Bounds for Poincaré constants on convex sets

Lorenzo Brasco
Università degli Studi di Ferrara
lorenzo.brasco@unife.it - http://cvgmt.sns.it/person/198/

Banff, 11 July 2016

References

Some of the results here presented are contained in

- B. - Nitsch - Trombetti, Comm. Contemp. Math. (2015)
- B. - Santambrogio, Springer Proc. Math. Stat. (2016)

1. Poincaré constants
2. A sharp upper bound
3. A lower bound by Optimal Transport
4. Some generalizations

Poincaré inequalities

We take $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ smooth and bounded

Poincaré inequalities

We take $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ smooth and bounded
Functions vanishing at the boundary
For every $u \in W_{0}^{1, p}(\Omega)$

$$
C_{\Omega} \int_{\Omega}|u|^{p} \leq \int_{\Omega}|\nabla u|^{p}
$$

Poincaré inequalities

We take $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ smooth and bounded
Functions vanishing at the boundary
For every $u \in W_{0}^{1, p}(\Omega)$

$$
C_{\Omega} \int_{\Omega}|u|^{p} \leq \int_{\Omega}|\nabla u|^{p}
$$

Functions with vanishing means
For every $u \in W^{1, p}(\Omega)$ such that

$$
\int_{\Omega}|u|^{p-2} u=0
$$

we have

$$
C_{\Omega} \int_{\Omega}|u|^{p} \leq \int_{\Omega}|\nabla u|^{p}
$$

Poincaré inequalities

We take $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ smooth and bounded
Functions vanishing at the boundary
For every $u \in W_{0}^{1, p}(\Omega)$

$$
C_{\Omega} \int_{\Omega}|u|^{p} \leq \int_{\Omega}|\nabla u|^{p}
$$

Functions with vanishing means
For every $u \in W^{1, p}(\Omega)$ such that

$$
\int_{\Omega}|u|^{p-2} u=0
$$

we have

$$
C_{\Omega} \int_{\Omega}|u|^{p} \leq \int_{\Omega}|\nabla u|^{p}
$$

(Ω need to be connected)
"Why this weird zero-mean condition?"
"Why this weird zero-mean condition?"
Case $p=2$
The familiar Poincaré inequality without boundary conditions is

$$
C_{\Omega} \int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2} \leq \int_{\Omega}|\nabla u|^{2}
$$

"Why this weird zero-mean condition?"
Case $p=2$
The familiar Poincaré inequality without boundary conditions is

$$
C_{\Omega} \int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2} \leq \int_{\Omega}|\nabla u|^{2}
$$

Now recall that

$$
\int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2}=\min _{t \in \mathbb{R}} \int_{\Omega}|u-t|^{2}
$$

"Why this weird zero-mean condition?"
Case $p=2$
The familiar Poincaré inequality without boundary conditions is

$$
C_{\Omega} \int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2} \leq \int_{\Omega}|\nabla u|^{2}
$$

Now recall that

$$
\int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2}=\min _{t \in \mathbb{R}} \int_{\Omega}|u-t|^{2}
$$

Natural analogue for $p \neq 2$

$$
\begin{equation*}
C_{\Omega} \min _{t \in \mathbb{R}} \int_{\Omega}|u-t|^{p} \leq \int_{\Omega}|\nabla u|^{p} \tag{*}
\end{equation*}
$$

"Why this weird zero-mean condition?"

Case $p=2$
The familiar Poincaré inequality without boundary conditions is

$$
C_{\Omega} \int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2} \leq \int_{\Omega}|\nabla u|^{2}
$$

Now recall that

$$
\int_{\Omega}\left|u-\bar{u}_{\Omega}\right|^{2}=\min _{t \in \mathbb{R}} \int_{\Omega}|u-t|^{2}
$$

Natural analogue for $p \neq 2$

$$
\begin{equation*}
C_{\Omega} \min _{t \in \mathbb{R}} \int_{\Omega}|u-t|^{p} \leq \int_{\Omega}|\nabla u|^{p} \tag{*}
\end{equation*}
$$

The optimal $t_{u} \in \mathbb{R}$ is such that

$$
\int_{\Omega}\left|u-t_{u}\right|^{p-2}\left(u-t_{u}\right)=0
$$

the inequality $(*)$ is equivalent to the one previously mentioned

Goal of the talk

Goal of the talk

Discuss (sharp or not) geometric estimates on the optimal Poincaré constant

$$
\mu_{p}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{p}=1, \int_{\Omega}|u|^{p-2} u=0\right\}
$$

for convex sets

Goal of the talk

Discuss (sharp or not) geometric estimates on the optimal Poincaré constant
$\mu_{p}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{p}=1, \int_{\Omega}|u|^{p-2} u=0\right\}$
for convex sets
Anticipating the conclusions
We will see that

$$
\mu_{p} \simeq(\text { diameter })^{-p}
$$

Remarks

- the infimum is attained on bounded convex sets, by Rellich-Kondrašov Theorem

Remarks

- the infimum is attained on bounded convex sets, by Rellich-Kondrašov Theorem
- The functions attaining the infimum $\mu_{p}(\Omega)$ verify

Remarks

- the infimum is attained on bounded convex sets, by Rellich-Kondrašov Theorem
- The functions attaining the infimum $\mu_{p}(\Omega)$ verify
$-\Delta_{p} u=\mu_{p}(\Omega)|u|^{p-2} u \quad+\quad$ Neumann boundary conditions

Remarks

- the infimum is attained on bounded convex sets, by Rellich-Kondrašov Theorem
- The functions attaining the infimum $\mu_{p}(\Omega)$ verify
$-\Delta_{p} u=\mu_{p}(\Omega)|u|^{p-2} u \quad+\quad$ Neumann boundary conditions
where $-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian

