#### FACTORIAL CHARACTERS AND TOKUYAMA'S IDENTITY FOR CLASSICAL GROUPS

ANGELE M. HAMEL, WILFRID LAURIER UNIVERSITY, WATERLOO, CANADA

RONALD C. KING, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON, U.K.

BIRS 2016 Banff, Alberta, Canada

#### **ONE IDEA-TWO WAYS**



#### **SCHUR FUNCTIONS**

**Ex:** 
$$n = 3, x = (x_1, x_2, x_3), \lambda = (2, 1)$$

The corresponding semistandard Young tableaux, T, and their weights, wgt(T), are given by:



## SCHUR FUNCTIONS AND LATTICE PATHS

**Ex:**  $n = 5, \lambda = (3, 2, 2, 1).$ 

- Starting points  $P_i = (0, n i + 1)$  for i = 1, 2, ..., 5.
- End points  $Q_j = (n + 1, n j + 1 + \lambda_j)$  for j = 1, 2, ..., 5.

1

2 3 4 5 6 7 8



#### FACTORIAL SCHUR FUNCTIONS AND WEIGHTED TABLEAUX



- Entries weakly increase in rows.
- Entries strictly increase in columns.
- Weight each entry k in position i, j by  $x_k + a_{k+j-i}$ .

#### SCHUR FUNCTIONS AND LATTICE PATHS



## ORIGIN OF FACTORIAL SCHUR FUNCTIONS

- Biedenharn and Louck (1989) introduced the notion of the factorial Schur function.
- Chen and Louck (1993) further studied them.
- Macdonald (1992) and Goulden and Greene (1994) independently gave them a more general form, in the process making connections to supersymmetric functions.
- Macdonald also gave an alternate definition as a ratio of alternants. It is this definition that we now explore....

#### **RATIO OF ALTERNANTS**

Macdonald defined

$$s_{\lambda}(\mathbf{x} \mid \mathbf{a}) = \frac{\left| (x_i \mid \mathbf{a})^{\lambda_j + n - j} \right|}{\left| (x_i \mid \mathbf{a})^{n - j} \right|}$$

1

where

$$(x \mid \mathbf{a})^{m} = \begin{cases} (x + a_{1})(x + a_{2}) \cdots (x + a_{m}) & \text{if } m > 0; \\ 1 & \text{if } m = 0 \end{cases}$$

If  $a_i = -i+1$  this reduces to the falling factorial:  $(x)_i = x(x-1)...(x-k+1).$ 

#### FACTORIAL CHARACTERS FOR CLASSICAL GROUPS

$$s_{\lambda}(\mathbf{x} \mid \mathbf{a}) = \frac{\left| (x_{i} \mid \mathbf{a})^{\lambda_{j}+n-j} \right|}{\left| (x_{i} \mid \mathbf{a})^{n-j} \right|};$$

$$so_{\lambda}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}) = \frac{\left| \frac{x_{i}^{1/2} (x_{i} \mid \mathbf{a})^{\lambda_{j}+n-j} - x_{i}^{-1/2} (x_{i}^{-1} \mid \mathbf{a})^{\lambda_{j}+n-j} \right|}{\left| \frac{x_{i}^{1/2} (x_{i} \mid \mathbf{a})^{n-j} - x_{i}^{-1/2} (x_{i}^{-1} \mid \mathbf{a})^{n-j} \right|};$$

$$sp_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) = \frac{\left| \frac{x_{i}(x_{i} \mid \mathbf{a})^{\lambda_{j}+n-j} - x_{i}^{-1} (x_{i}^{-1} \mid \mathbf{a})^{\lambda_{j}+n-j} \right|}{\left| x_{i}(x_{i} \mid \mathbf{a})^{n-j} - x_{i}^{-1} (x_{i}^{-1} \mid \mathbf{a})^{n-j} \right|};$$

$$o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) = \frac{\eta \left| (x_{i} \mid \mathbf{a})^{\lambda_{j}+n-j} + (x_{i}^{-1} \mid \mathbf{a})^{\lambda_{j}+n-j} \right|}{\frac{1}{2} \left| (x_{i} \mid \mathbf{a})^{n-j} + (x_{i}^{-1} \mid \mathbf{a})^{n-j} \right|} \quad with \quad \eta = \begin{cases} \frac{1}{2} & \text{if } \lambda_{n} = 0; \\ 1 & \lambda_{n} > 0. \end{cases}$$

We propose these definitions as the most natural extension of the classical characters to the factorial case.

