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1

Let:
• Ω be an open set in Rn, n ≥ 2

• u : Ω→ Rn

• ∇u : Ω→ Rn×n its distributional gradient.

The symmetric gradient Eu : Ω→ Rn×n of u is defined as the symmetric
part of ∇u.
Namely,

Eu =
1

2
(∇u + (∇u)T ),

where (∇u)T is the transpose of ∇u.
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2

The mathematical models governing certain physical phenomena require
the use of Sobolev type spaces Ep(Ω,Rn) built upon Eu, instead of ∇u.

Given p ∈ [1,∞],

Ep(Ω,Rn) = {u ∈ Lp(Ω,Rn) : Eu ∈ Lp(Ω,Rn×n)}.

Also,

Ep0(Ω,Rn) = {u ∈ Ep(Ω,Rn) : “u = 0”on ∂Ω}.

When p = 1, instead of E1(Ω,Rn), the space

BD(Ω,Rn) = {u : Eu is a Radon measure with finite total variation inΩ}

is also of use in applications.
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3

Trivially,
W 1,p

0 (Ω,Rn)→ Ep0(Ω,Rn)

for p ∈ [1,∞].

If p ∈ (1,∞), the reverse embedding also holds, owing to the Korn
inequality :

∫
Ω
|∇u|p dx ≤ C

∫
Ω
|Eu|p dx ∀u ∈ Ep0(Ω,Rn).

This inequality goes back to [Korn, 1909] for p = 2.
Modern proofs, for general p, are due to Gobert, Nečas, Reshetnyak,
Mosolov-Mjasnikov, Temam, Fuchs.
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4

A version of the Korn inequality also holds in E1,p(Ω,Rn), namely without
zero boundary conditions, if Ω is bounded, connected and regular enough
(e.g. with the cone property).

One has

inf
Q=−QT

∫
Ω
|∇u−Q|p dx ≤ C

∫
Ω
|Eu|p dx ∀u ∈ Ep(Ω,Rn).

This inequality roughly amounts to asserting that gradients whose
symmetric part is small are close to a constant skew-symmetric matrix.

The Korn inequality in Ep0(Ω,Rn) ensures that, in the case of functions
vanishing on the boundary, such a matrix vanishes.
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5

If Ω is connected, the kernel of the operator E is

R = {v : Rn → Rn : v(x) = b + Qx

for some b ∈ Rn and Q ∈ Rn×n s.t. Q = −QT }.

Thus, the left-hand side of the Korn inequality is the (p-th power) of the
distance in Lp of ∇u from the space of gradients of functions in R.

Namely, it can be rewritten as

inf
v∈R

∫
Ω
|∇u−∇v|p dx ≤ C

∫
Ω
|Eu|p dx ∀u ∈ Ep(Ω,Rn).
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6

The Korn inequalities fail in the borderline case when p = 1 [Ornstein,
1964] (alternative proof via “laminates” in [Conti, Faraco & Maggi, 2005]).

They also fail at the opposite endpoint when p =∞ (with integrals
replaced with norms in L∞(Ω)) [de Leeuw & Mirkil, 1964].

A Korn type inequality cannot hold with tp replaced by an arbitrary convex
function

A : [0,∞)→ [0,∞]

such that A(0) = 0.
A function A enjoying these properties is called a Young function in the
literature.
The spaces obtained by replacing the power tp in the definition of Lp with
a Young function A(t) are called Orlicz spaces.
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7

In fact, the inequality∫
Ω
A
(
|∇u|

)
dx ≤

∫
Ω
A
(
C|Eu|

)
dx

holds for every function u vanishing on ∂Ω

if and only if

A ∈ ∆2 ∩∇2

[Diening, M.Ruzicka & Schumacher, 2009] (if), [Breit & Diening, 2012]
(only if).

Special cases are considered in [E.Acerbi & G.Mingione, 2002], and
[M.Bulicek, M.Majdoub & J.Malek, 2010].

