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Tensor Triangulated Categories

Definition

A tensor triangulated category (TTC) is a triple (K,⊗, 1) such that

(i) K is a triangulated category,

(ii) K has a symmetric monodial tensor product ⊗ : K×K→ K which is
exact in each variable with unit object 1.
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Finite Group Schemes

Example

Let G be a finite group scheme (equivalently a finite-dimensional
cocommutative Hopf algebra). Let

(i) Sc = mod(G ) finite-dimensional modules for G

(ii) S = Mod(G ).

The categories Sc and S are symmetric monoidal tensor categories.
Now consider

(iii) Kc = stmod(G ) stable module category of finite-dimensional modules
for G

(iv) K = StMod(G ) stable module category for Mod(G ).

Then Kc and K are tensor triangulated categories (with shift Σ = Ω−1).
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Perfect Complexes

Example

Let R be a commutative Noetherian ring. Let

(i) Kc = Db
perf (R) bounded derived category of finitely generated

projective R-modules

(ii) K = D(R) derived category of R-modules.

Then Kc and K are tensor triangulated categories.
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Ideals in a TTC

Definition

(a) A (tensor) ideal in K is a triangulated subcategory I of K such that
M ⊗ N ∈ I for all M ∈ I and N ∈ K.

(b) An ideal I is thick if M1 ⊕M2 ∈ I then Mj ∈ I for j = 1, 2.

(c) A prime ideal P of K is a proper thick tensor ideal such that if
M ⊗ N ∈ P then either M ∈ P or N ∈ P.
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Balmer Spectrum

Definition

The Balmer spectrum is defined as

Spc(K) = {P ⊂ K | P is a prime ideal}.

The topology on Spc(K) is given by closed sets of the form

Z (C) = {P ∈ Spc(K) | C ∩ P = ∅}

where C is a family of objects in K.
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Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case
any closed set in X is the union of finitely many irreducible closed sets.
We say that X is a Zariski space if in addition any irreducible closed set Y
of X has a unique generic point (i.e., y ∈ Y such that Y = {y}).

Example

Let X = Spec(R) where R is a commutative Noetherian ring. Then X is a
Zariski space. If R is graded one can also consider X = Proj(Spec(R)).
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Zariski Spaces: Notation

(i) X be the collection of closed subsets of X .

(ii) Xirr be the set of irreducible closed sets.

(iii) A subset W in X is specialization closed if and only if W = ∪j∈JWj

where Wj are closed sets.

(iv) Xsp be the collection of all specialization closed subsets of X .
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Support Data

Definition

A support data is an assignment V : Kc → Xsp which satisfies the
following six properties (for M,Mi ,N,Q ∈ K):

(S1) V (0) = ∅, V (1) = X ;

(S2) V (⊕i∈IMi ) =
⋃

i∈I V (Mi ) whenever ⊕i∈IMi is an object of K;

(S3) V (ΣM) = V (M);

(S4) for any distinguished triangle M → N → Q → ΣM we have

V (N) ⊆ V (M) ∪ V (Q);

(S5) V (M ⊗ N) = V (M) ∩ V (N);

(S6) V (M) = V (M∗) for M ∈ Kc [the compact objects have a duality].
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We will be interested in support data which satisfy an additional two
properties:

(S7) V (M) = ∅ if and only if M = 0;

(S8) for any W ∈ X there exists an M ∈ Kc such that V (M) = W
(Realization Property).

Definition

We say that V : K→ Xsp extends V : Kc → X if

(i) V satisfies properties (S1)–(S5) for objects in K;

(ii) V(M) = V (M) for all M ∈ Kc ; and

(iii) if V satisfies (S7) then V satisfies (S7).
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Classifying Thick Tensor Ideals in a TTC

Theorem (BKN, Dell’Ambrogio)

Let K be a compactly generated TTC. Let X be a Zariski space and let
V : Kc → X be a support data defined on Kc satisfying the additional
conditions (S7) and (S8). Moreover, assume V : K→ Xsp extends V .
Given the above setup there is a pair of mutually inverse maps

{thick tensor ideals of Kc}
Γ
−→←−
Θ

Xsp,

given by

Γ(I) =
⋃
M∈I

V (M), Θ(W ) = IW ,

where IW = {M ∈ Kc | V (M) ⊆W }.
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Computing the Balmer Spectrum

Theorem

Let K be a compactly generated TTC and let X be a Zariski space.
Assume that V : Kc → X is a support data defined on Kc satisfying the
additional conditions (S7) and (S8). Further assume that we have a
support data V : K→ Xsp which extends V . Then there is a
homeomorphism

f : X → Spc(Kc).
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Finite Group Schemes

Example

Let G be a finite group scheme, A := H•(G , k) = Ext•G (k , k) be the
cohomology ring. Set Kc = stmod(G ) and X = Proj(Spec(A)).

(i) {thick ⊗-ideals of Kc} are in one-to-correspondence with Xsp.

