On the quantitative isoperimetric inequality in the plane

Chiara Bianchini

Dipartimento di Matematica e Informatica U. Dini, Università degli Studi di Firenze

BIRS, July 2016
joint work with Gisella Croce and Antoine Henrot

From the classical isoperimetric inequality to the quantitative isoperimetric inequality

Planar isoperimetric inequality: Let $\Omega \subset \mathbb{R}^{2}$, B be a ball s.t. $|B|=|\Omega|$ $\leadsto P(\Omega) \geq P(B)$, and equality holds iff Ω is a ball.

We are interested in a quantitative version:
if $P(\Omega) \approx P(B)$, can we say that Ω is "almost" a ball?

From the classical isoperimetric inequality to the quantitative isoperimetric inequality

Planar isoperimetric inequality: Let $\Omega \subset \mathbb{R}^{2}$, B be a ball s.t. $|B|=|\Omega|$ $\leadsto P(\Omega) \geq P(B)$, and equality holds iff Ω is a ball.

We are interested in a quantitative version:
if $P(\Omega) \approx P(B)$, can we say that Ω is "almost" a ball?

\cdots if $\delta(\Omega)$ is small, can we say that Ω is "near to be" a ball? Can we find $C>0, \alpha$ s.t. $\lambda(\Omega) \leq C P^{\alpha}(\Omega)$ where λ measures the

From the classical isoperimetric inequality to the quantitative isoperimetric inequality

Planar isoperimetric inequality: Let $\Omega \subset \mathbb{R}^{2}$, B be a ball s.t. $|B|=|\Omega|$ $\leadsto P(\Omega) \geq P(B)$, and equality holds iff Ω is a ball.

We are interested in a quantitative version: if $P(\Omega) \approx P(B)$, can we say that Ω is "almost" a ball?
\leadsto Define: $\delta(\Omega)=\frac{P(\Omega)}{P(B)}-1$ the isoperimetric deficit of Ω.
mif $\delta(\Omega)$ is small, can we say that Ω is "near to be" a ball?
Can we find $C>0$, α s.t. $\lambda(\Omega) \leq C P^{\alpha}(\Omega)$ where λ measures the
asymmetry of Ω ?

From the classical isoperimetric inequality to the quantitative isoperimetric inequality

Planar isoperimetric inequality: Let $\Omega \subset \mathbb{R}^{2}$, B be a ball s.t. $|B|=|\Omega|$ $\leadsto P(\Omega) \geq P(B)$, and equality holds iff Ω is a ball.

We are interested in a quantitative version: if $P(\Omega) \approx P(B)$, can we say that Ω is "almost" a ball?
\leadsto Define: $\delta(\Omega)=\frac{P(\Omega)}{P(B)}-1$ the isoperimetric deficit of Ω.
mif $\delta(\Omega)$ is small, can we say that Ω is "near to be" a ball?
Can we find $C>0, \alpha$ s.t. $\lambda(\Omega) \leq C P^{\alpha}(\Omega)$ where λ measures the asymmetry of Ω ?

Which kind of distance suitably measures how close Ω is to a ball?

From the classical isoperimetric inequality to the quantitative isoperimetric inequality

Planar isoperimetric inequality: Let $\Omega \subset \mathbb{R}^{2}$, B be a ball s.t. $|B|=|\Omega|$ $\leadsto P(\Omega) \geq P(B)$, and equality holds iff Ω is a ball.

We are interested in a quantitative version: if $P(\Omega) \approx P(B)$, can we say that Ω is "almost" a ball?
\leadsto Define: $\delta(\Omega)=\frac{P(\Omega)}{P(B)}-1$ the isoperimetric deficit of Ω.
mif $\delta(\Omega)$ is small, can we say that Ω is "near to be" a ball?
Can we find $C>0, \alpha$ s.t. $\lambda(\Omega) \leq C P^{\alpha}(\Omega)$ where λ measures the asymmetry of Ω ?

Which kind of distance suitably measures how close Ω is to a ball?

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance: with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
$\leadsto \rightarrow$ we consider the Fraenkel asymmetry

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance: with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}
$$

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance: with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance: with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$
\rightsquigarrow Problem: how to find an optimal ball B_{y} ?