A parallel result holds for functions with arbitrary boundary values.
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8

Recall that:
• A ∈ ∆2 if ∃C > 0, t0 ≥ 0 such that

A(2t) ≤ CA(t) for t ≥ t0.

• A ∈ ∇2 if ∃C > 2, t0 ≥ 0 such that

A(2t) ≥ CA(t) for t ≥ 0.

A ∈ ∆2 =⇒ A grows more slowly than some power.

Ex.: A(t) = et
β − 1 /∈ ∆2 ∀β > 0.

A ∈ ∇2 =⇒ A grows faster than some power > 1.

Ex.: A(t) = t logα(1 + t) /∈ ∇2 ∀α ≥ 0.
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9

These assumptions rule out some mathematical models for physical
phenomena.

For instance, the Prandt-Eyring fluids, and plastic materials with
logarithmic hardening.

The nonlinearities in these models are governed by a Young function A(t)
that grows like t log(1 + t) near infinity, and hence violates the
∇2-condition.

Pb.: Orlicz version of the Korn inequality, without ∆2 and ∇2 conditions,
but possibly slightly different Young functions on the two sides.
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that grows like t log(1 + t) near infinity, and hence violates the
∇2-condition.
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10

Namely, inequalities of the form:∫
Ω
B
(
|∇u|

)
dx ≤

∫
Ω
A
(
C|Eu|

)
dx

for u = 0 on ∂Ω, where A and B are Young functions satisfying suitable
“balance” conditions.

Similarly,

inf
v∈R

∫
Ω
B(|∇u−∇v|) dx ≤

∫
Ω
A(C|Eu|) dx ,

for arbitrary u, where R is the kernel of the operator E .
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11

A variant.

Trace-free Korn type inequalities.

Given u : Ω→ Rn, set

EDu = Eu− tr(Eu)
n I,

the trace-free, also called deviatoric, part of the symmetric gradient of u.

This operator arises, for instance, in general relativity, and Cosserat
elasticity.

Lp inequalities between EDu and ∇u are known for p ∈ (1,∞).
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12

If Ω is bounded in Rn, and 1 < p <∞, then∫
Ω
|∇u|p dx ≤ C

∫
Ω
|EDu|p dx

∀ u : Ω→ Rn s.t. u = 0 on ∂Ω.

The corresponding trace-free inequality for u with arbitrary values on ∂Ω
takes a different form depending on whether n = 2 or n ≥ 3.

The normalization condition on the left-hand side involves the distance
from the space of gradients of functions in the kernel of ED.

This kernel differs substantially in the cases n = 2 and n ≥ 3.

In particular, it agrees with the whole space of holomorphic functions when
n = 2. The inequalities in question require a distinct approach for n = 2
and for n ≥ 3.
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We focus on the case n ≥ 3.

If Ω is connected, the kernel of ED is

Σ = D ⊕R⊕ S,

where

D = {v : Rn → Rn : v(x) = ρx for some ρ ∈ R},
R = {v : Rn → Rn : v(x) = b + Qx, Q ∈ Rn×n, Q = −QT , b ∈ Rn},
S = {v : Rn → Rn : v(x) = 2(a · x)x− |x|2a with a ∈ Rn}.

If Ω has the cone property , then

inf
w∈Σ

∫
Ω
|∇u−∇w|p dx ≤ C

∫
Ω
|EDu|p dx.
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14

Similarly to the Korn inequalities, trace-free Korn inequalities in Orlicz
spaces, with tp replaced with a Young function A(t), hold if and only if
A ∈ ∆2 ∩∇2 [Bildhauer & Fuchs, 2011], [Breit & Schirra, 2012] (if),
[Breit & Diening, 2012] (only if).

Pb.: condition on A and B for∫
Ω
B
(
|∇u|

)
dx ≤

∫
Ω
A
(
C|EDu|

)
dx

with u = 0 on ∂Ω, or for

inf
w∈Σ

∫
Ω
B(|∇u−∇w|) dx ≤

∫
Ω
A(C|EDu|) dx ,

for arbitrary u.
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Recall that the Orlicz space LA(Ω,Rn) built on the Young function A is
endowed with the Luxemburg norm given by

‖u‖LA(Ω,Rn) = inf

{
λ > 0 :

∫
Ω
A
( |u(x)|

λ

)
dx ≤ 1

}
.