(ii) Spc(Kc) ∼= Proj(Spec(A)).

The (classifying) support data is given by

V (M) = {P ∈ Proj(Spec(A)) : Ext•G (M,M)P 6= 0}.
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Restricted Lie Algebras

Example

Let G be a reductive algebraic group over k an algebraically closed field of
characteristic p > 0. Let g = Lie G , u(g) be the restricted universal
enveloping algebra (f.d. Hopf algebra), and N be the nilpotent cone for g.

Theorem (Friedlander-Parshall, Andersen-Jantzen, 1984)

Let p > h

(a) H2•(u(g), k) ∼= k[N ]

(b) H2•+1(u(g), k) = 0

Then the Balmer Spectrum “realizes the nilpotent cone”:

Spc(stmod(u(g)) ∼= Proj(Spec(k[N ])).
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Perfect Complexes

Example

Let R be a commutative Noetherian ring, Kc = Db
perf (R) and

X = Spec(R). Then

(i) {thick ⊗-ideals of Kc} are in one-to-correspondence with Xsp.

(ii) Spc(Kc) ∼= Spec(R).

The support data which gives this classification is

V (C •) = {P ∈ Spec(R) : H∗(C •)P 6= 0}.
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Lie Superalgebras

Throughout let k = C. Let g be a Lie superalgebra which is a Z2-graded
vector space

g = g0̄ ⊕ g1̄

with a bracket operation [ , ] : g⊗ g→ g which preserves the Z2-grading
and satisfies graded versions of the usual Lie bracket axioms.

Definition

A finite dimensional Lie superalgebra g is called classical if there is a
connected reductive algebraic group G0̄ such that Lie(G0̄) = g0̄ and an
action of G0̄ on g1̄ which differentiates to the adjoint action of g0̄ on g1̄.
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gl(m|n)

Example

The underlying vector space for g = gl(m|n) is the set of
(m + n)× (m + n) matrices over C. We have g0̄

∼= gl(m)⊕ gl(n), where
g0̄ consists of matrices of the form:(

A 0
0 B

)
.

Moreover, g1̄ consists of matrices(
0 C
D 0

)
.

The supercommutator is given by

[Ei ,j ,Ek,l ] = Ei ,jEk,l − (−1)Ēi,j Ēk,l Ek,lEi ,j .
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The Stable Module Category

Consider the following categories:

(i) F(g,g0̄): finite-dimensional g-modules for a classical Lie superalgebra
(i.e., g = gl(m|n)) which are completely reducible over g0̄

(ii) C(g,g0̄): g-modules for a classical Lie superalgebra (i.e., g = gl(m|n))
which are completely reducible over g0̄

(iii) Kc = stmod(F(g,g0̄))

(iv) K = StMod(C(g,g0̄))

The category F(g,g0̄) is self-injective which makes K and Kc into
triangulated categories. In fact, both K and Kc are tensor triangulated
categories.
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Support Data Arising from the Cohomology of (g, g0̄)

Let H•(g, g0̄,M) be the relative Lie algebra cohomology of the pair (g, g0̄)
which is obtained from the complex

C • = Homg0̄
(Λ•super (g/g0̄),M).

Theorem (BKN)

Let (g, g0̄) be as above. Then

Ext•F(g,g0̄)
(C,C) ∼= H•(g, g0̄,C) ∼= (Λ•super (g/g0̄)∗)G0̄ ∼= S•(g∗1̄)G0̄ .

Note that the cohomology ring is finitely generated because G0̄ is
reductive.
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Using the finite generation of cohomology we can define the following
support data for modules in F(g,g0̄):

V(g,g0̄)(M) = {P ∈ Proj(Spec(H•(g, g0̄,C))) : Ext•(g,g0̄)(M,M)P 6= 0}.

WARNING: This support data will not classify thick tensor ideals because
V(g,g0̄)(−) does not detect projectivity. In fact V(g,g0̄)(K (λ)) = ∅ for any
Kac module K (λ).
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Connections with Combinatorial Invariants

Theorem (BKN)

Let g = gl(m|n), and L(λ) be a simple module in F(g,g0̄). Then

dim V(g,g0̄)(L(λ)) = atyp(λ).

where atyp(λ), is the maximal number of linearly independent mutually
orthogonal, positive isotropic roots α ∈ ∆+ such that (λ+ ρ, α) = 0.
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Cohomological Interpretation of Analogs of the Chevalley
Restriction Theorem

Theorem (BKN)

Let g be a classical Lie superalgebra.

(a) If g admits a stable action then there exists a subalgebra f = f0̄ ⊕ f1̄
isomorphic to ⊕sl(1|1) such that the restriction map

H•(g, g0̄;C)→ H•(f, f0̄;C)N/N0 .

is an isomorphism.