Remarks

- the infimum is attained on bounded convex sets, by Rellich-Kondrašov Theorem
- The functions attaining the infimum $\mu_{p}(\Omega)$ verify
$-\Delta_{p} u=\mu_{p}(\Omega)|u|^{p-2} u \quad+\quad$ Neumann boundary conditions
where $-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian
In other words, they are Neumann eigenfunctions of the p-Laplacian

A minmax characterization of μ_{p}

A minmax characterization of μ_{p}

$\mu_{p}(\Omega)$ can be seen also as the second critical value of

$$
u \mapsto \int_{\Omega}|\nabla u|^{p} \quad \text { on } \quad \mathcal{S}_{p}(\Omega)=\left\{u \in W^{1, p}(\Omega): \int_{\Omega}|u|^{p}=1\right\}
$$

A minmax characterization of μ_{p}

$\mu_{p}(\Omega)$ can be seen also as the second critical value of

$$
u \mapsto \int_{\Omega}|\nabla u|^{p} \quad \text { on } \quad \mathcal{S}_{p}(\Omega)=\left\{u \in W^{1, p}(\Omega): \int_{\Omega}|u|^{p}=1\right\}
$$

Proposition
Consider the set of continuous loops

$$
\Gamma_{1}=\left\{\gamma: \mathbb{S}^{1} \rightarrow \mathcal{S}_{p}(\Omega): \text { odd \& continuous }\right\}
$$

then

$$
\mu_{p}(\Omega)=\inf _{\gamma \in \Gamma_{1}} \max _{u \in \operatorname{Im}(\gamma)} \int_{\Omega}|\nabla u|^{p}
$$

A minmax characterization of μ_{p}

$\mu_{p}(\Omega)$ can be seen also as the second critical value of

$$
u \mapsto \int_{\Omega}|\nabla u|^{p} \quad \text { on } \quad \mathcal{S}_{p}(\Omega)=\left\{u \in W^{1, p}(\Omega): \int_{\Omega}|u|^{p}=1\right\}
$$

Proposition

Consider the set of continuous loops

$$
\Gamma_{1}=\left\{\gamma: \mathbb{S}^{1} \rightarrow \mathcal{S}_{p}(\Omega): \text { odd \& continuous }\right\}
$$

then

$$
\mu_{\rho}(\Omega)=\inf _{\gamma \in \Gamma_{1}} \max _{u \in \operatorname{Im}(\gamma)} \int_{\Omega}|\nabla u|^{p}
$$

Remark

This is the non-Hilbertian generalization of the minmax characterization of the first nontrivial Neumann eigenvalue of the Laplacian (seen in Dorin's talk)

Geometric lower bounds on $\mu_{p}(\Omega)$

Geometric lower bounds on $\mu_{p}(\Omega)$

NO if Ω is not connected, because $\mu_{p}(\Omega)=0$ (as in Dorin's talk)

Geometric lower bounds on $\mu_{p}(\Omega)$

NO if Ω is not connected, because $\mu_{p}(\Omega)=0$ (as in Dorin's talk)
NO if Ω connected and not convex (see figure)

Figure : $\mu_{\rho}\left(\Omega_{\varepsilon}\right) \rightarrow 0$

Geometric lower bounds on $\mu_{p}(\Omega)$

NO if Ω is not connected, because $\mu_{p}(\Omega)=0$ (as in Dorin's talk)
NO if Ω connected and not convex (see figure)

$$
\text { Figure : } \mu_{\rho}\left(\Omega_{\varepsilon}\right) \rightarrow 0
$$

YES if Ω convex bounded (Payne-Weinberger, Ferone-Nitsch-Trombetti)

$$
\mu_{p}(\Omega)>\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}
$$

Estimate is sharp

Geometric lower bounds on $\mu_{p}(\Omega)$

NO if Ω is not connected, because $\mu_{p}(\Omega)=0$ (as in Dorin's talk)
NO if Ω connected and not convex (see figure)

$$
\text { Figure : } \mu_{\rho}\left(\Omega_{\varepsilon}\right) \rightarrow 0
$$

YES if Ω convex bounded (Payne-Weinberger, Ferone-Nitsch-Trombetti)

$$
\mu_{p}(\Omega)>\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}
$$

Estimate is sharp for the sequence of collapsing rectangles

$$
R_{n}=[0,1] \times\left[0, n^{-1}\right]
$$

Geometric upper bounds on $\mu_{p}(\Omega)$

Geometric upper bounds on $\mu_{p}(\Omega)$

Szegő-Weinberger
For a general open set

$$
\mu_{2}(\Omega) \leq \mu_{2}(\text { ball })\left(\frac{\mid \text { ball } \mid}{|\Omega|}\right)^{\frac{2}{N}}
$$

Known for $p=2$ only! For $p \neq 2$ is unknown

Geometric upper bounds on $\mu_{p}(\Omega)$

Szegő-Weinberger

For a general open set

$$
\mu_{2}(\Omega) \leq \mu_{2}(\text { ball })\left(\frac{\mid \text { ball } \mid}{|\Omega|}\right)^{\frac{2}{N}}
$$

Known for $p=2$ only! For $p \neq 2$ is unknown (some results for $p=1$ and $p=\infty$ by Esposito-Ferone-Kawohl-Nitsch-Trombetti)

Geometric upper bounds on $\mu_{p}(\Omega)$

Szegő-Weinberger

For a general open set

$$
\mu_{2}(\Omega) \leq \mu_{2}(\text { ball })\left(\frac{\mid \text { ball } \mid}{|\Omega|}\right)^{\frac{2}{N}}
$$

Known for $p=2$ only! For $p \neq 2$ is unknown (some results for $p=1$ and $p=\infty$ by Esposito-Ferone-Kawohl-Nitsch-Trombetti)

This is not always useful!
If $|\Omega| \ll 1$, the upper bound blows-up. But for the sequence of collapsing rectangles

$$
R_{n}=[0,1] \times\left[0, n^{-1}\right] \quad \text { we have } \quad \sup _{n \in \mathbb{N}} \mu_{p}\left(R_{n}\right)<+\infty
$$

Question: for a general $1<p<\infty$
Maybe an upper bound in terms of the diameter only?

