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Introduction

Global homotopy theory:
simultaneous and compatible actions of all compact Lie groups

... is the home of all universally equivariant phenomena.

I. Unstable global homotopy theory
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I Global spaces
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G-weak equivalences

A ‘global space’ is a space with simultaneous and compatible
actions of all compact Lie group...

Definition
Let G be a compact Lie group. A continuous G-map f : X −→ Y
is a G-weak equivalence if for every closed subgroup H the
map f H : X H −→ Y H is a weak homotopy equivalence.

A justification for this definition is:

Theorem (Equivariant Whitehead theorem)
Every G-weak equivalence between G-CW-complexes is a
G-equivariant homotopy equivalence.
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The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R∞,R∞) =

{ϕ ∈ HomR(R∞,R∞) | 〈ϕ(x), ϕ(y)〉 = 〈x , y〉 for all x , y ∈ R∞}

The monoid L comes with a certain topology such that
I the underlying space is contractible
I composition is continuous

The monoid L is well known in homotopy theory; up to weak
equivalence, an L-action is no additional information.
Thus L-spaces model the homotopy theory of spaces.

We will drastically change the perspective on L-spaces
by introducing a much finer notion of equivalence.
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Universal subgroups

Let G be a compact Lie group. ‘Representations’ are R-linear,
orthogonal representations.

Definition
A complete G-universe is a countably infinite dimensional
G-representation into which every finite dimensional
G-representation embeds.

Definition
A compact Lie subgroup of the topological monoid L is a
universal subgroup if the tautological action makes R∞ into a
complete universe.

Universal subgroup of L are closed under passage to closed
subgroups and conjugation by linear isometries.
Not every compact Lie subgroup of L is universal.
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Universal subgroups

Proposition
(i) Every compact Lie group is isomorphic to a universal

subgroup of L.
(ii) Two isomorphic universal subgroups of L are conjugate by

a linear isometry.

Proof.
(i) There are countably many irreducible G-reps {λi}i∈I .

Transport the G-action along an R-linear isometry

R∞ ∼=
⊕

i∈I

⊕
n≥1

λi .

The image of the action map G −→ L is a universal subgroup
isomorphic to G.
(ii) Let α : G

∼=−→ K be an isomorphism between universal
subgroups. Then R∞G and α∗(R∞K ) are complete G-universes.
Any G-equivariant linear isometry ϕ : R∞G ∼= α∗(R∞K )
conjugates G into K .
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The universal Lie group

In other words:
(universal subgroups of L)/conjugacy

∼= (compact Lie groups)/isomorphism

So L is the universal compact Lie group.

Definition
A morphism f : X −→ Y of L-spaces is a global equivalence
if for every universal subgroup G of L the map f G : X G −→ Y G

is a weak homotopy equivalence.
The global equivalences are part of a model structure on the
category of L-spaces.

Alternative models for unstable global homotopy theory:
I Topological stacks (Gepner-Henriques)
I Orbispaces (Gepner-Henriques)
I Orthogonal spaces
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Examples of global spaces

Example
Every space can be given trivial L-action. This takes weak
equivalences to global equivalence. The construction is left
adjoint to forgetting the L-action.

Example
Taking a space A to RA = map(L,A) is right adjoint to
forgetting the L-action.

(RA)K ' map(BK ,A)

Example
P(R∞) = infinite projective space

P(R∞)K ' Hom(K ,Z/2)× RP∞

More generally: Grassmannians
Grn(R∞), Gr+

n (R∞), GrCn (C⊗ R∞), GrHn (H⊗ R∞)
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Global classifying spaces

Example
A compact Lie group G has a global classifying space BglG:

Choose a faithful G-representation V and set
BglG = L(V ,R∞)/G .

(BglG)K '
∐

[α:K−→G]

BCG(Im(α)) .