- Now that we have these factorial characters for classical groups, let's test their properties.
- But what properties....?
- Jacobi-Trudi! Tokuyama!
- What's Jacobi-Trudi?

#### **CLASSICAL JACOBI-TRUDI**

$$s_{\lambda}(x) = \left| h_{\lambda_j - j + i}(x) \right|_{1 \le i,j \le n}$$

- Easily proved algebraically....
- Equally easily proved combinatorially...

## **COMPLETE SYMMETRIC FUNCTIONS**

 Recall that the complete symmetric functions may be defined as:
 Also the same as a Schur

$$h_{m}(\mathbf{x}) = [t^{m}] \prod_{i=1}^{n} \frac{1}{1 - tx_{i}}; \quad \begin{array}{l} \text{function for a single row} \\ \text{of length } m. \end{array}$$

$$h_{m}^{so}(\mathbf{x}, \overline{\mathbf{x}}, 1) = [t^{m}] (1 + t) \prod_{i=1}^{n} \frac{1}{(1 - tx_{i})(1 - tx_{i}^{-1})};$$

$$h_{m}^{sp}(\mathbf{x}, \overline{\mathbf{x}}) = [t^{m}] \prod_{i=1}^{n} \frac{1}{(1 - tx_{i})(1 - tx_{i}^{-1})};$$

$$\left[ \left( \frac{1}{1 - tx_{i}} + \frac{1}{1 - tx_{i}^{-1}} - \delta_{m0} \right) \quad \text{if } n = 1; \end{array}\right]$$

$$h_m^o(\mathbf{x}, \overline{\mathbf{x}}) = [t^m] \begin{cases} \left(1 - tx_1 + 1 - tx_1^{-1} + tx_1^{-1}\right) & f \\ \left(1 - t^2\right) \prod_{i=1}^n \frac{1}{(1 - tx_i)(1 - tx_i^{-1})} & if n > 1 \end{cases}$$

#### OUTLINE OF COMBINATORIAL PROOF OF JACOBI-TRUDI

$$s_{\lambda}(x) = \left\| h_{\lambda_j - j + i}(x) \right\|_{1 \le i, j \le n}$$

- Each row *i* in tableau  $\Leftrightarrow$  a lattice path in the plane from  $P_i$  to  $Q_i \Leftrightarrow$  a complete symmetric function.
- Each of these complete symmetric functions corresponds to a term on diagonal of J-T determinant.
- If we swap ending points, we can define an offdiagonal term in J-T determinant.

# LINDSTRÖM-GESSEL-VIENNOT INVOLUTION



## **COMPLETE FACTORIAL SYM FNS**

To this we add the dependence on the factorial parameters a:

Let 
$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
,  $\overline{\mathbf{x}} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$  and  $\mathbf{a} = (a_1, a_2, \dots)$ .

$$\begin{split} h_{m}(\mathbf{x} \mid \mathbf{a}) &= [t^{m}] \prod_{i=1}^{n} \frac{1}{1 - tx_{i}} \prod_{j=1}^{n+m-1} (1 + ta_{j}); \\ h_{m}^{so}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}) &= [t^{m}] (1 + t) \prod_{i=1}^{n} \frac{1}{(1 - tx_{i})(1 - tx_{i}^{-1})} \prod_{j=1}^{n+m-1} (1 + ta_{j}); \\ h_{m}^{sp}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) &= [t^{m}] \prod_{i=1}^{n} \frac{1}{(1 - tx_{i})(1 - tx_{i}^{-1})} \prod_{j=1}^{n+m-1} (1 + ta_{j}); \\ h_{m}^{o}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) &= [t^{m}] \begin{cases} \left(\frac{1}{1 - tx_{1}} + \frac{1}{1 - tx_{1}^{-1}} - \delta_{m0}\right) \prod_{j=1}^{m} (1 + ta_{j}) & \text{if } n = 1; \\ (1 - t^{2}) \prod_{i=1}^{n} \frac{1}{(1 - tx_{i})(1 - tx_{i}^{-1})} \prod_{j=1}^{n+m-1} (1 + ta_{j}) & \text{if } n > 1. \end{cases} \end{split}$$