Question: for a general $1<p<\infty$
Maybe an upper bound in terms of the diameter only? At least for convex sets

Question: for a general $1<p<\infty$
Maybe an upper bound in terms of the diameter only? At least for convex sets

Notation
For an open set $\Omega \subset \mathbb{R}^{N}$, we set

$$
\lambda_{p}(\Omega)=\inf _{u \in W_{0}^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p}: \int_{\Omega}|u|^{p}=1\right\}
$$

First Dirichlet eigenvalue of the p-Laplacian

1. Poincaré constants
2. A sharp upper bound

3. A lower bound by Optimal Transport

4. Some generalizations

A sharp upper bound

A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{p}
$$

A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{p}
$$

Inequality is strict, but the estimate is sharp.

A sharp upper bound

Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{p}
$$

Inequality is strict, but the estimate is sharp.
Indeed, there exist $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}^{N}$ open convex sets such that

1. $\operatorname{diam}\left(\mathcal{D}_{n}\right)=2$
2. \mathcal{D}_{n} collapse to a segment
3. $\mu_{p}\left(\mathcal{D}_{n}\right) \rightarrow \lambda_{p}\left(B_{1}\right) \quad\left(B_{1}\right.$ is the ball of radius 1$)$

Proof of the upper bound.

Proof of the upper bound.

- for simplicity, suppose $\operatorname{diam}(\Omega)=2$

Proof of the upper bound.

- for simplicity, suppose $\operatorname{diam}(\Omega)=2$
- let $F \geq 0$ be the first Dirichlet eigenfunction of the ball B_{1}

Proof of the upper bound.

- for simplicity, suppose $\operatorname{diam}(\Omega)=2$
- let $F \geq 0$ be the first Dirichlet eigenfunction of the ball B_{1}
- take two points $x_{0}, x_{1} \in \partial \Omega$ such that

$$
\left|x_{0}-x_{1}\right|=\operatorname{diam}(\Omega)
$$

Proof of the upper bound.

- for simplicity, suppose $\operatorname{diam}(\Omega)=2$
- let $F \geq 0$ be the first Dirichlet eigenfunction of the ball B_{1}
- take two points $x_{0}, x_{1} \in \partial \Omega$ such that

$$
\left|x_{0}-x_{1}\right|=\operatorname{diam}(\Omega)
$$

- center at x_{0} and x_{1} two disjoint spherical caps Ω_{0} and Ω_{1}

Proof of the upper bound.

- for simplicity, suppose $\operatorname{diam}(\Omega)=2$
- let $F \geq 0$ be the first Dirichlet eigenfunction of the ball B_{1}
- take two points $x_{0}, x_{1} \in \partial \Omega$ such that

$$
\left|x_{0}-x_{1}\right|=\operatorname{diam}(\Omega)
$$

- center at x_{0} and x_{1} two disjoint spherical caps Ω_{0} and Ω_{1}

- on each cap, we place the Dirichlet eigenfunction F of B_{1}
- on each cap, we place the Dirichlet eigenfunction F of B_{1}
- more precisely, we take the test function

$$
u=F\left(x-x_{0}\right) 1_{\Omega_{0}}-c F\left(x-x_{1}\right) 1_{\Omega_{1}}
$$

with $c>0$ constant such that $\int_{\Omega}|u|^{p-2} u=0$

- on each cap, we place the Dirichlet eigenfunction F of B_{1}
- more precisely, we take the test function

$$
u=F\left(x-x_{0}\right) 1_{\Omega_{0}}-c F\left(x-x_{1}\right) 1_{\Omega_{1}}
$$

with $c>0$ constant such that $\int_{\Omega}|u|^{p-2} u=0$

- of course

$$
\mu_{p}(\Omega)<\frac{\int_{\Omega_{0}}|\nabla F|^{p}+c^{p} \int_{\Omega_{1}}|\nabla F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}}
$$

- on each cap, we place the Dirichlet eigenfunction F of B_{1}
- more precisely, we take the test function

$$
u=F\left(x-x_{0}\right) 1_{\Omega_{0}}-c F\left(x-x_{1}\right) 1_{\Omega_{1}}
$$

with $c>0$ constant such that $\int_{\Omega}|u|^{p-2} u=0$

- of course

$$
\mu_{p}(\Omega)<\frac{\int_{\Omega_{0}}|\nabla F|^{p}+c^{p} \int_{\Omega_{1}}|\nabla F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}}
$$

(recall that F is radial)

- on each cap, we place the Dirichlet eigenfunction F of B_{1}
- more precisely, we take the test function

$$
u=F\left(x-x_{0}\right) 1_{\Omega_{0}}-c F\left(x-x_{1}\right) 1_{\Omega_{1}}
$$

with $c>0$ constant such that $\int_{\Omega}|u|^{p-2} u=0$

- of course

$$
\mu_{p}(\Omega)<\frac{\int_{\Omega_{0}}|\nabla F|^{p}+c^{p} \int_{\Omega_{1}}|\nabla F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}}
$$

(recall that F is radial)

- we only need to estimate the numerator
- for the numerator, we have

$$
\int_{\Omega_{0}}|\nabla F|^{p}
$$

- for the numerator, we have

$$
\int_{\Omega_{0}}|\nabla F|^{p}=\int_{\Omega_{0}} \operatorname{div}\left(F|\nabla F|^{p-2} \nabla F\right)-\int_{\Omega_{0}} F \Delta_{p} F
$$

- for the numerator, we have

$$
\begin{aligned}
\int_{\Omega_{0}}|\nabla F|^{p} & =\int_{\Omega_{0}} \operatorname{div}\left(F|\nabla F|^{p-2} \nabla F\right)-\int_{\Omega_{0}} F \Delta_{p} F \\
& =\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}+\lambda_{p}\left(B_{1}\right) \int_{\Omega_{0}}|F|^{p}
\end{aligned}
$$