We will investigate this later..

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance: with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$
\leadsto Problem: how to find an optimal ball B_{y} ?

We will investigate this later...

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance:
with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$
\leadsto Problem: how to find an optimal ball B_{y} ?

0

We will investigate this later...

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance:
with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$
$\leadsto>$ Problem: how to find an optimal ball B_{y} ?

We will investigate this later...

The Fraenkel Asymmetry

Notice: $\lambda(\cdot)=d_{H}\left(\cdot ; B_{X}\right)$, the Hausdorff distance:
with general non-convex sets we cannot expect δ to control $d_{H}\left(\cdot ; B_{x}\right)$
\rightsquigarrow we consider the Fraenkel asymmetry:

$$
\lambda(\Omega)=\min _{x \in \mathbb{R}^{2}}\left\{\frac{\left|\Omega \Delta B_{x}\right|}{\left|B_{x}\right|}:\left|B_{x}\right|=|\Omega|\right\}=\frac{\left|\Omega \Delta B_{y}\right|}{\left|B_{y}\right|} .
$$

Notice: $\lambda(\Omega)=0$ iff $\Omega=B_{0} ; \quad \lambda(\cdot) \leq 2$
\leadsto Problem: how to find an optimal ball B_{y} ?

We will investigate this later...

The quantitative isoperimetric inequality

Theorem:[N. Fusco, F. Maggi, A. Pratelli '08] There exists a constant C_{N} s.t.

$$
\lambda(\Omega) \leq \widetilde{C_{N}} \sqrt{\delta(\Omega)}
$$

that is

$$
\inf _{\Omega \subset \mathbb{R}^{N}} \frac{\delta(\Omega)}{\lambda^{2}(\Omega)} \geq C_{N}
$$

Litterature: Bonnesen 1924 (planar case), Fuglede 1989 (nearly-spherical sets), Hall-Hayman-Weitsman 1991, Hall 1992
($\alpha=1 / 4$ axisymmetric sets), Fusco-Maggi-Pratelli 2008 (symmetrization techniques), Figalli-Maggi-Pratelli 2010 (mass transportation), Cicalese-Leonardi 2012 (selection principle),
Fusco-Gelli-Pisante 2012 (Hausdorff distance)...
Which is the value of the optimal constant C_{2} ?

The quantitative isoperimetric inequality

Theorem:[N. Fusco, F. Maggi, A. Pratelli '08] There exists a constant C_{N} s.t.

$$
\lambda(\Omega) \leq \widetilde{C_{N}} \sqrt{\delta(\Omega)},
$$

that is

$$
\inf _{\Omega \subset \mathbb{R}^{N}} \frac{\delta(\Omega)}{\lambda^{2}(\Omega)} \geq C_{N}
$$

Litterature: Bonnesen 1924 (planar case), Fuglede 1989 (nearly-spherical sets), Hall-Hayman-Weitsman 1991, Hall 1992
($\alpha=1 / 4$ axisymmetric sets), Fusco-Maggi-Pratelli 2008
(symmetrization techniques), Figalli-Maggi-Pratelli 2010 (mass transportation), Cicalese-Leonardi 2012 (selection principle),
Fusco-Gelli-Pisante 2012 (Hausdorff distance)...
Which is the value of the optimal constant C_{2} ?

The best constant C_{2} (i)

Theorem:[S. Campi '92],[A. Alvino, V. Ferone, C. Nitch '11] [$N=2$] A particular stadium D minimizes δ / λ^{2} among convex sets, that is

$$
\inf _{\Omega \operatorname{convex} \neq B} \frac{\delta(\Omega)}{\lambda^{2}(\Omega)}=\frac{\delta(D)}{\lambda^{2}(D)} \approx 0,406 .
$$

Conjecture:[M. Cicalese, G. Leonardi '12],[CB, G. Croce, A. Henrot '16] [$N=2$ 2] A particular peanut D_{0} minimizes δ / λ^{2}, that is

The best constant C_{2} (i)

