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The classical Szegö-Weinberger inequality

Let Ω be any smooth and bounded domain of RN and νΩ the outward normal
to ∂Ω and, finally, denote with µ−∆

1 (Ω) the first nontrivial eigenvalue of
−∆u = µu in Ω

∂u

∂νΩ
= 0 on ∂Ω.

Then it holds

(SW) µ−∆
1 (Ω) ≤ µ−∆

1 (Ω]),

where Ω] is any ball having the same Lebesgue measure as Ω.

Remarks.

1 Equality sign holds in (SW) if and only if Ω is a ball.

2 Generalizations of (SW) can be found, for example, in
Bandle 1980; Chavel 1980; Ashbaugh - Benguria 1995; Laugesen -
Siudeja 2009 and 2010.
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The classical Payne-Weinberger inequality

Let Ω be any bounded and convex domain of RN , then

(PW) µ−∆
1 (Ω) ≥ π2

d(Ω)2
,

where d(Ω) is the diameter of Ω .

Remarks.

1 The convexity assumption in (PW) cannot be removed.

2 (PW) is sharp, since d(Ω)2µ−∆
1 (Ω) goes to π2 for a parallelepiped all but

one of whose dimensions shrink to zero, but such a value is never achieved.

3 Lower bounds for µ−∆
1 (Ω), valid also for non convex domains, are

contained, for instance, in

Brandolini - C. - Trombetti, 2015; Gol’dshtein - Ukhlov, 2016;
Brandolini - C. - Dryden - Langford, in preparation.

4 Generalizations of (PW) can be found, for example, in
Ferone - Nitsch - Trombetti 2012; Valtorta 2012.
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The Neumann eigenvalue problem for the Hermite operator

x ∈ RN , dγN(x) = (2π)−N/2 exp
(
− |x|

2

2

)
dx

Ω ⊂ RN smooth and possibly unbounded domain, νΩ outward normal to ∂Ω
−div

(
exp

(
− |x|

2

2

)
Du
)

= µ exp
(
− |x|

2

2

)
u in Ω

∂u

∂νΩ
= 0 on ∂Ω

m


−∆u + x · ∇u = µu in Ω

∂u

∂νΩ
= 0 on ∂Ω

F. Chiacchio, Università di Napoli Federico II An inverse spectral problem for the Hermite operator



Notation and classical results

Spectral theory on compact self-adjoint operators ensures that

µ1(Ω) = min


∫

Ω

|Dψ|2dγN∫
Ω

ψ2dγN

: ψ ∈ H1(Ω, dγN) \ {0},
∫

Ω

ψdγN = 0


where

H1(Ω, dγN) =
{
u ∈W 1,1

loc (Ω) : (u, |Du|) ∈ L2(Ω, dγN)× L2(Ω, dγN)
}
.

The case Ω = RN :

µ1

(
RN
)

= 1⇐⇒
∫
RN

u2dγN ≤
∫
RN

|Du|2dγN

∀u ∈ H1(RN , dγN) :

∫
RN

udγN = 0

Moreover, 1 is an N−degenerate eigenvalue with a corresponding set of
independent eigenfunctions given by ui (x) = xi , with i ∈ {1, ...,N}.
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Some one-dimensional eigenvalue problems

Let a, b ∈ R with a < b. We denote by µ1(a, b) the first nontrivial eigenvalue of
−u′′ + xu′ = µu in (a, b)

u′(a) = u′(b) = 0,

and by λ1(a, b) the first eigenvalue of the problem
−v ′′ + xv ′ = λv in (a, b)

v(a) = v(b) = 0.

It is easy to verify that
µ1(a, b) = 1 + λ1(a, b)

and

λ1(a, b) ≥ 0 with λ1(a, b) = 0 if and only if (a, b) = R
m

µ1(a, b) ≥ 1 with µ1(a, b) = 1 if and only if (a, b) = R
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The Szegö-Weinberger inequality in Gauss space

Theorem [C. - di Blasio, 2012]

Let Ω be any smooth domain of RN symmetric about the origin. Let BRΩ (0) be
the ball centered at the origin such that γN(Ω) = γN(BRΩ (0)). Then

µ1(Ω) ≤ µ1(BRΩ (0))

and equality holds if and only of Ω = BRΩ (0).

Remark 1.