- for the numerator, we have

$$
\begin{aligned}
\int_{\Omega_{0}}|\nabla F|^{p} & =\int_{\Omega_{0}} \operatorname{div}\left(F|\nabla F|^{p-2} \nabla F\right)-\int_{\Omega_{0}} F \Delta_{p} F \\
& =\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}+\lambda_{p}\left(B_{1}\right) \int_{\Omega_{0}}|F|^{p} \\
& \leq \quad \lambda_{\Omega_{0}}\left(B_{1}\right) \int_{\Omega_{0}}|F|^{p}
\end{aligned}
$$

- repeat the same trick for the other spherical cap Ω_{1}
- repeat the same trick for the other spherical cap Ω_{1}
- in conclusion, we get

$$
\begin{aligned}
\mu_{p}(\Omega)< & \frac{\int_{\Omega_{0}}|\nabla F|^{p}+c^{p} \int_{\Omega_{1}}|\nabla F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}} \\
\leq & \frac{\lambda_{p}\left(B_{1}\right) \int_{\Omega_{0}}|F|^{p}+c^{p} \lambda_{p}\left(B_{1}\right) \int_{\Omega_{1}}|F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}}=\lambda_{p}\left(B_{1}\right)
\end{aligned}
$$

- repeat the same trick for the other spherical cap Ω_{1}
- in conclusion, we get

$$
\begin{aligned}
\mu_{p}(\Omega)< & \frac{\int_{\Omega_{0}}|\nabla F|^{p}+c^{p} \int_{\Omega_{1}}|\nabla F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}} \\
\leq & \frac{\lambda_{p}\left(B_{1}\right) \int_{\Omega_{0}}|F|^{p}+c^{p} \lambda_{p}\left(B_{1}\right) \int_{\Omega_{1}}|F|^{p}}{\int_{\Omega_{0}}|F|^{p}+c^{p} \int_{\Omega_{1}}|F|^{p}}=\lambda_{p}\left(B_{1}\right)
\end{aligned}
$$

- first inequality is strict, since the test function can not be an eigenfunction (by Harnack's inequality)

Sharpness?

The previous inequality is strict because of two facts:

Sharpness?

The previous inequality is strict because of two facts:

1. by convexity, we had

$$
\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}<0
$$

Sharpness?

The previous inequality is strict because of two facts:

1. by convexity, we had

$$
\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}<0
$$

To be sharp, one should have $\nabla F \perp \nu_{\Omega}$ on the part of $\partial \Omega$ which intersects the caps

Sharpness?

The previous inequality is strict because of two facts:

1. by convexity, we had

$$
\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}<0
$$

To be sharp, one should have $\nabla F \perp \nu_{\Omega}$ on the part of $\partial \Omega$ which intersects the caps

By radiality of F, this part of $\partial \Omega$ should be "conical"

Sharpness?

The previous inequality is strict because of two facts:

1. by convexity, we had

$$
\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}<0
$$

To be sharp, one should have $\nabla F \perp \nu_{\Omega}$ on the part of $\partial \Omega$ which intersects the caps

By radiality of F, this part of $\partial \Omega$ should be "conical"
2. by convexity, the two caps can not cover the whole Ω. There is a region where the test function u vanishes, i.e. it can not solve the equation

Sharpness?

The previous inequality is strict because of two facts:

1. by convexity, we had

$$
\int_{\Omega_{0} \cap \partial \Omega} F|\nabla F|^{p-2} \frac{\partial F}{\partial \nu_{\Omega}}<0
$$

To be sharp, one should have $\nabla F \perp \nu_{\Omega}$ on the part of $\partial \Omega$ which intersects the caps

By radiality of F, this part of $\partial \Omega$ should be "conical"
2. by convexity, the two caps can not cover the whole Ω. There is a region where the test function u vanishes, i.e. it can not solve the equation

To be sharp, one should make Ω "collapse"

Proof of the sharpness.

Proof of the sharpness.

- take the following sequence of "shrinking kites" $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

Proof of the sharpness.

- take the following sequence of "shrinking kites" $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

- vague idea: the variational characterization of $\mu_{p}\left(\mathcal{D}_{n}\right)$ converges to the minimization of a $1 D$ weighted Rayleigh quotient, which is the same defining the first Dirichlet eigenfunction on the ball (which is radial, i.e. $1 D$)

A shape optimization problem (without solution)

Corollary

The shape optimization problem

$$
\sup \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

does not admit a solution. A maximizing sequence is given by the "shrinking kites" $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

A shape optimization problem (without solution)

Corollary

The shape optimization problem

$$
\sup \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

does not admit a solution. A maximizing sequence is given by the "shrinking kites" $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

Proof.
From the previous estimate, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\text { ball of radius } 1)\left(\frac{2}{c}\right)^{\frac{p}{N}}
$$

A shape optimization problem (without solution)

Corollary

The shape optimization problem

$$
\sup \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

does not admit a solution. A maximizing sequence is given by the "shrinking kites" $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

Proof.
From the previous estimate, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\text { ball of radius } 1)\left(\frac{2}{c}\right)^{\frac{p}{N}}
$$

The upper bound on the right is asymptotically attained by the sequence $\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$

Summary

- Both shape optimization problems

$$
\sup \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

and

$$
\inf \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

do not admit solution

Summary

- Both shape optimization problems

$$
\sup \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

and

$$
\inf \left\{\mu_{p}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

do not admit solution

- In both cases, optimizing sequences undergo a concentration phenomenon and collapse to a segment

Comparison of constants

Corollary (weak Szegő-Weinberger)
For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ convex, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\Omega)
$$

Comparison of constants

Corollary (weak Szegő-Weinberger)
For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ convex, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\Omega)
$$

Proof.
Use the previous estimate + "Faber-Krahn with diameter" \square

Comparison of constants

Corollary (weak Szegő-Weinberger)
For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ convex, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\Omega)
$$