Theorem:[S. Campi '92],[A. Alvino, V. Ferone, C. Nitch '11] [$N=2$] A particular stadium D minimizes δ / λ^{2} among convex sets, that is

$$
\inf _{\Omega \operatorname{convex} \neq \mathrm{B}} \frac{\delta(\Omega)}{\lambda^{2}(\Omega)}=\frac{\delta(D)}{\lambda^{2}(D)} \approx 0,406 .
$$

Conjecture:[M. Cicalese, G. Leonardi '12],[CB, G. Croce, A. Henrot '16] [$N=2$] A particular peanut D_{0} minimizes δ / λ^{2}, that is

$$
\inf _{\Omega \neq B} \frac{\delta(\Omega)}{\lambda^{2}(\Omega)}=\frac{\delta\left(D_{0}\right)}{\lambda^{2}\left(D_{0}\right)} \approx 0,393
$$

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;

[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;
[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;
- $\partial \Omega_{0}$ is $C^{1,1}$;
[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;
- $\partial \Omega_{0}$ is $C^{1,1}$;
- $\partial \Omega_{0}=\cup C_{i}, C_{i}$ arcs of balls;
- Ω_{0} has at least two optimal balls for the Fraenkel asymmetry;
- Ω_{0} has at most six connected components.
[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;
- $\partial \Omega_{0}$ is $C^{1,1}$;
- $\partial \Omega_{0}=\cup C_{i}, C_{i}$ arcs of balls;
- Ω_{0} has at least two optimal balls for the Fraenkel asymmetry;
- Ω_{0} has at most six connected components.
[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

The best constant C_{2} (ii)

Problem: minimize the shape functional $\mathcal{F}(\cdot)$ among planar sets $\Omega \neq B$:

$$
\mathcal{F}(\Omega)=\frac{\delta(\Omega)}{\lambda^{2}(\Omega)} .
$$

Theorem. There exists a set $\Omega_{0} \neq B$ s.t. $\min _{\Omega \subset \mathbb{R}^{2}} \mathcal{F}(\Omega)=\mathcal{F}\left(\Omega_{0}\right)$.

- Ω_{0} is not convex;
- $\partial \Omega_{0}$ is $C^{1,1}$;
- $\partial \Omega_{0}=\cup C_{i}, C_{i}$ arcs of balls;
- Ω_{0} has at least two optimal balls for the Fraenkel asymmetry;
- Ω_{0} has at most six connected components.
[M. Cicalese, G. Leonardi, '13]
[CB, G. Croce, A. Henrot, '16]

Location of an optimal ball (for $\lambda(\Omega))$ (i)

In general, it is not easy to locate an optimal ball!
However, B must satisfy some geometric conditions

Theorem. $[\mathrm{BCH}]$ Let Ω be a transversal set to an optimal ball $B \leadsto$ the intersection points $A_{i} \equiv\left(x_{i}, y_{i}\right), i \in\{1, \ldots, 2 p\}$ of $\partial \Omega \cap \partial B$ satisfy

Location of an optimal ball (for $\lambda(\Omega))$ (i)

In general, it is not easy to locate an optimal ball!
However, B must satisfy some geometric conditions

Theorem. [BCH] Let Ω be a transversal set to an optimal ball $B \leadsto$ the intersection points $A_{i} \equiv\left(x_{i}, y_{i}\right), i \in\{1, \ldots, 2 p\}$ of $\partial \Omega \cap \partial B$ satisfy

$$
\begin{aligned}
& x_{1}+x_{3}+\ldots+x_{2 p-1}-\left(x_{2}+x_{4}+\ldots+x_{2 p}\right)=0 \\
& y_{1}+y_{3}+\ldots+y_{2 p-1}-\left(y_{2}+y_{4}+\ldots+y_{2 p}\right)=0 .
\end{aligned}
$$

Location of an optimal ball (i): symmetric case

Proposition. $[\mathrm{BCH}]$ Let $\Omega \subset \mathbb{R}^{2}$ be Π-axis symmetric, Ω is convex in the direction $\Pi^{\perp} \leadsto \exists$ an optimal ball centered on Π.

Corollary. $[\mathrm{BCH}]$ Assume $\Omega \subset \mathbb{R}^{2}$ has two (perpendicular) axis of symmetry crossing at O, Ω convex in both directions $\leadsto \exists$ an optimal ball centered at O.