#### FLAGGED J-T FOR CLASSICAL GROUPS (CHEN ET AL., OKADA, H. & KING)

For  $\mathbf{x}^{(i)} = (x_i, x_{i+1}, \dots, x_n)$  and  $\overline{\mathbf{x}}^{(i)} = (\overline{x}_i, \overline{x}_{i+1}, \dots, \overline{x}_n)$ 

$$s_{\lambda}(\mathbf{x} \mid \mathbf{a}) = \left| \begin{array}{c} h_{\lambda_{j}-j+i}(\mathbf{x}^{(i)} \mid \mathbf{a}) \\ \end{array} \right|;$$

$$so_{\lambda}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}) = \left| \begin{array}{c} h_{\lambda_{j}-j+i}^{so}(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)}, 1 \mid \mathbf{a}) \\ \end{array} \right|$$

$$sp_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) = \left| \begin{array}{c} h_{\lambda_{j}-j+i}^{sp}(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)} \mid \mathbf{a}) \\ \end{array} \right|;$$

$$o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) = \left| \begin{array}{c} h_{\lambda_{j}-j+i}^{o}(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)} \mid \mathbf{a}) \\ \end{array} \right|;$$

Independently obtained by Okada (personal communication).

#### FLAGGED JACOBI-TRUDI FOR CLASSICAL GROUPS

Some History....

- Flagged factorial Schur due to Chen et al. (2002).
- Non-factorial symplectic and odd orthogonal due to Chen et al. (2002).
- Non-factorial flagged symplectic, odd orthogonal, and even orthogonal due to Okada (preprint).

### **SYMPLECTIC: TABLEAUX**



- Entries from alphabet
  - $1 < \overline{1} < 2 < \overline{2} < \dots < n < \overline{n}$
- Entries weakly increase across rows.
- Entries strictly increase down columns.
- No entry *i* or *i* appears below row *i*.

## **SYMPLECTIC: LATTICE PATHS**



 the factorial contribution is simply to label the steps with an x + a weight instead of an x weight.

## **ODD ORTHOGONAL: TABLEAUX**



Entries from alphabet

 $\{1 < \overline{1} < 2 < \overline{2} < \dots < n < \overline{n} < 0\}$ 

- Entries weakly increase across rows.
- Entries weakly increase down columns.
- No entry *i* or *i* appears below row *i*.
- No two non-zero entries in a column are equal.
- In any row, 0 appears at most once.

#### **ODD ORTHOGONAL: LATTICE** PATHS $a_{\overline{3}}$ $a_{\overline{2}}$ $a_{\overline{1}}$ $a_0$ $a_1$ $a_2$ $P_1$ $a_3$ $a_4$ $P_2$ $a_5$ $a_6$ LP(T) = $P_3$ $a_7$ $a_8$ $P_4$ • $Q_4$ 23 $-a_1 - a_2 - a_3 - a_4 - a_5 - a_6 - a_7 - a_8$

 $x_2 + a_2 | x_{\overline{4}} + a_8$  $x_1$  $\overline{x}_1$ T =3 wgt(T) $x_3 + a_1 x_4 + a_4$  $1 - a_6$ 0 \_  $x_4 + a_2$  $x_{\overline{4}} + a_{4}$  $a_5$ 

#### THE TOKUYAMA STORY

$$Q_{\lambda}(\mathbf{x}; \mathbf{y} | \mathbf{a}) = \prod_{1 \le i \le j \le n} (x_i + y_j) s_{\mu}(\mathbf{x} | \mathbf{a}) \qquad \lambda = \mu + \delta$$
Symmetric
Q function in
Evo variables
Vandermonde

| Tokuyama,1988                   | x | $\mathbf{y} = t\mathbf{x}$ | $\mathbf{a}=0$   |
|---------------------------------|---|----------------------------|------------------|
| Okada, 1990                     | x | $\mathbf{y} = t\mathbf{x}$ | $\mathbf{a} = 0$ |
| Hamel and King, 2007            | x | У                          | $\mathbf{a} = 0$ |
| Brubaker, Bump, Friedberg, 2011 | x | У                          | $\mathbf{a} = 0$ |
| Ikeda, Mihalcea, Naruse, 2011   | x | $\mathbf{y} = \mathbf{x}$  | a                |
| Bump, McNamara, Nakasuji, 2011  | x | $\mathbf{y} = t\mathbf{x}$ | a                |
| Hamel and King, 2015            | x | У                          | a                |

#### THE TOKUYAMA STORY

$$Q_{\lambda}(\mathbf{x}; \mathbf{y} | \mathbf{a}) = \prod_{1 \le i \le j \le n} (x_i + y_j) s_{\mu}(\mathbf{x} | \mathbf{a})$$

 The Tokuyama story is all about shape.
 Combinatorially, the left hand side is a shifted shape; the right hand side is a special shifted shape (a staircase) along with a standard tableau shape.