The Orlicz-Sobolev space W 1,A(Ω,Rn) is defined in terms of the norm

‖u‖W 1,A(Ω,Rn) = ‖u‖LA(Ω,Rn) + ‖∇u‖LA(Ω,Rn×n).

Similarly, we define EA(Ω,Rn) via the norm

‖u‖EA(Ω,Rn) = ‖u‖LA(Ω,Rn) + ‖Eu‖LA(Ω,Rn×n),

and ED,A(Ω,Rn) by the norm

‖u‖ED,A(Ω,Rn) = ‖u‖LA(Ω,Rn) + ‖EDu‖LA(Ω,Rn×n).
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16

The subspaces W 1,A
0 (Ω,Rn), EA0 (Ω,Rn) and ED,A0 (Ω,Rn) are defined by

requiring that extending a function u by 0 outside Ω yields a function in
W 1,A(Rn,Rn), EA(Rn,Rn) and ED,A(Rn,Rn), respectively.

The following results provide sufficient [C., 2014] and necessary [Breit, C.
& Diening, preprint] conditions for Korn type inequalities in EA0 (Ω,Rn),
for a bounded open set Ω ⊂ Rn, n ≥ 2, and in EA(Ω,Rn) if, in addition,
Ω is regular, i.e. connected and with the cone property.

In statements, Ã denotes the Young conjugate of A, defined as

Ã(t) = sup{rt−A(r) : r ≥ 0} for t ≥ 0 .
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Theorem 1: Korn inequality in EA0 (Ω,Rn)

Let A and B be Young functions. The following conditions are equivalent:

(i) ∃ C > 0 and t0 ≥ 0 s.t.

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.

(ii) ∃ C > 0 s.t.

‖∇u‖LB(Ω,Rn×n) ≤ C‖Eu‖LA(Ω,Rn×n) ∀u ∈ EA0 (Ω,Rn).

(iii) ∃ C,C1 > 0 s.t.∫
Ω
B(|∇u|) dx ≤ C1 +

∫
Ω
A(C|Eu|) dx ∀u ∈ EA0 (Ω,Rn).
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Theorem 2: Korn inequality in EA(Ω,Rn)

Assume that Ω is “regular”. The following conditions are equivalent:

(i) ∃ C > 0 and t0 ≥ 0 s.t.

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.

(ii) ∃ C > 0 s.t.

inf
Q=−QT

‖∇u−Q‖LB(Ω,Rn×n) ≤ C‖Eu‖LA(Ω,Rn×n) ∀u ∈ EA(Ω,Rn).

(iii) ∃ C,C1 > 0 s.t.

inf
Q=−QT

∫
Ω
B(|∇u−Q|) dx ≤ C1 +

∫
Ω
A(C|Eu|) dx ∀u ∈ EA(Ω,Rn).
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The balance conditions on A and B appearing in Theorems 1 and 2 ensure
that ∃ C > 0 and t0 ≥ 0 s.t.

B(t) ≤ A(Ct) for t ≥ t0,

and hence
‖ · ‖LB ≤ C‖ · ‖LA

for some C > 0.

The condition

t

∫ t

t0

B(s)

s2
ds ≤ A(ct) (1)

holds with B = A if and only if A ∈ ∇2. Thus, (1) yields sharp
replacements for A on the left-hand side of the Korn inequalities when
A /∈ ∇2.
In a sense, this is the case when A grows slowly, and hence the norm in
LA is “close” to that of L1.
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The condition

t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) (2)

holds with B = A if and only if A ∈ ∆2.

Thus, (2) yields sharp
replacements for A on the left-hand side of the Korn inequalities when
A /∈ ∆2.
In a sense, this is the case when A grows rapidly, and hence the norm in
LA is “close” to that of L∞.