Notice: this corollary guarantees that
once performed the rearrangement Ω^{*}
the optimal ball is still the same.

Location of an optimal ball (i): symmetric case

Proposition. $[\mathrm{BCH}]$ Let $\Omega \subset \mathbb{R}^{2}$ be Π-axis symmetric, Ω is convex in the direction $\Pi^{\perp} \rightsquigarrow \exists$ an optimal ball centered on Π.

Corollary.[BCH] Assume $\Omega \subset \mathbb{R}^{2}$ has two (perpendicular) axis of symmetry crossing at O, Ω convex in both directions $\leadsto \exists$ an optimal ball centered at O.

Notice: this corollary guarantees that once performed the rearrangement Ω the optimal ball is still the same.

Location of an optimal ball (i): symmetric case

Proposition. $[\mathrm{BCH}]$ Let $\Omega \subset \mathbb{R}^{2}$ be Π-axis symmetric, Ω is convex in the direction $\Pi^{\perp} \leadsto \exists$ an optimal ball centered on Π.

Corollary.[BCH] Assume $\Omega \subset \mathbb{R}^{2}$ has two (perpendicular) axis of symmetry crossing at O, Ω convex in both directions $\leadsto \exists$ an optimal ball centered at O.

Notice: this corollary guarantees that once performed the rearrangement Ω^{*}, the optimal ball is still the same.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Notice: $\rightsquigarrow \leadsto \Omega^{*}$ is well defined if $\lambda(\Omega)$ is small!

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Notice: $\rightsquigarrow \leadsto \Omega^{*}$ is well defined if $\lambda(\Omega)$ is small!
> \leadsto the rearrangement (asymptotically) decreases \mathcal{F} : $\forall \alpha>0, \exists \beta$
> s.t. $\lambda(\Omega)<\beta$ implies $\mathcal{F}\left(\Omega^{*}\right)<\mathcal{F}(\Omega)+\alpha$.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Notice: $\rightsquigarrow \leadsto \Omega^{*}$ is well defined if $\lambda(\Omega)$ is small!
\leadsto the rearrangement (asymptotically) decreases \mathcal{F} : $\forall \alpha>0, \exists \beta$
s.t. $\lambda(\Omega)<\beta$ implies $\mathcal{F}\left(\Omega^{*}\right)<\mathcal{F}(\Omega)+\alpha$.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (i)

Let Ω_{n} be a minimizing sequence for $\min \mathcal{F}$.
\leadsto Aim: $\Omega_{n} \rightarrow \Omega_{0}, \Omega_{0} \neq B$.
[by contradiction!] We perform a rearrangement on Ω_{n} :

Notice: $\rightsquigarrow \leadsto \Omega^{*}$ is well defined if $\lambda(\Omega)$ is small!
\leadsto the rearrangement (asymptotically) decreases \mathcal{F} : $\forall \alpha>0, \exists \beta$
s.t. $\lambda(\Omega)<\beta$ implies $\mathcal{F}\left(\Omega^{*}\right)<\mathcal{F}(\Omega)+\alpha$.
$\leadsto \liminf \mathcal{F}\left(\Omega_{n}^{*}\right)=\frac{\pi}{8(4-\pi)} \approx 0,457>\mathcal{F}(D)=0,406$.

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\lim \inf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.
$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion:

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\liminf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.

$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion:

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\lim \inf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.

4 different cases: $i=1,2$
$\left[A_{i}:\right] \eta_{i} \rightarrow \hat{\eta}_{i}>0$;
$\left[B_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow I_{i}>0$;
$\left[C_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow 0 ;$
$\left[D_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow+\infty$.
$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion:
$\overline{\sin (\eta)-\eta \cos (\eta)}=\overline{8(4-\pi)}$

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\lim \inf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.