We also show that, even removing the assumption on the symmetry, the
half-spaces (i.e. the isoperimetric sets) cannot be optimal in the “Gaussian
Szegö-Weinberger” inequality. To this aim we study the behavior of µ1(a, b)
when the interval (a, b) slides along the x-axis, keeping γ1(a, b) fixed.

Remark 2.

Szegö-Weinberger type inequalities for log-convex weight are contained in
Brock - C. - di Blasio, 2016.
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The Payne-Weinberger inequality in Gauss space

Theorem [Bakry-Qian, 2000]

If Ω ⊂ RN is a bounded, convex domain, then

µ1(Ω) ≥ µ1(−d(Ω)/2, d(Ω)/2).

Remark 1.

The assumption on the convexity cannot be removed.

Remark 2.

By the results on the one-dimensional case we have

µ1(Ω) ≥ µ1(−d(Ω)/2, d(Ω)/2) = 1 + λ1(−d(Ω)/2, d(Ω)/2).

Hence any convex domain Ω ⊂ RN such that µ1(Ω) = 1 must be unbounded.
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The Payne-Weinberger inequality in Gauss space

Theorem [Brandolini - C. - Henrot -Trombetti, 2013]

Let Ω ⊂ RN be any convex domain then

µ1(Ω) ≥ 1.

Equality sign is achieved for if Ω is any N−dimensional strip.

The proof is divided into the following steps.

(1) We provide an extension Theorem in H1(Ω, dγN).

(2) We find a sequence of convex, bounded domains {Ωk}k∈N invading Ω such
that lim

k→∞
µ1(Ωk) = µ1(Ω).

(2) We conclude by using the Bakry-Qian estimate

µ1(Ω) = lim
k→∞

µ1(Ωk) ≥ lim
k→∞

µ1 (−d(Ωk), d(Ωk)) ≥ 1.
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Sharpness of the estimate µ1 (Ω) ≥ 1 and different proofs

Remark 1

Let Sa,b = {(x1, x2, ..., xN) ∈ RN : a < xN < b}, with −∞ < a < b < +∞.
Any eigenfunction corresponding to µ1(Sa,b) must depend on one variable only.
Since, as we said before,

µ1(a, b) = λ1(a, b) + 1 > 1 = µ1(R),

we get µ1(Sa,b) = 1 for every a, b ∈ R and a corresponding eigenfunction is, for
instance, H1(x1) = x1.

Remark 2

One can prove the estimare µ1 (Ω) ≥ 1 by using some results contained in
Brascamp-Lieb 1976 or in Caffarelli 2000, concerning Poincaré - Wirtinger type
inequalities for measures obtained as log-concave perturbations of the Gaussian.
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An inverse spectral problem: the equality case in µ1 (Ω) ≥ 1

Theorem [Brandolini - C. - Krejčǐŕık - Trombetti, to appear]

Let Ω be a convex subset of Sy1,y2 =
{

(x , y) ∈ R2 : y1 < y < y2

}
for some y1,

y2 ∈ R.
If µ1(Ω) = 1 then Ω is a strip.
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Theorem [Brandolini - C. - Krejčǐŕık - Trombetti, to appear]

Let Ω be a convex subset of Sy1,y2 =
{

(x , y) ∈ R2 : y1 < y < y2

}
for some y1,

y2 ∈ R.
If µ1(Ω) = 1 then Ω is a strip.

Remark 1.

As we noticed before, if µ1(Ω) = 1, then Ω must be unbounded.

Remark 2.

By employing a separation of variables, we also deduce that Ω is not a
semi-strip.
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An inverse spectral problem: the equality case in µ1 (Ω) ≥ 1

Theorem [Brandolini - C. - Krejčǐŕık - Trombetti, to appear]

Let Ω be a convex subset of Sy1,y2 =
{

(x , y) ∈ R2 : y1 < y < y2

}
for some y1,

y2 ∈ R.
If µ1(Ω) = 1 then Ω is a strip.

The proof is divided in two steps.

(1) Slicing.
We find a sequence {Ωε} of thinner and thinner horizontal slices of Ω such
that µ1(Ωε) = 1 ∀ε > 0.