Proof.
Use the previous estimate $\quad+$ "Faber-Krahn with diameter" \square

Remark

In the quadratic case $p=2$, the previous is a consequence of

$$
\begin{gathered}
\mu_{2}(\Omega) \leq \mu_{2}(B)\left(\frac{|B|}{|\Omega|}\right)^{\frac{2}{N}} \quad \text { (Szegö-Weinberger) } \\
\lambda_{2}(\Omega) \geq \lambda_{2}(B)\left(\frac{|B|}{|\Omega|}\right)^{\frac{2}{N}} \quad \text { (Faber-Krahn) }
\end{gathered}
$$

Comparison of constants

Corollary (weak Szegő-Weinberger)
For $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ convex, we have

$$
\mu_{p}(\Omega)<\lambda_{p}(\Omega)
$$

Proof.
Use the previous estimate + "Faber-Krahn with diameter" \square

Remark

In the quadratic case $p=2$, the previous is a consequence of

$$
\begin{gathered}
\mu_{2}(\Omega) \leq \mu_{2}(B)\left(\frac{|B|}{|\Omega|}\right)^{\frac{2}{N}} \quad \text { (Szegö-Weinberger) } \\
\lambda_{2}(\Omega) \geq \lambda_{2}(B)\left(\frac{|B|}{|\Omega|}\right)^{\frac{2}{N}} \quad \text { (Faber-Krahn) }
\end{gathered}
$$

A clue of a potentially exhisting Szegö-Weinberger for $p \neq 2$

1. Poincaré constants

2. A sharp upper bound
3. A lower bound by Optimal Transport
4. Some generalizations

A lower bound

We mentioned the sharp lower bound

$$
\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

We show how to prove a weaker result

A lower bound

We mentioned the sharp lower bound

$$
\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

We show how to prove a weaker result
Theorem
Let $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ an open bounded convex set. Then

$$
\left(\frac{2^{\frac{p-1}{p}}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

A lower bound

We mentioned the sharp lower bound

$$
\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

We show how to prove a weaker result
Theorem
Let $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ an open bounded convex set. Then

$$
\left(\frac{2^{\frac{p-1}{p}}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

Remark

The estimate is not sharp, but the proof is however interesting. It is actually a corollary of a more general interpolation inequality, proved by Optimal Transport

A lower bound

We mentioned the sharp lower bound

$$
\left(\frac{\pi_{p}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

We show how to prove a weaker result
Theorem
Let $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ an open bounded convex set. Then

$$
\left(\frac{2^{\frac{p-1}{p}}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

Remark

The estimate is not sharp, but the proof is however interesting. It is actually a corollary of a more general interpolation inequality, proved by Optimal Transport

The proof uses Optimal Transport tools, so let us recall...
...some facts from Optimal Transport
...some facts from Optimal Transport
Let $\Omega \subset \mathbb{R}^{N}$ be a compact convex set

...some facts from Optimal Transport

Let $\Omega \subset \mathbb{R}^{N}$ be a compact convex set

Definition (Wasserstein distance)
If ρ_{0}, ρ_{1} are probabilities on Ω, we set
$\Pi\left(\rho_{0}, \rho_{1}\right)=\left\{\gamma\right.$ probability on $\Omega \times \Omega$ with marginals ρ_{0} and $\left.\rho_{1}\right\}$
Then for $1<\alpha<\infty$ we define the α-Wasserstein distance

$$
W_{\alpha}\left(\rho_{0}, \rho_{1}\right):=\min \left\{\left(\int_{\Omega \times \Omega}|x-y|^{\alpha} d \gamma\right)^{\frac{1}{\alpha}}: \gamma \in \Pi\left(\rho_{0}, \rho_{1}\right)\right\}
$$

...some facts from Optimal Transport

Let $\Omega \subset \mathbb{R}^{N}$ be a compact convex set
Definition (Wasserstein distance)
If ρ_{0}, ρ_{1} are probabilities on Ω, we set
$\Pi\left(\rho_{0}, \rho_{1}\right)=\left\{\gamma\right.$ probability on $\Omega \times \Omega$ with marginals ρ_{0} and $\left.\rho_{1}\right\}$
Then for $1<\alpha<\infty$ we define the α-Wasserstein distance

$$
W_{\alpha}\left(\rho_{0}, \rho_{1}\right):=\min \left\{\left(\int_{\Omega \times \Omega}|x-y|^{\alpha} d \gamma\right)^{\frac{1}{\alpha}}: \gamma \in \Pi\left(\rho_{0}, \rho_{1}\right)\right\}
$$

Definition (Wasserstein space)

$$
\mathbb{W}_{\alpha}(\Omega)=\begin{gathered}
\text { "space of probabilities on } \Omega \\
\text { endowed with the } \alpha-\text { Wasserstein distance" }
\end{gathered}
$$

(This is a complete and separable metric space)

Theorem (Wasserstein geodesics)
Let $1<\alpha<\infty$ and let $\Omega \subset \mathbb{R}^{N}$ be an open bounded convex set.
For every $\rho_{0}, \rho_{1} \in \mathbb{W}_{\alpha}(\Omega)$ there exists an absolutely continuous curve $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathbb{W}_{\alpha}(\Omega)$ and a vector field $\mathbf{v}_{t} \in L^{\alpha}\left(\Omega ; \mu_{t}\right)$ such that

Theorem (Wasserstein geodesics)
Let $1<\alpha<\infty$ and let $\Omega \subset \mathbb{R}^{N}$ be an open bounded convex set.
For every $\rho_{0}, \rho_{1} \in \mathbb{W}_{\alpha}(\Omega)$ there exists an absolutely continuous curve $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathbb{W}_{\alpha}(\Omega)$ and a vector field $\mathbf{v}_{t} \in L^{\alpha}\left(\Omega ; \mu_{t}\right)$ such that