4 different cases: $i=1,2$
$\left[A_{i}:\right] \eta_{i} \rightarrow \hat{\eta}_{i}>0$;
$\left[B_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow I_{i}>0$;
$\left[C_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow 0$;
$\left[D_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow+\infty$.
$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion: $\leadsto \rightarrow$ cases B_{i}, C_{i}, D_{i} entails $\mathcal{F}\left(\Omega_{\varepsilon}\right) \rightarrow \infty$.
cases
$\overline{\sin (\eta)-\eta \cos (\eta)}=\overline{8(4-\pi)}$

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\lim \inf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.

4 different cases: $i=1,2$
$\left[A_{i}:\right] \eta_{i} \rightarrow \hat{\eta}_{i}>0$;
$\left[B_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow I_{i}>0$;
$\left[C_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow 0$;
$\left[D_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow+\infty$.
$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion: $\leadsto \rightarrow$ cases B_{i}, C_{i}, D_{i} entails $\mathcal{F}\left(\Omega_{\varepsilon}\right) \rightarrow \infty$.
\leadsto cases $A_{1} A_{2}$ entails $\mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{32} \max \frac{\cos (\eta)}{\sin (\eta)-\eta \cos (\eta)}=\frac{\pi}{8(4-\pi)}$.

A minimizing sequence does not converge to a ball

Aim: let Ω_{ε} be sequence s.t. $\Omega_{\varepsilon}=\pi$ and $\left|\Omega_{\varepsilon} \Delta B\right|=4 \varepsilon / \pi$, then $\liminf \mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{8(4-\pi)}$.
 4 different cases: $i=1,2$
$\left[A_{i}\right] \eta_{i} \rightarrow \hat{\eta}_{i}>0$;
$\left[B_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow l_{i}>0$;
$\left[C_{i:}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow 0$;
$\left[D_{i}:\right] \eta_{i} \rightarrow 0$ and $\frac{\varepsilon}{\sin ^{2}\left(\eta_{i}\right)} \rightarrow+\infty$.
$\mathcal{F}\left(\Omega_{\varepsilon}\right)=\frac{2}{\pi}\left(\frac{1}{\varepsilon^{2}} F\left(\eta_{1}^{\varepsilon}, \frac{\varepsilon}{\sin ^{2}\left(\eta_{1}^{\varepsilon}\right)}\right)+\frac{1}{\varepsilon^{2}} F\left(\eta_{2}^{\varepsilon}, \frac{-\varepsilon}{\sin ^{2}\left(\eta_{2}^{\varepsilon}\right)}\right)\right)$
By Taylor expansion: \leadsto cases B_{i}, C_{i}, D_{i} entails $\mathcal{F}\left(\Omega_{\varepsilon}\right) \rightarrow \infty$.
\leadsto cases $A_{1} A_{2}$ entails $\mathcal{F}\left(\Omega_{\varepsilon}^{*}\right) \geq \frac{\pi}{32} \max \frac{\cos (\eta)}{\sin (\eta)-\eta \cos (\eta)}=\frac{\pi}{8(4-\pi)}$. \leadsto a minimizing sequence cannot converge to a ball!

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge?

YES! indeed..

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. $\Rightarrow[\mathrm{BCH}] P(\Omega)<20 \Longrightarrow \exists \Omega$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightrightarrows M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - $[\mathrm{BCH}] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - BCH$] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1}$ we can replace all other by balls

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed...
$\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - BCH$] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1}$ wwe can replace all other by balls minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - $[\mathrm{BCH}] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1} \rightsquigarrow \rightarrow$ we can replace all other by balls minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (II)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - $[\mathrm{BCH}] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1} \leadsto \rightarrow$ we can replace all other by balls $\leadsto \rightarrow$ minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (iI)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - $[\mathrm{BCH}] P(\Omega)<20 \Longrightarrow \exists \widetilde{\Omega}$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1} \rightsquigarrow \not$ we can replace all other by balls $\leadsto \rightarrow$ minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls.
\rightarrow hence the sequence is uniformly bounded: $\Omega_{n} \subset R$ a box \leadsto existence will classically follow from the compact embedding $B V(R) \hookrightarrow L^{1}(R)$ and lower-semi continuity of the perimeter.