(2) Asymptotics.
We show that ∃(x0, y0) ∈ ∂Ω : lim

ε→0
µ1(Ωε) = µ1(x0,+∞).
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Slicing

Proposition

Let Ω be a convex subset of Sy1,y2 such that µ1(Ω) = 1 and let ȳ ∈ (y1, y2) be
such that the straight-line y = ȳ bisects the area γ2(Ω). Then

µ1(Ω ∩ {y < ȳ}) = µ1(Ω ∩ {y > ȳ}) = 1.

Proof Let u be an eigenfunction corresponding to µ1(Ω); then∫
Ω
|Du|2dγ2∫
Ω
u2dγ2

= 1 and

∫
Ω

u dγ2 = 0.

For every α ∈ [0, 2π] there is a unique straight line rα orthogonal to
(cosα, sinα) dividing Ω into two convex sets Ω′α, Ω′′α with equal Gaussian area.
Let I(α) =

∫
Ω′α

udγ2. Since I(α) = −I(α + π), by continuity there is ᾱ such

that

γ2

(
Ω′ᾱ
)

= γ2

(
Ω′′ᾱ
)

=
γ2 (Ω)

2
and

∫
Ω′ᾱ

udγ2 =

∫
Ω′′ᾱ

udγ2 = 0.
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Slicing

Observe that∫
Ω′ᾱ
|Du|2dγ2∫

Ω′ᾱ
u2dγ2

≥ µ1(Ω′ᾱ) ≥ 1,

∫
Ω′′ᾱ
|Du|2dγ2∫

Ω′′ᾱ
u2dγ2

≥ µ1(Ω′′ᾱ) ≥ 1

and

1 = µ1(Ω) =

∫
Ω′ᾱ
|Du|2dγ2 +

∫
Ω′′ᾱ
|Du|2dγ2∫

Ω′ᾱ
u2dγ2 +

∫
Ω′′ᾱ

u2dγ2

≥ min

{∫
Ω′ᾱ
|Du|2dγ2∫

Ω′ᾱ
u2dγ2

,

∫
Ω′′ᾱ
|Du|2dγ2∫

Ω′′ᾱ
u2dγ2

}
≥ 1

W

1 = µ1(Ω) = µ1(Ω′ᾱ) = µ1(Ω′′ᾱ).
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Slicing

By repeating the procedure described in the above Proposition, since at any
step we are bisecting the Gaussian area, we can obtain a sequence of
unbounded convex domains Ωε such that

Ωε =
{

(x , y) ∈ R2 : x > x0, y0 < y < min{f (x), dε}
}

µ1 (Ωε) = 1, ε = dε − y0 −→ 0

(here f is a concave and nondecreasing function such that f ′(x0) < +∞).
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Slicing

By repeating the procedure described in the above Proposition, since at any
step we are bisecting the Gaussian area, we can obtain a sequence of
unbounded convex domains Ωε such that

Ωε =
{

(x , y) ∈ R2 : x > x0, y0 < y < min{f (x), dε}
}

µ1 (Ωε) = 1, ε = dε − y0 −→ 0

(here f is a concave and nondecreasing function such that f ′(x0) < +∞).

It remains to prove that

1 = lim
ε→0

µ1(Ωε) = µ1(x0,+∞) = 1 + λ1(x0,+∞)

W

λ1(x0,+∞) = 0 V x0 = −∞.

This means that Ω contains a straight-line and then it is a strip.
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Asymptotics

f concave, nondecreasing, continuous, f (0) = 0, f ′(0) < +∞

Ωε = {x > 0, 0 < y < fε = min{f (x), ε}}
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Asymptotics

(x0, y0) −→ (0, 0) :


−div

(
exp

(
− (x+x0)2+(y+y0)2

2

)
Du
)

= µ exp
(
− (x+x0)2+(y+y0)2

2

)
u in Ωε

∂u

∂νΩε

= 0 on ∂Ωε

We consider the one-dimensional problem
−
(

exp
(
− (x+x0)2+y2

0
2

)
v ′
)′

= ν exp
(
− (x+x0)2+y2

0
2

)
v in (0,+∞)

v ′(0) = 0

and we prove

Theorem

For every k ∈ N
lim
ε→0

µk(Ωε) = νk = µk(x0,+∞).
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Main strategy