- $\mu_{0}=\rho_{0} \quad$ and $\mu_{1}=\rho_{1} ;$

Theorem (Wasserstein geodesics)
Let $1<\alpha<\infty$ and let $\Omega \subset \mathbb{R}^{N}$ be an open bounded convex set.
For every $\rho_{0}, \rho_{1} \in \mathbb{W}_{\alpha}(\Omega)$ there exists an absolutely continuous curve $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathbb{W}_{\alpha}(\Omega)$ and a vector field $\mathbf{v}_{t} \in L^{\alpha}\left(\Omega ; \mu_{t}\right)$ such that

- $\mu_{0}=\rho_{0} \quad$ and $\quad \mu_{1}=\rho_{1} ;$
- the continuity equation holds in distributional sense

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\mathbf{v}_{t} \mu_{t}\right)=0, \quad \text { in } \Omega
$$

Theorem (Wasserstein geodesics)
Let $1<\alpha<\infty$ and let $\Omega \subset \mathbb{R}^{N}$ be an open bounded convex set.
For every $\rho_{0}, \rho_{1} \in \mathbb{W}_{\alpha}(\Omega)$ there exists an absolutely continuous curve $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathbb{W}_{\alpha}(\Omega)$ and a vector field $\mathbf{v}_{t} \in L^{\alpha}\left(\Omega ; \mu_{t}\right)$ such that

- $\mu_{0}=\rho_{0} \quad$ and $\quad \mu_{1}=\rho_{1} ;$
- the continuity equation holds in distributional sense

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\mathbf{v}_{t} \mu_{t}\right)=0, \quad \text { in } \Omega
$$

- we have

$$
\int_{0}^{1}\left|\mu_{t}^{\prime}\right| d t=\left(\int_{0}^{1}\left\|\mathbf{v}_{t}\right\|_{L^{\alpha}\left(\Omega ; \mu_{t}\right)}^{\alpha} d t\right)^{\frac{1}{\alpha}}=W_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

Theorem (Wasserstein geodesics)
Let $1<\alpha<\infty$ and let $\Omega \subset \mathbb{R}^{N}$ be an open bounded convex set.
For every $\rho_{0}, \rho_{1} \in \mathbb{W}_{\alpha}(\Omega)$ there exists an absolutely continuous curve $\left\{\mu_{t}\right\}_{t \in[0,1]}$ in $\mathbb{W}_{\alpha}(\Omega)$ and a vector field $\mathbf{v}_{t} \in L^{\alpha}\left(\Omega ; \mu_{t}\right)$ such that

- $\mu_{0}=\rho_{0} \quad$ and $\quad \mu_{1}=\rho_{1} ;$
- the continuity equation holds in distributional sense

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\mathbf{v}_{t} \mu_{t}\right)=0, \quad \text { in } \Omega
$$

- we have

$$
\int_{0}^{1}\left|\mu_{t}^{\prime}\right| d t=\left(\int_{0}^{1}\left\|\mathbf{v}_{t}\right\|_{L^{\alpha}\left(\Omega ; \mu_{t}\right)}^{\alpha} d t\right)^{\frac{1}{\alpha}}=W_{\alpha}\left(\rho_{0}, \rho_{1}\right)
$$

Remark

The curve μ_{t} is a geodesic in $\mathbb{W}_{\alpha}(\Omega)$, driven by the velocity field \mathbf{v}_{t}

We now go back to

We now go back to

Theorem
Let $1<p<\infty$ and $\Omega \subset \mathbb{R}^{N}$ an open bounded convex set. Then

$$
\left(\frac{2^{\frac{p-1}{p}}}{\operatorname{diam}(\Omega)}\right)^{p}<\mu_{p}(\Omega)
$$

An expedient estimate

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L q^{\prime}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex
set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.
\diamond Use Wasserstein geodesics and the continuity equation

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex
set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.

\diamond Use Wasserstein geodesics and the continuity equation

$$
\int \phi\left(\rho_{0}-\rho_{1}\right)=\int_{0}^{1} \int\left\langle\nabla \phi, \mathbf{v}_{t}\right\rangle d \mu_{t} d t
$$

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex
set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.

\diamond Use Wasserstein geodesics and the continuity equation

$$
\int \phi\left(\rho_{0}-\rho_{1}\right)=\int_{0}^{1} \int\left\langle\nabla \phi, \mathbf{v}_{t}\right\rangle d \mu_{t} d t \leq\|\nabla \phi\|_{L^{\frac{p}{q}}\left(\mu_{t}\right)} \int_{0}^{1}\left\|\mathbf{v}_{t}\right\|_{L^{\frac{p}{p-q}}\left(\mu_{t}\right)}
$$

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.

\diamond Use Wasserstein geodesics and the continuity equation

$$
\begin{aligned}
\int \phi\left(\rho_{0}-\rho_{1}\right)=\int_{0}^{1} \int\left\langle\nabla \phi, \mathbf{v}_{t}\right\rangle d \mu_{t} d t & \leq\|\nabla \phi\|_{L^{\frac{p}{q}}\left(\mu_{t}\right)} \int_{0}^{1}\left\|\mathbf{v}_{t}\right\|_{L^{\frac{p}{p-q}}\left(\mu_{t}\right)} \\
& \leq\|\nabla \phi\|_{L^{\frac{p}{q}}\left(\mu_{t}\right)} W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)
\end{aligned}
$$

An expedient estimate

Lemma (B.-Santambrogio)
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex
set. Let ϕ smooth and let ρ_{0}, ρ_{1} probabilities. Then

$$
\int_{\Omega} \phi\left(\rho_{0}-\rho_{1}\right) \leq W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)\|\nabla \phi\|_{L^{p}(\Omega)}\left[\frac{\left\|\rho_{0}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}+\left\|\rho_{1}\right\|_{L^{q^{\prime}}(\Omega)}^{q^{\prime}}}{2}\right]^{\frac{q-1}{p}}
$$

Proof.