Existence of a minimizer: a new proof of the quantitative isoperimetric inequality (iI)

We have seen: a minimizing sequence cannot converge to a ball. But: does a minimizing sequence converge? YES! indeed... $\lambda\left(\Omega_{n}\right) \leq 2, \delta\left(\Omega_{n}\right) / \lambda^{2}\left(\Omega_{n}\right) \rightarrow M \leq \mathcal{F}(D)=0.41 \rightsquigarrow P\left(\Omega_{n}\right) \leq 16.6$. - BCH$] P(\Omega)<20 \Longrightarrow \exists \Omega$ composed by at most 7 connected component s.t. $\mathcal{F}(\widetilde{\Omega}) \leq \mathcal{F}(\Omega)$.

Ω has at most 4 components $\not \subset B_{1} \rightsquigarrow$ we can replace all other by balls $\leadsto \leadsto$ minimization problem involving the radii: the minimizer is achieved by 2 or 3 balls.

- hence the sequence is uniformly bounded: $\Omega_{n} \subset R$ a box \leadsto existence will classically follow from the compact embedding $B V(R) \hookrightarrow L^{1}(R)$ and lower-semi continuity of the perimeter.

Number of connected components of Ω_{0}

- $\Omega_{n} \rightarrow \Omega_{0}$, with $\Omega_{0} \neq B$ optimal domain for \mathcal{F}.

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at most 6 connected components.
Indeed: look at the previous proof for the optimal domain Ω_{0} :
D_{0} has at most 4 components $\not \subset B_{1}$.
We can replace all other by balls.

Number of connected components of Ω_{0}

- $\Omega_{n} \rightarrow \Omega_{0}$, with $\Omega_{0} \neq B$ optimal domain for \mathcal{F}.

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at most 6 connected components.
Indeed: look at the previous proof for the optimal domain Ω_{0} :
D_{0} has at most 4 components $\not \subset B_{1}$.
We can replace all other by balls. In the minimization problem
involving the radii the minimizer is achieved by 2 balls.

Number of connected components of Ω_{0}

- $\Omega_{n} \rightarrow \Omega_{0}$, with $\Omega_{0} \neq B$ optimal domain for \mathcal{F}.

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at most 6 connected components.
Indeed: look at the previous proof for the optimal domain Ω_{0} :
D_{0} has at most 4 components $\not \subset B_{1}$.
We can replace all other by balls. In the minimization problem
involving the radii the minimizer is achieved by 2 balls. \rightsquigarrow

- hence Ω_{0} has at most 6 connected components.

Number of connected components of Ω_{0}

- $\Omega_{n} \rightarrow \Omega_{0}$, with $\Omega_{0} \neq B$ optimal domain for \mathcal{F}.

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at most 6 connected components.
Indeed: look at the previous proof for the optimal domain Ω_{0} :
D_{0} has at most 4 components $\not \subset B_{1}$.
We can replace all other by balls. In the minimization problem involving the radii the minimizer is achieved by 2 balls. $\rightsquigarrow \rightarrow$
$>$ hence Ω_{0} has at most 6 connected components.

Number of connected components of Ω_{0}

- $\Omega_{n} \rightarrow \Omega_{0}$, with $\Omega_{0} \neq B$ optimal domain for \mathcal{F}.

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at most 6 connected components.
Indeed: look at the previous proof for the optimal domain Ω_{0} :
D_{0} has at most 4 components $\not \subset B_{1}$.
We can replace all other by balls. In the minimization problem involving the radii the minimizer is achieved by 2 balls. $\leadsto>$

- hence Ω_{0} has at most 6 connected components.

Number of optimal balls

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at least 2 optimal balls for $\lambda(\cdot)$
Indeed: [by contradiction!] assume there is only one optimal ball.
\rightsquigarrow non-connected case: $\Omega_{0}=E \cup B_{r}$.
\rightsquigarrow connected case: $\partial \Omega_{0}=\cup C_{i}: N$ copies of arcs of circle.