BglG corresponds to the stack of principal G-bundles
Competing notation: BG, [∗/G] or ∗//G
More generally: for a G-space A,
the L-space L(V ,R∞)×G A models [A/G] (aka A//G)

Special cases: P(R∞) = BglZ/2 ,

Grn(R∞) = BglO(n) , Gr+
n (R∞) = BglSO(n) ,

GrCn (C⊗ R∞) = BglU(n) , GrHn (H⊗ R∞) = BglSp(n) .
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More generally: for a G-space A,
the L-space L(V ,R∞)×G A models [A/G] (aka A//G)

Special cases: P(R∞) = BglZ/2 ,
Grn(R∞) = BglO(n) , Gr+

n (R∞) = BglSO(n) ,

GrCn (C⊗ R∞) = BglU(n) , GrHn (H⊗ R∞) = BglSp(n) .
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Global refinements of BO

The classifying space of the infinite orthogonal group
O = ∪n≥1O(n) has several interesting global refinements.

Example
The monoid L acts on O ‘by conjugation’ through continuous
group automorphisms. So the bar construction BO inherits an
L-action. For this L-space we have

(BO)K '
∏′

[λ]:K -irrep
B(Oλ)

where

Oλ =


O if λ is of real type,
U if λ is of complex type,
Sp if λ is of quaternionic type.
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Global refinements of BO

Example
We define bO as the space of all R-subspaces L of R∞ ⊕ R∞
with the following property:
there are n ≥ 0 and V ∈ Grn(R∞ ⊕ Rn) such that

L = {x ∈ R∞ ⊕ Rn | 〈x ,V 〉 = 0} .

An L-action on bO is given by

ϕ · L = (R∞ ⊕ ϕ)(L) .

The fixed points are

bOK '
∐

[V ]:V K =0

B(OK (V ))× BO

Proposition
The L-space is a sequential global homotopy colimit of the
global classifying spaces BglO(n).

The L-spaces BO and bO are not globally equivalent, and
neither one is left nor right induced.
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Orthogonal spectra

II. Stable global homotopy theory

Definition
An orthogonal spectrum X consists of

I based O(V )-spaces X (V ), for every inner product space V
I O(V )×O(W )-equivariant structure maps

σV ,W : X (V ) ∧ SW −→ X (V ⊕W )

subject to associativity and identity conditions.

Here: SW = W ∪ {∞} one-point compactification

An orthogonal spectrum X has an underlying non-equivariant
spectrum:

I Xn = X (Rn), n ≥ 0
I σRn,R : ΣXn = X (Rn) ∧ S1 −→ X (Rn+1) = Xn+1
I forget the O(n)-actions
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Equivariant homotopy groups
Let X be an orthogonal spectrum.

I G: compact Lie group
I V : orthogonal G-representation

}
=⇒ G acts on X (V )

[SV ,X (V )]G : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of X is

πG
0 (X ) = colimV [SV ,X (V )]G .

I colimit by stabilization via − ∧ SW , using structure maps
I πG

0 (X ) is an abelian group, natural in X
I similarly: πG

k (X ) for k ∈ Z
I πG

0 (X ) is the stable analog of π0(Y G) for an L-space Y
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Global equivalences

Definition
A morphism f : X −→ Y of orthogonal spectra
is a global equivalence

if the map

πG
k (f ) : πG

k (X ) −→ πG
k (Y )

is an isomorphism for all k ∈ Z and all G.

Definition
The global stable homotopy category is

GH = SpO[global equivalences−1] ,

the localization of orthogonal spectra at the class
of global equivalences.