## CLASSICAL CHARACTERS AND TOKUYAMA

- The key to Tokuyama is being able to split this shifted tableau into the staircase piece (with primed and unprimed entries) and the standard tableau piece (with unprimed entries only).
- the issue with the classical Q functions is: what are the shifted primed tableaux?
- and what is the appropriate factorial weighting?

## SYMPLECTIC: PRIMED SHIFTED TABLEAUX



- Alphabet:  $1' < 1 < \overline{1}' < \overline{1} < 2' < 2 < \overline{2}' < \overline{2} < \dots < n' < n < \overline{n}' < \overline{n}$
- Entries weakly increase in rows and columns.
- Entries strictly increase along diagonals.
- Unprimed entries occur at most one in each column.
- Primed entries occur at most once in each row.

## **SYMPLECTIC: WEIGHTED TABLEAUX**





| $P_{ii}$        | $wgt(P_{ii})$ | $P_{ij}$ $(i < j)$ | wgt( $P_{ij}$ ) $(i < j)$ |
|-----------------|---------------|--------------------|---------------------------|
| k               | $x_k$         | k                  | $x_k + a_{j-i}$           |
| k'              | $y_k$         | k'                 | $y_k - a_{j-i}$           |
| $\overline{k}$  | $x_{k}^{-1}$  | $\overline{k}$     | $x_{k}^{-1} + a_{j-i}$    |
| $\overline{k'}$ | $y_k^{-1}$    | $\overline{k}'$    | $y_k^{-1} - a_{j-i}$      |

| <i>x</i> <sub>1</sub> | $\overline{x}_1 + a_1$ | $y_2 + a_2$      | $\overline{y}_2 + a_3$ | $x_3 + a_4$            | $x_3 + a_5$            | $y_4 + a_6$            | $\overline{y}_4 + a_7$ | $\overline{x}_5 + a_8$ |
|-----------------------|------------------------|------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                       | <i>y</i> 2             | $x_2 + a_1$      | $\overline{x}_2 + a_2$ | $\overline{y}_3 + a_3$ | $x_4 + a_4$            | $x_4 + a_5$            | $\overline{y}_4 + a_6$ |                        |
|                       |                        | $\overline{y}_3$ | $x_4 + a_1$            | $\overline{y}_4 + a_2$ | $\overline{x}_4 + a_3$ | $\overline{x}_4 + a_4$ | $\overline{x}_4 + a_5$ |                        |
|                       |                        |                  | $\overline{x}_4$       | $\overline{x}_4 + a_1$ |                        |                        |                        | -                      |
|                       |                        |                  |                        | <i>x</i> <sub>5</sub>  |                        |                        |                        |                        |

# **SYMPLECTIC: WEIGHTS AND PATHS**

| $P_{ii}$        | $wgt(P_{ii})$   | $P_{ij}$ $(i < j)$ | wgt( $P_{ij}$ ) $(i < j)$ |
|-----------------|-----------------|--------------------|---------------------------|
| k               | $x_k$           | k                  | $x_k + a_{j-i}$           |
| <i>k</i> ′      | $\mathcal{Y}_k$ | <i>k</i> ′         | $y_k - a_{j-i}$           |
| $\overline{k}$  | $x_{k}^{-1}$    | $\overline{k}$     | $x_k^{-1} + a_{j-i}$      |
| $\overline{k'}$ | $y_{k}^{-1}$    | $\overline{k}'$    | $y_k^{-1} - a_{j-i}$      |

| 1 | 1  | 2' | $\overline{2}'$ | 3               | 3 | 4' | $\overline{4}'$ | [5] |
|---|----|----|-----------------|-----------------|---|----|-----------------|-----|
|   | 2' | 2  | $\overline{2}$  | $\overline{3}'$ | 4 | 4  | $\overline{4}'$ |     |
|   |    | 3  | 4               | $\overline{4}'$ | 4 | 4  | 4               |     |
|   |    |    | 4               | 4               |   |    |                 |     |
|   |    |    |                 | 5               |   |    |                 |     |

