@)= ot [ vapacs =1, [ rzu—of

This is the sharp constant in

P
Ca min </ |u—t|q)" g/ IV ulP
teR Q Q



General Poincaré constants

If 1 < g < p*, we can define

. . P . q __ q—2,, _
@)= ot [ vapacs =1, [ rzu—of

This is the sharp constant in

4
Ca min </ |u—t|q)" g/ IV ulP
teR Q Q
Question

Is it still true that )
Lipq ~ (diameter)V PN g 2



General Poincaré constants

If 1 < g < p*, we can define

. . P . q __ q—2,, _
@)= ot [ vapacs =1, [ rzu—of

This is the sharp constant in

4
Ca min </ yu—t|q)" g/ IV ulP
teR Q Q
Question

Is it still true that
N=p=Ng 7

lp,qg = (diameter) !
NO!
For every sequence of convex sets {Qp,}pen with |Q2,] — 0 and
diam(Q,) >c >0

lim 11p,q($20) =

n—oo

0, ifg>p
400, ifg<p



Upper bound for g > p

By using the same proof of the case p = g



Upper bound for g > p

By using the same proof of the case p = g

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo and g > p, for every Q C RN convex we have

diam(bal)\ ~NtPN G
tp,q(2) < Ap q(ball) <d1an§(Q)))



Upper bound for g > p

By using the same proof of the case p = g

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo and g > p, for every Q C RN convex we have

diam(bal)\ ~NtPN G
tp,q(2) < Ap q(ball) <d1anE(Q)))

and the estimate is sharp!



Upper bound for g > p

By using the same proof of the case p = g

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo and g > p, for every Q C RN convex we have

diam(bal)\ ~NtPN G
tp,q(2) < Ap q(ball) <d1anE(Q)))

and the estimate is NOT sharp!



Upper bound for g > p

By using the same proof of the case p = g

Theorem [B.-Nitsch-Trombetti]
Let1 < p < oo and g > p, for every Q C RN convex we have

diam(bal)\ ~NtPN G
tp,q(2) < Ap q(ball) <d1an§(Q)))

and the estimate is NOT sharp!

Theorem [B.-Nitsch-Trombetti]
For g > p, the shape optimization problem

sup{itp,q(2) : Q convex, diam(Q2) = c}

now has a solution



Many thanks for your kind attention

“Discipline is never an end in itself, only a means to anend '’ (R. Fripp)
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