A model category structure is available.
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Examples

Example
The global sphere spectrum S is given by

S(V ) = SV , σV ,W : SV ∧ SW ∼= SV⊕W

Example
The connective global K -theory spectrum ko:
ko(V ) = finite configurations of points in SV

labeled by finite dimensional
orthogonal subspaces of Sym(V )

Example
The Eilenberg-Mac Lane spectrum HZ:
(HZ)(V ) = Sp∞(SV )
infinite symmetric product

∞

V1

V2 V3

V4

∞

9

5 17

3
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Some global morphisms

For G finite:

S πG
0 (S) = A(G) Burnside ring (Segal)

ko πG
0 (ko) = RO(G) representation ring

HZ πG
0 (HZ) = Z

The morphism SQ −→ HQ is a non-equivariant equivalence,
but not a global equivalence.
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More examples

Example
Suspension spectra of global spaces, part of an adjoint pair

Ho(global spaces)
Σ∞+ // GH
Ω•

oo

Example
Periodic global K -theory KU (M. Joachim),
made from spaces of C∗-algebra maps

πG
∗ (KU) ∼= RU(G)[u,u−1]

Example
Kgl(R) global algebraic K -theory of a ring R
(only global for finite groups)

πG
∗ (KglR) ∼= K∗(R-proj f.g. R[G]-mod)
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Global Thom spectra

V : inner product space of dimension n
γV : tautological n-plane bundle

over the Grassmannian Grn(V ⊕ R∞)

Example
The global Thom spectrum mO is the orthogonal spectrum with

mO(V ) = Thom space of γV .

The action of O(V ) and structure maps only affect V , not R∞.

Represents equivariant bordism: for G ∼= finite× torus, the
equivariant Thom-Pontryagin construction

NG
∗ (X ) −→ πG

∗ (mO ∧ X )

is an isomorphism of equivariant homology theories.

Small changes can make a big difference:
replacing Grn(V ⊕ R∞) by Grn(V ⊕ V ) yields an orthogonal
Thom spectrum MO with different global homotopy type.
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Global stable homotopy category

The global stable homotopy category is the localization
of orthogonal spectra at global equivalences:

GH = SpO[global equivalences−1] ,

Properties:

I GH is a tensor triangulated category
I Pic(GH) ∼= Z, generated by the suspension of S
I GH is compactly generated by {Σ∞+ BglG}G compact Lie

I objects in GH represent ‘genuine’ cohomology theories on
stacks (Gepner-Henriques, Gepner-Nikolaus)

I a t-structure is given by ‘globally connective’ respectively
‘globally coconnective’ spectra; the heart consists of all X
such that

πG
n (X ) = 0

for all n 6= 0 and all G.
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Global functors

Theorem
The heart of this t-structure is equivalent to the category of
global functors.

Global functors are a particular kind of ‘global Mackey functors’.
A global functor M assigns

I an abelian group M(G) to every compact Lie group G,
I a restriction homomorphism α∗ : M(G) −→ M(K )

to every continuous homomorphism α : G −→ K ,
I a transfer homomorphism trG

H : M(H) −→ M(G) to every
closed subgroup H of G with finite Weyl group.

Relations:
I restrictions are contravariantly functorial
I transfers are covariantly functorial
I inner automorphisms are identity
I transfers commute with inflation
I double coset formula
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Recollement

Note: π
{e}
k (X ) = traditional (non-equivariant) homotopy group

of the underlying spectrum of X , so

global equivalence =⇒ stable equivalence

The forgetful functor

GH
forget // (stable homotopy category)

R

gg

L
ww

has fully faithful adjoints providing a recollement.
I L is strong symmetric monoidal, its essential image is

characterized by ‘constant geometric fixed points’
I R is lax symmetric monoidal, its essential image consists

of Borel equivariant cohomology theories
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Summary

What to take home:

I Global homotopy theory is the home of all equivariant
phenomena with ‘universal symmetry’

I There is a universal compact Lie group
I Orthogonal spectra and global equivalences provide a

convenient model for stable global homotopy theory
I There are many explicit examples
I The global stable homotopy category is worth studying

References
S. Schwede: Orbispaces, orthogonal spaces, and the universal
compact Lie group. Preprint
S. Schwede: Global homotopy theory. Book project
available from www.math.uni-bonn.de/people/schwede/
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