\diamond Use Wasserstein geodesics and the continuity equation

$$
\begin{aligned}
\int \phi\left(\rho_{0}-\rho_{1}\right)=\int_{0}^{1} \int\left\langle\nabla \phi, \mathbf{v}_{t}\right\rangle d \mu_{t} d t & \leq\|\nabla \phi\|_{L^{\frac{p}{q}}\left(\mu_{t}\right)} \int_{0}^{1}\left\|\mathbf{v}_{t}\right\|_{L^{\frac{p}{p-q}}\left(\mu_{t}\right)} \\
& \leq\|\nabla \phi\|_{L^{\frac{p}{q}}\left(\mu_{t}\right)} W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right)
\end{aligned}
$$

\diamond Use Holder inequality and geodesic convexity of $t \mapsto\left\|\mu_{t}\right\|_{L q^{\prime}}$

Transport proof of the lower bound

Proof.

Transport proof of the lower bound

Proof.

- Take ϕ such that $\int|\phi|^{q-2} \phi=0$.

Transport proof of the lower bound

Proof.

- Take ϕ such that $\int|\phi|^{q-2} \phi=0$. In particular

$$
\int|\phi|^{q-2} \phi_{+}=\int|\phi|^{q-2} \phi_{+}=\frac{1}{2} \int|\phi|^{q-1}
$$

Transport proof of the lower bound

Proof.

- Take ϕ such that $\int|\phi|^{q-2} \phi=0$. In particular

$$
\int|\phi|^{q-2} \phi_{+}=\int|\phi|^{q-2} \phi_{+}=\frac{1}{2} \int|\phi|^{q-1}
$$

- define

$$
\rho_{0}=\frac{|\phi|^{q-2} \phi_{+}}{\int|\phi|^{q-2} \phi_{-}} \quad \text { and } \quad \rho_{1}=\frac{|\phi|^{q-2} \phi_{-}}{\int|\phi|^{q-2} \phi_{-}}
$$

Transport proof of the lower bound

Proof.

- Take ϕ such that $\int|\phi|^{q-2} \phi=0$. In particular

$$
\int|\phi|^{q-2} \phi_{+}=\int|\phi|^{q-2} \phi_{+}=\frac{1}{2} \int|\phi|^{q-1}
$$

- define

$$
\rho_{0}=\frac{|\phi|^{q-2} \phi_{+}}{\int|\phi|^{q-2} \phi_{-}} \quad \text { and } \quad \rho_{1}=\frac{|\phi|^{q-2} \phi_{-}}{\int|\phi|^{q-2} \phi_{-}}
$$

and optimally transport ρ_{0} on ρ_{1}

Transport proof of the lower bound

Proof.

- Take ϕ such that $\int|\phi|^{q-2} \phi=0$. In particular

$$
\int|\phi|^{q-2} \phi_{+}=\int|\phi|^{q-2} \phi_{+}=\frac{1}{2} \int|\phi|^{q-1}
$$

- define

$$
\rho_{0}=\frac{|\phi|^{q-2} \phi_{+}}{\int|\phi|^{q-2} \phi_{-}} \quad \text { and } \quad \rho_{1}=\frac{|\phi|^{q-2} \phi_{-}}{\int|\phi|^{q-2} \phi_{-}}
$$

and optimally transport ρ_{0} on ρ_{1}

- i.e. use the expedient estimate with ρ_{0} and ρ_{1}, observe that

$$
\int \phi\left(\rho_{0}-\rho_{1}\right)=2 \frac{\int|\phi|^{q}}{\int|\phi|^{q-1}}
$$

- to eliminate the Wasserstein distance, we use that Ω is bounded

$$
W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right) \leq \operatorname{diam}(\Omega)
$$

- to eliminate the Wasserstein distance, we use that Ω is bounded

$$
W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right) \leq \operatorname{diam}(\Omega)
$$

"the maximal displacement of mass is not longer than the diameter"

- to eliminate the Wasserstein distance, we use that Ω is bounded

$$
W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right) \leq \operatorname{diam}(\Omega)
$$

"the maximal displacement of mass is not longer than the diameter"

- simple manipulations lead to the Nash-type inequality

$$
\left(\int_{\Omega}|\phi|^{q}\right)^{p-q+1} \leq \frac{\operatorname{diam}(\Omega)^{p}}{2^{p-1}} \int_{\Omega}|\nabla \phi|^{p}\left(\int_{\Omega}|\phi|^{q-1}\right)^{p-q}
$$

- to eliminate the Wasserstein distance, we use that Ω is bounded

$$
W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right) \leq \operatorname{diam}(\Omega)
$$

"the maximal displacement of mass is not longer than the diameter"

- simple manipulations lead to the Nash-type inequality

$$
\left(\int_{\Omega}|\phi|^{q}\right)^{p-q+1} \leq \frac{\operatorname{diam}(\Omega)^{p}}{2^{p-1}} \int_{\Omega}|\nabla \phi|^{p}\left(\int_{\Omega}|\phi|^{q-1}\right)^{p-q}
$$

- take the limit $q \nearrow p$ to conclude
- to eliminate the Wasserstein distance, we use that Ω is bounded

$$
W_{\frac{p}{p-q}}\left(\rho_{0}, \rho_{1}\right) \leq \operatorname{diam}(\Omega)
$$

"the maximal displacement of mass is not longer than the diameter"

- simple manipulations lead to the Nash-type inequality

$$
\left(\int_{\Omega}|\phi|^{q}\right)^{p-q+1} \leq \frac{\operatorname{diam}(\Omega)^{p}}{2^{p-1}} \int_{\Omega}|\nabla \phi|^{p}\left(\int_{\Omega}|\phi|^{q-1}\right)^{p-q}
$$

- take the limit $q \nearrow p$ to conclude

Remark

Taking $q \nearrow p$ implies that we use the expedient estimate with

$$
W_{\infty}\left(\rho_{0}, \rho_{1}\right)
$$

i.e. we use the ∞-Wasserstein distance to prove the estimate

A more general result

A more general result

We can use the previous proof even for unbounded convex sets (for example \mathbb{R}^{N}) and obtain the following interpolation functional inequality