In particular, we recover that the Korn inequalities hold with the same
Young function A on both sides if and only if A ∈ ∆2 ∩∇2.
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The case when Ω = Rn, and trial functions u have compact support, can
also be considered.

The decay of A(t) and B(t) as t→ 0 is also relevant in this case , since
Rn has infinite measure.

The inequality

‖∇u‖LB(Rn,Rn×n) ≤ C‖Eu‖LA(Rn,Rn×n)

∀ compactly supported function u ∈ EA(Rn,Rn), and its integral version,
are equivalent to the same conditions on A and B with t0 = 0, namely

t

∫ t

0

B(s)

s2
ds ≤ A(ct), and t

∫ t

0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ 0.
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Examples.

Consider EA0 (Ω,Rn), the case of EA(Ω,Rn) is analogous.

1. Set Lp(logL)α(Ω) = LA(Ω) with A(t) ≈ tp logα(1 + t) near infinity.

If p > 1 and α ∈ R, then

‖∇u‖Lp(logL)α(Ω,Rn×n) ≤ C‖Eu‖Lp(logL)α(Ω,Rn×n).

If p = 1 and α ≥ 0 (so that t logα(1 + t) /∈ ∇2), then

‖∇u‖L(logL)α(Ω,Rn) ≤ C‖Eu‖L(logL)α+1(Ω,Rn).
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2. Set expLβ(Ω) = LA(Ω) with A(t) ≈ etβ − 1, β > 0.

Note that et
β − 1 /∈ ∆2.

Then
‖∇u‖

expL
β
β+1 (Ω,Rn×n)

≤ C‖Eu‖expLβ(Ω,Rn×n).

3.
‖∇u‖expL(Ω,Rn×n) ≤ C‖Eu‖L∞(Ω,Rn×n).

4. Let a > 0 and β > 1. Then

‖∇u‖exp(a(logL)β)(Ω,Rn×n) ≤ C‖Eu‖
exp
(
a
(

log L

(logL)β−1

)β)
(Ω,Rn×n)

.
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General trace-free Korn inequalities in Orlicz spaces [Breit, C., Diening].

Theorem 3: trace-free Korn inequalities

The following conditions are equivalent:
(i) ∃ C > 0 and t0 ≥ 0 s.t.

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.

(ii) ∃ C > 0 s.t.

‖∇u‖LB(Ω,Rn×n) ≤ C‖EDu‖LA(Ω,Rn×n) ∀u ∈ ED,A0 (Ω,Rn).

(iii) If Ω is regular, ∃ C > 0 s.t.

inf
w∈Σ
‖∇u−∇w‖LB(Ω,Rn×n) ≤ C‖EDu‖LA(Ω,Rn×n) ∀u ∈ ED,A(Ω,Rn).
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Related questions.

Negative Sobolev norms.

Let p ∈ [1,∞]. The negative Sobolev norm ‖∇u‖W−1,p(Ω,Rn) of the

distributional gradient of a function u ∈ L1(Ω) is defined, according to
Nečas, as

‖∇u‖W−1,p(Ω,Rn) = sup
ϕ∈C∞0 (Ω,Rn)

∫
Ω udivϕ dx

‖∇ϕ‖Lp′ (Ω,Rn×n)

.

He showed that, if 1 < p <∞, then the Lp(Ω) norm of any function with
zero mean-value over Ω is equivalent to the W−1,p(Ω,Rn) norm of its
gradient.
Namely,

1

C
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The negative Orlicz-Sobolev norm can be defined accordingly as

‖∇u‖W−1,A(Ω,Rn) = sup
ϕ∈C∞0 (Ω,Rn)

∫
Ω udivϕ dx

‖∇ϕ‖
LÃ(Ω,Rn×n)

.

The inequality

‖∇u‖W−1,A(Ω,Rn) ≤ C‖u− uΩ‖LA(Ω)

holds for every Young function A.

A reverse inequality fails for an arbitrary Young function A.

