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G-weak equivalences

A ‘global space’ is a space with simultaneous and compatible
actions of all compact Lie group...

Definition

Let G be a compact Lie group. A continuous G-map f: X — Y
is a G-weak equivalence if for every closed subgroup H the
map " : XH — YH is a weak homotopy equivalence.

A justification for this definition is:

Theorem (Equivariant Whitehead theorem)

Every G-weak equivalence between G-CW-complexes is a
G-equivariant homotopy equivalence.



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{p € Homg(R>,R*) | (¢(X), p(y)) = (x,y) forall x,y € R}



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{p € Homg(R>,R*) | (¢(X), p(y)) = (x,y) forall x,y € R}

The monoid £ comes with a certain topology such that



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{p € Homg(R>,R*) | (¢(X), p(y)) = (x,y) forall x,y € R}

The monoid £ comes with a certain topology such that
» the underlying space is contractible



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{¢ € Homg(R™,R*>) | {p(x), o(y)) = (x,y) forall x, y € R>}
The monoid £ comes with a certain topology such that

» the underlying space is contractible
» composition is continuous



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{ € Homg(R®,R™) | (p(x), o)) = (xy) for all x,y € R}

The monoid £ comes with a certain topology such that
» the underlying space is contractible
» composition is continuous
The monoid £ is well known in homotopy theory; up to weak

equivalence, an L-action is no additional information.
Thus £-spaces model the homotopy theory of spaces.



The linear isometries monoid

Definition
The linear isometries monoid is
L = L(R>*,R>) =
{ € Homg(R®,R™) | (p(x), o)) = (xy) for all x,y € R}

The monoid £ comes with a certain topology such that
» the underlying space is contractible
» composition is continuous
The monoid £ is well known in homotopy theory; up to weak

equivalence, an L-action is no additional information.
Thus £-spaces model the homotopy theory of spaces.

We will drastically change the perspective on L-spaces
by introducing a much finer notion of equivalence.
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Universal subgroups

Let G be a compact Lie group. ‘Representations’ are R-linear,
orthogonal representations.

Definition

A complete G-universe is a countably infinite dimensional
G-representation into which every finite dimensional
G-representation embeds.

Definition
A compact Lie subgroup of the topological monoid £ is a

universal subgroup if the tautological action makes R* into a
complete universe.

Universal subgroup of £ are closed under passage to closed
subgroups and conjugation by linear isometries.

Not every compact Lie subgroup of £ is universal.
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Universal subgroups

Proposition
(i) Every compact Lie group is isomorphic to a universal
subgroup of L.
(iiy Two isomorphic universal subgroups of L are conjugate by
a linear isometry.

Proof.
(i) There are countably many irreducible G-reps {\;}ic.
Transport the G-action along an R-linear isometry

R™ = @iel®n21 Ai-

The image of the action map G — L is a universal subgroup
isomorphic to G.

(i) Leta: G =, Kbean isomorphism between universal
subgroups. Then R and o*(R§®) are complete G-universes.
Any G-equivariant linear isometry ¢ : RE = o*(R%)

conjugates G into K. O]
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The universal Lie group

In other words:
(universal subgroups of £)/conjugacy
= (compact Lie groups)/isomorphism

So L is the universal compact Lie group.

Definition

A morphism f: X — Y of L-spaces is a global equivalence

if for every universal subgroup G of £ the map ¢ : X¢ — Y@
is a weak homotopy equivalence.

The global equivalences are part of a model structure on the
category of L-spaces.
Alternative models for unstable global homotopy theory:

» Topological stacks (Gepner-Henriques)

» Orbispaces (Gepner-Henriques)

» Orthogonal spaces
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Examples of global spaces

Example

Every space can be given trivial £-action. This takes weak
equivalences to global equivalence. The construction is left
adjoint to forgetting the L-action.

Example
Taking a space Ato RA = map(L, A) is right adjoint to
forgetting the L£-action.
(RA)¥ ~ map(BK, A)

Example
P(R*>°) = infinite projective space

P(R®)K ~ Hom(K,Z/2) x RP>
More generally: Grassmannians
Grp(R>), Gri(R*®), GrE(C ® R>®), Gril(H @ R>)
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Global classifying spaces

Example
A compact Lie group G has a global classifying space By G:
Choose a faithful G-representation V and set

ByG = L(V,R™)/G.

(ByG)F ~ [ BCs(Im(e)).
[a:K—G]

By G corresponds to the stack of principal G-bundles
Competing notation: BG, [x/G] or /G

More generally: for a G-space A,
the £-space L(V,R*)xgA models [A/G] (aka A/ G)

Special cases: P(R*) = ByZ/2,
Grn(Roo) = glo(n) ’ GrrJ;r(Roo) = gISO(n) ’
Gr§(C®R™) = ByU(n), GriH®R™) = BySp(n).
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Global refinements of BO

The classifying space of the infinite orthogonal group
O = Up>10(n) has several interesting global refinements.
Example

The monoid £ acts on O ‘by conjugation’ through continuous
group automorphisms. So the bar construction BO inherits an
L-action. For this £-space we have

/!

K ~
(BO)" =~ 1_[[)\]:K—irrepB(O)‘)

where
O if Nis of real type,

O\, = < U if Xis of complex type,
Sp if Ais of quaternionic type.
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Global refinements of BO

Example

We define bO as the space of all R-subspaces L of R ¢ R>®
with the following property:

there are n > 0 and V € Grp(R*> & R") such that

L={xeR*aR"|(x,V)=0}.