A more general result

We can use the previous proof even for unbounded convex sets (for example \mathbb{R}^{N}) and obtain the following interpolation functional inequality

Theorem [B.-Santambrogio]
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex set. For every ϕ such that

$$
\int_{\Omega}|\phi|^{q-2} \phi=0
$$

we have

$$
\left(\int_{\Omega}|\phi|^{q}\right)^{p-q+1} \leq 2\left(\inf _{x_{0} \in \Omega} \int_{\Omega}\left|x-x_{0}\right|^{\frac{p}{p-q}}|\phi|^{q-1}\right)^{p-q} \int_{\Omega}|\nabla \phi|^{p}
$$

A more general result

We can use the previous proof even for unbounded convex sets (for example \mathbb{R}^{N}) and obtain the following interpolation functional inequality
Theorem [B.-Santambrogio]
Let $1<p<\infty$ and $1<q<p$. Let $\Omega \subset \mathbb{R}^{N}$ be an open convex set. For every ϕ such that

$$
\int_{\Omega}|\phi|^{q-2} \phi=0
$$

we have

$$
\left(\int_{\Omega}|\phi|^{q}\right)^{p-q+1} \leq 2\left(\inf _{x_{0} \in \Omega} \int_{\Omega}\left|x-x_{0}\right|^{\frac{p}{p-q}}|\phi|^{q-1}\right)^{p-q} \int_{\Omega}|\nabla \phi|^{p}
$$

Remark
The lower bound on μ_{p} and the Nash-type inequality are consequences of this general result

1. Poincaré constants
2. A sharp upper bound
3. A lower bound by Optimal Transport
4. Some generalizations

General Poincaré constants

General Poincaré constants

If $1<q<p^{*}$, we can define

$$
\mu_{p, q}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{q}=1, \int_{\Omega}|u|^{q-2} u=0\right\}
$$

General Poincaré constants

If $1<q<p^{*}$, we can define

$$
\mu_{p, q}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{q}=1, \int_{\Omega}|u|^{q-2} u=0\right\}
$$

This is the sharp constant in

$$
C_{\Omega} \min _{t \in \mathbb{R}}\left(\int_{\Omega}|u-t|^{q}\right)^{\frac{p}{q}} \leq \int_{\Omega}|\nabla u|^{p}
$$

General Poincaré constants

If $1<q<p^{*}$, we can define

$$
\mu_{p, q}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{q}=1, \int_{\Omega}|u|^{q-2} u=0\right\}
$$

This is the sharp constant in

$$
C_{\Omega} \min _{t \in \mathbb{R}}\left(\int_{\Omega}|u-t|^{q}\right)^{\frac{p}{q}} \leq \int_{\Omega}|\nabla u|^{p}
$$

Question
Is it still true that

$$
\mu_{p, q} \simeq(\text { diameter })^{N-p-N \frac{p}{q}} ?
$$

General Poincaré constants

If $1<q<p^{*}$, we can define

$$
\mu_{p, q}(\Omega):=\inf _{u \in W^{1, p}(\Omega)}\left\{\int_{\Omega}|\nabla u|^{p} d x: \int_{\Omega}|u|^{q}=1, \int_{\Omega}|u|^{q-2} u=0\right\}
$$

This is the sharp constant in

$$
C_{\Omega} \min _{t \in \mathbb{R}}\left(\int_{\Omega}|u-t|^{q}\right)^{\frac{p}{q}} \leq \int_{\Omega}|\nabla u|^{p}
$$

Question
Is it still true that

$$
\mu_{p, q} \simeq(\text { diameter })^{N-p-N \frac{p}{q}} ?
$$

NO!
For every sequence of convex sets $\left\{\Omega_{n}\right\}_{n \in \mathbb{N}}$ with $\left|\Omega_{n}\right| \rightarrow 0$ and $\operatorname{diam}\left(\Omega_{n}\right) \geq c>0$

$$
\lim _{n \rightarrow \infty} \mu_{p, q}\left(\Omega_{n}\right)=\left\{\begin{array}{cl}
0, & \text { if } q>p \\
+\infty, & \text { if } q<p
\end{array}\right.
$$

Upper bound for $q>p$

By using the same proof of the case $p=q$

Upper bound for $q>p$

By using the same proof of the case $p=q$
Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$ and $q>p$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p, q}(\Omega)<\lambda_{p, q}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{-N+p+N \frac{p}{q}}
$$

Upper bound for $q>p$

By using the same proof of the case $p=q$
Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$ and $q>p$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p, q}(\Omega)<\lambda_{p, q}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{-N+p+N \frac{p}{q}}
$$

and the estimate is sharp!

Upper bound for $q>p$

By using the same proof of the case $p=q$
Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$ and $q>p$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p, q}(\Omega)<\lambda_{p, q}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{-N+p+N \frac{p}{q}}
$$

and the estimate is NOT sharp!

Upper bound for $q>p$

By using the same proof of the case $p=q$
Theorem [B.-Nitsch-Trombetti]
Let $1<p<\infty$ and $q>p$, for every $\Omega \subset \mathbb{R}^{N}$ convex we have

$$
\mu_{p, q}(\Omega)<\lambda_{p, q}(\text { ball })\left(\frac{\operatorname{diam}(\text { ball })}{\operatorname{diam}(\Omega)}\right)^{-N+p+N \frac{p}{q}}
$$

and the estimate is NOT sharp!
Theorem [B.-Nitsch-Trombetti]
For $q>p$, the shape optimization problem

$$
\sup \left\{\mu_{p, q}(\Omega): \Omega \text { convex, } \quad \operatorname{diam}(\Omega)=c\right\}
$$

now has a solution

Many thanks for your kind attention

"Discipline is never an end in itself, only a means to an end " (R. Fripp)