However, it can be restored if and only if A is replaced on the right-hand
side by another Young function B related to A as in the Korn inequality
[Breit & C., 2015] (if) and [Breit, C. & Diening, preprint] (only if).
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LÃ(Ω,Rn×n)

.

The inequality

‖∇u‖W−1,A(Ω,Rn) ≤ C‖u− uΩ‖LA(Ω)

holds for every Young function A.

A reverse inequality fails for an arbitrary Young function A.

However, it can be restored if and only if A is replaced on the right-hand
side by another Young function B related to A as in the Korn inequality
[Breit & C., 2015] (if) and [Breit, C. & Diening, preprint] (only if).

A. Cianchi (Univ. Firenze) Korn inequalities in Orlicz spaces Banff, July 2016 28 / 38



26

The negative Orlicz-Sobolev norm can be defined accordingly as

‖∇u‖W−1,A(Ω,Rn) = sup
ϕ∈C∞0 (Ω,Rn)

∫
Ω udivϕ dx

‖∇ϕ‖
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Theorem 4: negative Orlicz-Sobolev norms

Let A and B be Young functions. Let Ω be a connected bounded open set
with the cone property in Rn, n ≥ 2.

There exists a constant C such that

‖u− uΩ‖LB(Ω) ≤ C‖∇u‖W−1,A(Ω,Rn) ∀ u ∈ L1(Ω)

if and only if ∃ C > 0 and t0 ≥ 0 s.t.

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.
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The Korn inequality is linked to the negative norm inequality.

Assume that the negative norm inequality with LA and LB norms holds.

Since
∂2vi

∂xk∂xj
=
∂Eijv
∂xk

+
∂Eikv
∂xj

−
∂Ejkv
∂xi

,

for v : Ω→ Rn, by the negative norm inequality applied to ∇u we have

‖∇u− (∇u)Ω‖LB(Ω,Rn×n) ≤ C‖∇2u‖W−1,A(Ω,Rn×n)

≤ C ′‖∇(Eu)‖W−1,A(Ω,Rn×n)

≤ C ′′‖Eu− (Eu)Ω‖LA(Ω,Rn×n) .
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In particular, if u = 0 on ∂Ω, then (∇u)Ω = (Eu)Ω = 0,

and the above
inequality yields

‖∇u‖LB(Ω,Rn×n) ≤ C‖Eu‖LA(Ω,Rn×n) ,

namely the Korn inequality in EA0 (Ω,Rn).
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An application to nonlinear systems in fluid mechanics.

A simplified mathematical model for the stationary flow a homogeneous
incompressible fluid in a bounded domain Ω ⊂ Rn has the form


−divS(Ev) +∇π = %divF in Ω,

divv = 0 in Ω,

v = 0 on ∂Ω.

Here,
• v : Ω→ Rn is the velocity field;
• S : Rn×n → Rn×n is the stress deviator of the fluid;
• π : Ω→ [0,∞ is the pressure;
• F : Ω→ Rn×n accounts for the volume forces.
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A standard approach to this problem consists of two steps.

First, a velocity field v is exhibited s.t.∫
Ω
H : ∇ϕ dx = 0 ∀ϕ ∈ C∞0,div(Ω,Rn),

where
H = S(Ev) + ρF .

Second, the pressure π is reconstructed.
Let us focus on the latter problem.
In case of fluids governed by a general constitutive low of the form

S(ξ) =
Φ′(|ξ|)
|ξ|

ξ for ξ ∈ Rn×n ,

where Φ is a Young function, the function H belongs to some Orlicz
space LA(Ω,Rn×n).
If A ∈ ∆2 ∩∇2, then π ∈ LA(Ω) as well.
In general, π belongs to some larger Orlicz space LB(Ω).
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32

The balance between the Young functions A and B is the same as in the
Korn inequality [Breit & C., 2015].

Theorem 5: Orlicz estimates for π

Let Ω be a bounded domain with the cone property in Rn, n ≥ 2. Let A
and B be Young functions s.t.