|                                                                                                                | (i,i)         | i              | $x_i$                      | -  | (i,i)         | i'              | $y_i$                      | ~          |
|----------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------------------|----|---------------|-----------------|----------------------------|------------|
| and a second                                                                                                   | (i,i)         | $\overline{i}$ | $\overline{x}_i$           | 7  | (i,i)         | $\overline{i}'$ | $\overline{y}_i$           | <b>~</b> , |
| A CONTRACTOR OF A CONTRACTOR A | (i,j) $i < j$ | k              | $x_k + a_{j-i}$            | •  | (i,j) $i < j$ | k'              | $y_k - a_{j-i}$            | •          |
| and the starter                                                                                                | (i,j) $i < j$ | $\overline{k}$ | $\overline{x}_k + a_{j-i}$ | •• | (i,j) $i < j$ | $\overline{k}'$ | $\overline{y}_k - a_{j-i}$ |            |







## OUTLINE OF PROOF OF FACTORIAL TOKUYAMA

- Start from expression for  $Q_{\lambda}(x;y|a)$  as a determinant.
- Extract factors (x<sub>i</sub>+y<sub>i</sub>).
- Subtract successive rows from one another to give factors of the form  $(x_i+y_{i+1})$ .
- Repeat the process to obtain factors of the form  $(x_i+y_{i+2})$ .
- Continue until all factors of the form (x<sub>i</sub>+y<sub>j</sub>) are extracted for i ≤ j.
- Show that what remains is a factorial character  $s_{\mu}(x|a)$ .

#### ODD ORTHOGONAL: LATTICE PATHS





#### **THE RESULT (H. & KING, 2016)**

$$Q_{\lambda}(\mathbf{x}; \mathbf{y} \mid \mathbf{a}) = \prod_{1 \le i \le j \le n} (x_i + y_j) s_{\mu}(\mathbf{x} \mid \mathbf{a});$$
$$Q_{\lambda}^{sp}(\mathbf{x}, \overline{\mathbf{x}}; \mathbf{y}, \overline{\mathbf{y}} \mid \mathbf{a}) = \prod_{1 \le i \le j \le n} (x_i + y_j + \overline{x}_i + \overline{y}_j) sp_{\mu}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a});$$
$$Q_{\lambda}^{so}(\mathbf{x}, \overline{\mathbf{x}}; \mathbf{y}, \overline{\mathbf{y}}, 1 \mid \mathbf{a}) = \prod_{1 \le i \le j \le n} (x_i + y_j + \overline{x}_i + \overline{y}_j) so_{\mu}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}).$$

#### STILL TO DO....

- Finish the combinatorial proof of the even orthogonal Tokuyama....
- But, for the combinatorial proof, defining exactly the correct tableaux and lattice paths is tricky....

#### REFERENCES

- T. Tokuyama, A generating function of strict Gelfand patterns and some formulas on characters of general linear group, J. Math. Soc. Japan, 40 (1988), 671-685.
- S. Okada, Partially strict shifted plane partitions, JCTA, 53 (1990), 143-156.
- T. Ikeda, L.C. Mihalcea, H. Naruse, Double Schubert polynomials for the classical groups, Adv. in Math. 226 (2011), 840-896.

- S. Okada, Lattice path methods and characters of classical Groups, preprint.
- W.Y.C. Chen, B. Li, J.D. Louck, The flagged double Schur function, J. Alg. Comb., 15 (2002), 7-26.
- B. Brubaker, D. Bump, S. Friedberg, Schur polynomials and the Yang-Baxter equation, Comm. in Math. Physics 308 (2011), 1563-1571.
- D. Bump, P.J. McNamara, M. Nakasuji, Factorial Schur functions and the Yang-Baxter equation, arXiv: 1108.3087, 2011.

 A.M. Hamel, R.C. King, Symplectic shifted tableaux and deformations of Weyl's denominator formula for sp(2n), J. Alg. Comb. 16 (2002), 269-300.

 A.M. Hamel, R.C. King, Bijective proofs of shifted tableau and alternating sign matrix identities, J. Alg. Comb. 25 (2007), 417-458.

 A.M. Hamel and R.C. King, Tokuyama's identity for factorial Schur P and Q functions, Electronic J. Combinatorics, 22 (2015), #P2.42.