Lε
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Main strategy

Let gε(s) =

{
aεs + aε if s ∈ [−1, 0)

s + aε if s ∈ [0,+∞)

and
Lε : (s, t) ∈ S −→

(
gε(s), fε(gε(s)) t

)
∈ Ωε

V Lε is a C 0,1 diffeomorphism between S and Ωε, whose jacobian

jε(s, t) = g ′ε(s)fε(gε(s))

is independent of t and singular at s = −1
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Main strategy

With the notation

γ(x , y) = exp

(
− (x0 + x)2 + (y0 + y)2

2

)
γε(s, t) = (γ ◦ Lε)(s, t) = exp

(
− [x0 + gε(s)]2 + [y0 + fε(gε(s))t]2

2

)
we get that, for any v ∈ H1(Ωε, dγ),∫

Ωε

|Dv |2dγ =

∫
S

[(
∂sv

g ′ε
− f ′ε ◦ gε

fε ◦ gε
t ∂tv

)2

+
(∂tv)2

(fε ◦ gε)2

]
γε g

′
ε
fε ◦ gε
ε

ds dt

∫
Ωε

v 2dγ =

∫
S

v 2 γε g
′
ε
fε ◦ gε
ε

ds dt
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Passing to the limit

Denoted by ψε an eigenfunction corresponding to µk(Ωε), the weak
formulation of the eigenvalue equation reads as∫

Ωε

Dψε Dϕ dγ = µk(Ωε)

∫
Ωε

ψε ϕ dγ ∀ϕ ∈ H1(Ωε, dγ)

m

∫
S

[(
∂sψε
g ′ε
− f ′ε ◦ gε

fε ◦ gε
t∂tψε

)(
∂sφ

g ′ε
− f ′ε ◦ gε

fε ◦ gε
t∂tφ

)
+

(∂tψε)

(fε ◦ gε)

(∂tφ)

(fε ◦ gε)

]
γε g

′
ε
fε ◦ gε
ε

dsdt

= µk(Ωε)

∫
S

ψε φγε g
′
ε
fε ◦ gε
ε

dsdt ∀φ ∈ H1 (S , γεg ′ε fε ◦ gεdsdt)
We want to pass to the limit as ε→ 0.
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A uniform upper bound for µk(Ωε)

Proposition.

For any k ∈ N there exists Ck > 0 such that, for all ε ≤ 1, µk(Ωε) ≤ Ck .

Proof. Recall that µk(Ωε) can be characterized by the following Rayleigh-Ritz
variational formula

µk(Ωε) = inf
dimV=k+1

sup
v∈V

∫
Ωε

|Dv |2dγ∫
Ωε

v 2dγ

= inf
dimV=k+1

sup
v∈V

∫
S

[(
∂sv

g ′ε
− f ′ε ◦ gε

fε ◦ gε
t ∂tv

)2

+
(∂tv)2

(fε ◦ gε)2

]
γε g

′
ε
fε ◦ gε
ε

ds dt∫
S

v 2 γε g
′
ε
fε ◦ gε
ε

ds dt
.

In S+ = (0,+∞)× (0, 1) it holds that

γ−(s) ≤ γε(s, t) ≤ γ+(s), g ′ε = 1,
fε ◦ gε
ε

= 1.
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A uniform upper bound for µk(Ωε)

Hence choosing a test function independent of t, v ∈ C∞0 (0,+∞), we get∫
Ωε

|Dv |2dγ∫
Ωε

v 2dγ
≤

∫ +∞

0

v ′(s)2γ+(s)ds∫ +∞

0

v(s)2γ−(s)ds

.

W

µk(Ωε) ≤ inf
dim V=k+1

V⊂C∞0 (0,+∞)

sup
v∈V

∫ +∞

0

v ′(s)2γ+(s)ds∫ +∞

0

v(s)2γ−(s)ds

↑
eigenvalues of the one-dimensional operator

−γ−1
− ∂sγ+∂s ,

subject to Dirichlet boundary conditions
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What happens in S−?