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.

Assume that H ∈ LA(Ω,Rn×n) and satisfies∫
Ω
H : ∇ϕ dx = 0 ∀ϕ ∈ C∞0,div(Ω,Rn).
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Then ∃! π ∈ LB⊥(Ω) s.t.∫
Ω
H : ∇ϕ dx =

∫
Ω
π divϕ dx ∀ϕ ∈ C∞0 (Ω,Rn).

Moreover, ∃ C s.t.

‖π‖LB(Ω) ≤ C‖H−HΩ‖LA(Ω,Rn×n),

and ∫
Ω
B(|π|) dx ≤

∫
Ω
A(C|H−HΩ|) dx.
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34

The proof of the negative norm inequality relies upon boundedness
properties of the gradient of the Bogovskii operator.

If Ω is starshaped with respect to a ball, and ω is a smooth, nonnegative
function, compactly supported in such ball and with integral equal to 1,
the Bogovskii operator B is defined as

Bf(x) =

∫
Ω
f(y)

(
x− y
|x− y|n

∫ ∞
|x−y|

ω
(
y+r

x− y
|x− y|

)
ζn−1 dr

)
dy for x ∈ Ω,

for f ∈ C∞0,⊥(Ω).
This operator is often used to construct a solution to the divergence
equation, coupled with zero boundary conditions, since

divBf = f.
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35

The necessary and sufficient conditions on A and B for

∇B : LA(Ω)→ LB(Ω)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].

Theorem 6: Boundedness of ∇B in Orlicz spaces

Let Ω be a a bounded open set in Rn, n ≥ 2, starshaped with respect to a
ball. Let A and B be Young functions. Then ∃ C s.t.

‖∇Bf‖LB(Ω,Rn) ≤ C‖f‖LA(Ω) ∀ f ∈ C∞0,⊥(Ω)

if and only if

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0

Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.
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Ã(s)

s2
ds ≤ B̃(ct) ∀ t ≥ t0.

A. Cianchi (Univ. Firenze) Korn inequalities in Orlicz spaces Banff, July 2016 37 / 38



35

The necessary and sufficient conditions on A and B for

∇B : LA(Ω)→ LB(Ω)

are again the same as for the Korn inequality [Breit & C., 2015], [Breit,
C. & Diening].

Theorem 6: Boundedness of ∇B in Orlicz spaces

Let Ω be a a bounded open set in Rn, n ≥ 2, starshaped with respect to a
ball. Let A and B be Young functions. Then ∃ C s.t.

‖∇Bf‖LB(Ω,Rn) ≤ C‖f‖LA(Ω) ∀ f ∈ C∞0,⊥(Ω)

if and only if

t

∫ t

t0

B(s)

s2
ds ≤ A(ct), and t

∫ t

t0
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36

Outline of the approach to the Orlicz-Korn inequality.

Sufficiency:

• Representation formulas for ∇u in terms of singular integral operators
applied to Eu.

• Estimates in rearrangement form for the relevant operators.

• Hardy type inequalities in Orlicz spaces (via interpolation).

Necessity:

• Trial functions of “radial” type for the condition t
t
∫
t0

Ã(s)
s2

ds ≤ B̃(ct).

• Sequences of trial functions converging to laminates for the condition

t
t
∫
t0

B(s)
s2

ds ≤ A(ct).
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Ã(s)
s2

ds ≤ B̃(ct).

• Sequences of trial functions converging to laminates for the condition

t
t
∫
t0

B(s)
s2

ds ≤ A(ct).

A. Cianchi (Univ. Firenze) Korn inequalities in Orlicz spaces Banff, July 2016 38 / 38



36

Outline of the approach to the Orlicz-Korn inequality.

Sufficiency:

• Representation formulas for ∇u in terms of singular integral operators
applied to Eu.

• Estimates in rearrangement form for the relevant operators.

• Hardy type inequalities in Orlicz spaces (via interpolation).

Necessity:

• Trial functions of “radial” type for the condition t
t
∫
t0
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