Number of optimal balls

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at least 2 optimal balls for $\lambda(\cdot)$
Indeed: [by contradiction!] assume there is only one optimal ball. $\rightsquigarrow \rightarrow$ non-connected case: $\Omega_{0}=E \cup B_{r}$.
$\rightsquigarrow>$ connected case: $\partial \Omega_{0}=\cup C_{;} ; N$ copies of arcs of circle.
Considering all possible values
for the parameters
show that we always get a
contradiction with one of the
following facts:

Number of optimal balls

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at least 2 optimal balls for $\lambda(\cdot)$
Indeed: [by contradiction!] assume there is only one optimal ball. $\rightsquigarrow \rightarrow$ non-connected case: $\Omega_{0}=E \cup B_{r}$. \rightsquigarrow connected case: $\partial \Omega_{0}=\cup C_{i}$: N copies of arcs of circle.
 condition. \square

Number of optimal balls

Thm. $[\mathrm{BCH}] \Omega_{0}$ has at least 2 optimal balls for $\lambda(\cdot)$
Indeed: [by contradiction!] assume there is only one optimal ball. \rightsquigarrow non-connected case: $\Omega_{0}=E \cup B_{r}$. $\leadsto>$ connected case: $\partial \Omega_{0}=\cup C_{i}$: N copies of arcs of circle.

Considering all possible values for the parameters α, θ, N we show that we always get a contradiction with one of the following facts:

- $\mathcal{F}\left(\Omega_{0}\right)<0.4055$
- the first order optimality condition: $\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{8 \delta}{\lambda}$
- the second order optimality condition.

Open problems to determine Ω_{0} and hence $C_{2}=\mathcal{F}\left(\Omega_{0}\right)$

Conjecture:

- Ω_{0} is connected;
- Ω_{0} has two orthogonal axis of symmetry;
- Ω_{0} has exactly 2 optimal balls.
> $\partial \Omega_{0}$ can be parametrized by 8 arcs of circles:
> the candidates are peanut shaped! (or masks)

Open problems to determine Ω_{0} and hence $C_{2}=\mathcal{F}\left(\Omega_{0}\right)$

Conjecture:

- Ω_{0} is connected;
- Ω_{0} has two orthogonal axis of symmetry;
- Ω_{0} has exactly 2 optimal balls.

> $\leadsto \partial \Omega_{0}$ can be parametrized by 8 arcs of circles:
> \leadsto the candidates are peanut shaped! (or masks)

Open problems to determine Ω_{0} and hence $C_{2}=\mathcal{F}\left(\Omega_{0}\right)$

Conjecture:

- Ω_{0} is connected;
- Ω_{0} has two orthogonal axis of symmetry;
- Ω_{0} has exactly 2 optimal balls.

$\leadsto \partial \Omega_{0}$ can be parametrized by 8 arcs of circles:
\leadsto the candidates are peanut shaped! (or masks)

Conjecture on the optimal domain Ω_{0}

By solving the two-dimensional minimization problem, we get:
Conjecture: Ω_{0} is a "peanut" with $\alpha=0.2686247, \theta=0.5285017$, $x_{0}=0.3940769$. The value of \mathcal{F} for the set Ω_{0} is

$$
\mathcal{F}\left(\Omega_{0}\right)=C_{2}=0.39314
$$

so that $\widetilde{C_{2}}=2.543625$.

References

A. Alvino, V. Ferone, C. C. Nitsch, J. Eur. Math. Soc. (2011).

CB, G. Croce, A. Henrot '16, ESAIM CoCv (2016).
S. Campi, Geom. Dedicata (1992)
M. Cicalese, G. P. Leonardi, Arch. Ration. Mech. Anal. (2012)
M. Cicalese, G. P. Leonardi, J. Eur. Math. Soc. (2013).
A. Figalli, F. Maggi, A. Pratelli, Invent. Math. (2010).
N. Fusco, Bull. Math. Sci. (2015).
N. Fusco, F. Maggi, A. Pratelli, Ann. of Math. (2008).
R.R. Hall, J. Reine Angew. Math. (1991).
F. Maggi, Bull. Math. Soc. (2008).

Upcoming events:

- Workshop on Partial Differential Equations and related topics, Alghero (Italy), Septembre 2016.

www.dma.unina.it/ferone/alghero2016/index.html

- CIME summer school on Geometry of PDE's and related problems Courses by: X. Cabré, A. Henrot, D. Peralta-Salas, W. Reichel, H. Shahgholian. Cetraro (Italy), June 2017.