Take a normalized eigenfunction ψε corresponding to µk(Ωε):

∫
Ωε

ψ2
εdγ =

∫
S

ψ2
ε γε g

′
ε
fε ◦ gε
ε

ds dt = 1

∫
Ωε

|Dψε|2dγ =

∫
S

[(
∂sψε
g ′ε
− f ′ε ◦ gε

fε ◦ gε
t ∂tψε

)2

+
(∂tψε)2

(fε ◦ gε)2

]
γε g

′
ε
fε ◦ gε
ε

ds dt

= µk(Ωε)

γε(s, t) ≥ c0 > 0,

g ′ε = aε,

1 ≥ fε ◦ gε
ε
≥ s + 1.
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What happens in S−?
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∫
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S

ψ2
ε γε g

′
ε
fε ◦ gε
ε

ds dt = 1

∫
Ωε

|Dψε|2dγ =

∫
S

[(
∂sψε
g ′ε
− f ′ε ◦ gε

fε ◦ gε
t ∂tψε

)2

+
(∂tψε)2

(fε ◦ gε)2

]
γε g

′
ε
fε ◦ gε
ε

ds dt

= µk(Ωε)

γε(s, t) ≥ c0 > 0,

g ′ε = aε,

1 ≥ fε ◦ gε
ε
≥ s + 1.
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What happens in S−?

∫
S−

(∂sψε)2 (s + 1) ds dt +
(aε
ε

)2
∫
S−

(∂tψε)2 (s + 1) ds dt ≤ Caε

f ′(0) < +∞ ⊕ f (s) ≤ f ′(0)s

⇓

ε = f (aε) ≤ f ′(0)aε and
1

f ′(0)2
≤
(aε
ε

)2

⇓∫
S−

|∇ψε|2 (s + 1)dsdt ≤ Caε → 0 as ε→ 0.
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What happens in S−?

Writing ψε(s, t) = ϕε + ηε(s, t) with ϕε constant, and∫
S−

ηε(s, t)(s + 1)ds dt = 0,

we get

π2

∫
S−

η2
ε(s + 1)ds dt ≤

∫
S−

|Dηε|2(s + 1)ds dt ≤ Caε.

We then prove, with some more effort, that

ϕ2
ε ≤ C on S−.

Hence

∫
S−

ψ2
εγε g

′
ε
fε ◦ gε
ε

dsdt ≤ Caε

∫
S−

(ϕε + ηε)2(s + 1)dsdt → 0 as ε→ 0.

This means that what happens in S− becomes more and more negligible as ε
goes to zero. In the limit only S+ does matter.
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What happens in S+?

γε(s, t) ≥ ρε(s)γ0(s) with
lim
ε→0

ρε = 1

and

γ0(s) = exp

(
− (x0 + s)2 + y 2

0

2

)
,

g ′ε = 1,
fε ◦ gε
ε

= 1.
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What happens in S+?

∫
S+

(∂sψε)2 ρε γ0 ds dt +

∫
S+

(∂tψε)2

ε2
ρε γ0 ds dt ≤ C

Writing

ψε(s, t) = ϕε(s) + ηε(s, t) with

∫ 1

0

ηε(s, t)dt = 0

we get that (up to a subsequence)

√
ρεϕε ⇀ ϕ0 in H1((0,+∞), dγ0)
√
ρεϕε → ϕ0 in L2((0,+∞), dγ0)
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Conclusions

Now, in the weak formulation of the eigenvalue equation, we consider test
functions φ(s, t) = ϕ(s), where ϕ ∈ C∞0 (R) and ϕ′ = 0 on [−1, 0], and take
the limit as ε→ 0.

After many computations..... as ε→ 0 only S+ matters and

lim
ε→0

∫
Ωε

DϕDψε dγε =

∫ +∞

0

ϕ′ϕ′0γ0ds

lim
ε→0

∫
Ωε

ϕψεdγε =

∫ +∞

0

ϕϕ0γ0ds

||ψε||L2(Ωε,dγ) → ||ϕ0||L2((0,+∞),dγ0)

lim
ε→0

µk(Ωε) = νk = µk(x0,+∞)
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Conclusions

Now, in the weak formulation of the eigenvalue equation, we consider test
functions φ(s, t) = ϕ(s), where ϕ ∈ C∞0 (R) and ϕ′ = 0 on [−1, 0], and take
the limit as ε→ 0.

After many computations..... as ε→ 0 only S+ matters and
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ϕϕ0γ0ds

||ψε||L2(Ωε,dγ) → ||ϕ0||L2((0,+∞),dγ0)
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Coming back to the uniqueness of optimal sets

1 = lim
ε→0

µ1(Ωε) = µ1(x0,+∞) = 1 + λ1(x0,+∞)

W

λ1(x0,+∞) = 0 V x0 = −∞
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