An L-action on bO is given by
- L= R*ap)(L).

The fixed points are

bo" ~ J[ B(OX(V))xBO

- [V]:VK=0

Proposition
The L-space is a sequential global homotopy colimit of the
global classifying spaces By O(n).

The L-spaces BO and bO are not globally equivalent, and
neither one is left nor right induced.
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Orthogonal spectra

[l. Stable global homotopy theory

Definition

An orthogonal spectrum X consists of
» based O(V)-spaces X(V), for every inner product space V
» O(V) x O(W)-equivariant structure maps

ovw : X(V)ASY — X(Vao W)
subject to associativity and identity conditions.
Here: SW = W U {cc} one-point compactification

An orthogonal spectrum X has an underlying non-equivariant
spectrum:

» Xp=X[R"), n>0

> opng : ZXp = X(RM) A ST — X(R™1) = X, 44

» forget the O(n)-actions
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Let X be an orthogonal spectrum.
» G: compact Lie group } = G actson X(V)
» V: orthogonal G-representation

[SY, X(V)]¢ : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of X is

78(X) = colimy [SY, X(V)]¢.

v

colimit by stabilization via — A SY, using structure maps
78(X) is an abelian group, natural in X

v

v

similarly: 7G(X) for k € Z

v

78(X) is the stable analog of mo(Y?) for an £-space Y
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Global equivalences

Definition
A morphism f : X — Y of orthogonal spectra
is a global equivalence if the map

me(f) « mE(X) — 7E(Y)
is an isomorphism for all k € Z and all G.

Definition
The global stable homotopy category is

GH = Spo[global equivalences™ '],

the localization of orthogonal spectra at the class
of global equivalences.

A model category structure is available.
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Example
The global sphere spectrum S is given by

S(V) = SV, ov.w SV A SW ~ gveWw

Example

The connective global K-theory spectrum ko:

ko(V) = finite configurations of points in SV
labeled by finite dimensional
orthogonal subspaces of Sym(V)

Example

The Eilenberg-Mac Lane spectrum HZ:
(HZ)(V) = Sp=(SY)

infinite symmetric product
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Some global morphisms

For G finite:
S 7§(S) = A(G) Burnside ring (Segal)
label by R-1 permutation
y representation
ko 7§8(ko) = RO(G) representation ring
dimension rank
HZ. 18(HZ) =Z

The morphism So — HQ is a non-equivariant equivalence,
but not a global equivalence.
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More examples

Example
Suspension spectra of global spaces, part of an adjoint pair
ZOO
Ho(global spaces) - GH
Example

Periodic global K-theory KU (M. Joachim),
made from spaces of C*-algebra maps

78(KU) = RU(G)[u,u™"]

Example
Kg(R) global algebraic K-theory of aring R
(only global for finite groups)
78(KgR) = K.(R-projf.g. R[G]-mod)
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Global Thom spectra

V: inner product space of dimension n
~y: tautological n-plane bundle
over the Grassmannian Grp(V @ R>)

Example

The global Thom spectrum mO is the orthogonal spectrum with
mO(V) = Thom space of vy .

The action of O(V) and structure maps only affect V, not R>.

Represents equivariant bordism: for G = finite x torus, the
equivariant Thom-Pontryagin construction

NEX) — 7E(mO A X)
is an isomorphism of equivariant homology theories.

Small changes can make a big difference:
replacing Gry(V @ R*) by Gry(V @ V) yields an orthogonal
Thom spectrum MO with different global homotopy type.
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Global stable homotopy category

The global stable homotopy category is the localization
of orthogonal spectra at global equivalences:

GH = Sp@[global equivalences '],

Properties:
» GH is a tensor triangulated category
» Pic(GH) = Z, generated by the suspension of S
» GH is compactly generated by {¥5° By G} G compact Lie

» objects in GH represent ‘genuine’ cohomology theories on
stacks (Gepner-Henriques, Gepner-Nikolaus)

» a t-structure is given by ‘globally connective’ respectively
‘globally coconnective’ spectra; the heart consists of all X

such that
78(X) = 0

forall n# 0 and all G.
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Global functors

Theorem
The heart of this t-structure is equivalent to the category of
global functors.
Global functors are a particular kind of ‘global Mackey functors’.
A global functor M assigns
» an abelian group M(G) to every compact Lie group G,
» a restriction homomorphism o* : M(G) — M(K)
to every continuous homomorphism o : G — K,
» a transfer homomorphism trﬁ : M(H) — M(G) to every
closed subgroup H of G with finite Weyl group.
Relations:
» restrictions are contravariantly functorial
transfers are covariantly functorial
inner automorphisms are identity
transfers commute with inflation

| 4
>
>
» double coset formula
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Recollement

Note: w,ﬁe}(X ) = traditional (non-equivariant) homotopy group
of the underlying spectrum of X, so

global equivalence —- stable equivalence
The forgetful functor

L
forget

GH (stable homotopy category)
\_/

R

has fully faithful adjoints providing a recollement.
» L is strong symmetric monoidal, its essential image is
characterized by ‘constant geometric fixed points’
» Ris lax symmetric monoidal, its essential image consists
of Borel equivariant cohomology theories
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» Global homotopy theory is the home of all equivariant
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v

There is a universal compact Lie group

Orthogonal spectra and global equivalences provide a
convenient model for stable global homotopy theory

There are many explicit examples
The global stable homotopy category is worth studying

v
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