(b) If g admits a polar action then there exists a subalgebra e = e0̄ ⊕ e1̄

isomorphic to ⊕q(1) such that the restriction map

H•(g, g0̄;C)→ H•(e, e0̄;C)W .

is an isomorphism.
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Detecting Subalgebras for gl(m|n)

Set r = min(m, n) and consider the following m× n matrix (generic matrix
of rank r)

X [t1, t2, . . . , tr ] =



t1 0 0 0 0 . . . 0
0 t2 0 0 0 . . . 0
...

...
. . . 0 0 . . . 0

0 0 0 tr 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

... 0 . . . 0
0 0 0 0 0 . . . 0


.
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Detecting Subalgebras for gl(m|n), con’t

Let

f1̄ = {
(

0 X [t1, . . . , tr ]
X [s1, . . . , sr ] 0

)
: ti , sj ∈ C for all 1 ≤ i , j ≤ r}

with f0̄ = [f1̄, f1̄] and f = f0̄ ⊕ f1̄.

Let

e1̄ = {
(

0 X [t1, . . . , tr ]
X [t1, . . . , tr ] 0

)
: ti ∈ C for all 1 ≤ i ≤ r}

with e0̄ = [e1̄, e1̄] and e = e0̄ ⊕ e1̄.
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N-Spec

We have an algebraic group N acting rationally on a graded commutative
ring R by automorphisms which preserve the grading. This action induces
an action of N on X = Proj(Spec(R)).

Consider XN = Proj(N-Spec(R)) which is the set of homogeneous
N-prime ideals of R. There exists a canonical map ρ : X � XN with
ρ(P) = ∩g∈N gP =: ∩g gP. The topology on XN is given by declaring
W ⊆ XN closed if and only if ρ−1(N) is closed in X .

An important property is that ∩g gP1 = ∩g gP2 for P1,P2 ∈ X if and only
if N · P1 = N · P2 in X

Daniel K. Nakano (UGA) Tensor Triangular Geometry 30 / 37



Classification of Thick Tensor Ideals

Theorem

Let g = gl(m|n), let f be the detecting subalgebra of g, and let
N = NormG0̄

(f1̄).

Then there is a bijection between the set of thick tensor ideals of
Stab(F(g,g0̄)) and the set of specialization closed subsets of
Proj(N- Spec(S•(f∗

1̄
))).
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Determining the Balmer Spectrum

Theorem

Let g = gl(m|n), let f be the detecting subalgebra of g, and let
N = NormG0̄

(f1̄).

Then there is a homeomorphism between Spc(Kc) and
Proj(N- Spec(S•(f∗

1̄
))).

In particular, there is a bijection between the set of prime thick tensor
ideals of Stab(F(g,g0̄)) and the collection of irreducible N-stable closed
subsets of Proj(Spec(S•(f∗

1̄
))).
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Key Property that Needs Verification for the Support Data
V

One proves the preceding theorems by constructing a support data V by
first constructing a support data on modules for f (detecting subalgebra).
To apply the results of the Main Theorem it only remains to verify that V
satisfies (S1)-(S8). The key property to check is (S8) [Realization
Property].

Using the rank variety description of V , we can reduce this problem to
showing that for any N-invariant closed subvariety W in Proj(f1̄) there
exists a module M in F(g,g0̄) such that

W = Vmax(M)
∼= V r

f1̄
(M)

:= Proj({x ∈ f1̄ | M is not projective as a U(〈x〉)-module}).
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Realization of supports

1) There exists a torus T such that Lie T = f0̄ with N = Σr n T . In order
to finish the proof one needs to realize closed subvarieties of f1̄ of the form
Σr ·W where W is a closed T -invariant subvariety.

2) The computation of the f1̄-supports for the Kac modules and the simple
modules for gl(m|n) are used to realize some of the cases. For the other
cases one needs to consider simple modules over parabolic superalgebra
and apply the geometric induction functor studied by Penkov and
Serganova.

3) Another interesting facet of these computations involves using spectral
sequence techniques that were employed by Nakano, Parshall and Vella in
their proof of the Jantzen Conjecture for support varieties of Weyl
modules (for the first Frobenius kernel).
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Future Directions: Developing a General Theory

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra.

1) BKN showed that cF(g,g0̄)
(M) ≤ dim g1. Let L = ⊕LdimPλ

λ (direct sum

of simple modules). Does there exist a ring homomorphism from

S(g∗1̄)→ Ext•(g,g0̄)(L, L)?

2) Is there some support theory on F(g,g0̄) such that the dimension of the
support of a object equals the complexity?
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Future Directions: Developing a General Theory

3) Let K be a extension of C of transcendence degree greater than or
equal to dim g1̄. Define

Vg1̄
(M) = {x ∈ K ⊗ g1 : (K ⊗M)|〈x〉 is not projective} ∪ {0}.

Does Vg1̄
(M) detect projectivity?

4) What is the relationship between the thick tensor ideals in F(g,g0̄) and
specialization closed sets of Proj(G0̄- Spec(S•(g∗

1̄
)))?
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Thank you for your attention.
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