FACTORIAL CHARACTERS AND TOKUYAMA'S IDENTITY FOR CLASSICAL GROUPS

ANGELE M. HAMEL, WILFRID LAURIER UNIVERSITY,WATERLOO,CANADA

RONALD C. KING, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON, U.K.

BIRS 2016
Banff, Alberta, Canada

ONE IDEA-TWO WAYS

> 986431 98531 9541
> 641 43
> 3

SCHUR FUNCTIONS

Ex: $n=3, x=\left(x_{1}, x_{2}, x_{3}\right), \lambda=(2,1)$
The corresponding semistandard Young tableaux, T, and their weights, $\operatorname{wgt}(T)$, are given by:

$x_{1}^{2} x_{2} \quad x_{1} x_{2}^{2} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{2}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{1} x_{3}^{2} \quad x_{2} x_{3}^{2}$
$s_{(2,1)}(x)=x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2}+2 x_{1} x_{2} x_{3}$

SCHUR FUNCTIONS AND LATTICE PATHS

$E x: n=5, \lambda=(3,2,2,1)$.

- Starting points $P_{i}=(0, n-i+1)$ for $i=1,2, \ldots, 5$.
- End points $Q_{j}=\left(n+1, n-j+1+\lambda_{j}\right)$ for $j=1,2, \ldots, 5$.

$T=$| 1 | 2 | 4 |
| :--- | :--- | :--- |
| 2 | 3 | |
| 4 | 4 | |
| 5 | | |
| | | |

$\operatorname{wgt}^{\operatorname{wg}}(T)=x_{1} x_{2}^{2} x_{3} x_{4}^{3} x_{5}$

FACTORIAL SCHUR FUNCTIONS AND WEIGHTED TABLEAUX

1	$\overline{1}$	2	$\overline{4}$
$\overline{3}$	4	4	
4	$\overline{4}$	$\overline{4}$	

x_{1}	\bar{x}_{1}	$x_{2}+a_{1}$	$x_{\overline{4}}+a_{7}$
$x_{\overline{3}}+a_{1}$	$x_{4}+a_{3}$	$x_{4}+a_{4}$	
$x_{4}+a_{1}$	$x_{\overline{4}}+a_{3}$	$x_{\overline{4}}+a_{4}$	

- Entries weakly increase in rows.
- Entries strictly increase in columns.
- Weight each entry k in position i, j by $x_{k}+a_{k+j i}$.

SCHUR FUNCTIONS AND LATTICE PATHS

ORIGIN OF FACTORIAL SCHUR FUNCTIONS

- Biedenharn and Louck (1989) introduced the notion of the factorial Schur function.
- Chen and Louck (1993) further studied them.
- Macdonald (1992) and Goulden and Greene (1994) independently gave them a more general form, in the process making connections to supersymmetric functions.
- Macdonald also gave an alternate definition as a ratio of alternants. It is this definition that we now explore....

RATIO OF ALTERNANTS

Macdonald defined

$$
s_{\lambda}(\mathbf{x} \mid \mathbf{a})=\frac{\left|\left(x_{i} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}\right|}{\left|\left(x_{i} \mid \mathbf{a}\right)^{n-j}\right|}
$$

where

$$
(x \mid \mathbf{a})^{m}= \begin{cases}\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{m}\right) & \text { if } m>0 \\ 1 & \text { if } m=0\end{cases}
$$

If $a_{i}=-i+1$ this reduces to the falling factorial:

$$
(x)_{i}=x(x-1) \ldots(x-k+1) .
$$

FACTORIAL CHARACTERS FOR CLASSICAL GROUPS

$$
\begin{aligned}
s_{\lambda}(\mathbf{x} \mid \mathbf{a}) & =\frac{\left|\left(x_{i} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}\right|}{\left|\left(x_{i} \mid \mathbf{a}\right)^{n-j}\right|} ; \\
s o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}) & =\frac{\left|x_{i}^{1 / 2}\left(x_{i} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}-x_{i}^{-1 / 2}\left(x_{i}^{-1} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}\right|}{\left|x_{i}^{1 / 2}\left(x_{i} \mid \mathbf{a}\right)^{n-j}-x_{i}^{-1 / 2}\left(x_{i}^{-1} \mid \mathbf{a}\right)^{n-j}\right|} ; \\
s p_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) & =\frac{\left|x_{i}\left(x_{i} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}-x_{i}^{-1}\left(x_{i}^{-1} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}\right|}{\left|x_{i}\left(x_{i} \mid \mathbf{a}\right)^{n-j}-x_{i}^{-1}\left(x_{i}^{-1} \mid \mathbf{a}\right)^{n-j}\right|} ; \\
o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) & =\frac{\eta\left|\left(x_{i} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}+\left(x_{i}^{-1} \mid \mathbf{a}\right)^{\lambda_{j}+n-j}\right|}{\frac{1}{2}\left|\left(x_{i} \mid \mathbf{a}\right)^{n-j}+\left(x_{i}^{-1} \mid \mathbf{a}\right)^{n-j}\right|} \text { with } \eta= \begin{cases}\frac{1}{2} & \text { if } \lambda_{n}=0 \\
1 & \lambda_{n}>0 .\end{cases}
\end{aligned}
$$

We propose these definitions as the most natural extension of the classical characters to the factorial case.

- Now that we have these factorial characters for classical groups, let's test their properties.
- But what properties....?
- Jacobi-Trudi! Tokuyama!
-What's Jacobi-Trudi?

CLASSICAL JACOBI-TRUDI

$$
s_{\lambda}(x)=\left|h_{\lambda_{j}-j+i}(x)\right|_{1 \leq i, j \leq n}
$$

- Easily proved algebraically....
- Equally easily proved combinatorially...

COMPLETE SYMMETRIC FUNCTIONS

- Recall that the complete symmetric functions may be defined as:

$$
\begin{aligned}
h_{m}(\mathbf{x}) & =\left[t^{m}\right] \prod_{i=1}^{n} \frac{1}{1-t x_{i}} ; \quad \text { function for a single ro } \\
h_{m}^{s o}(\mathbf{x}, \overline{\mathbf{x}}, 1) & =\left[t^{m}\right](1+t) \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} ; \\
h_{m}^{s p}(\mathbf{x}, \overline{\mathbf{x}}) & =\left[t^{m}\right] \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} ; \\
h_{m}^{o}(\mathbf{x}, \overline{\mathbf{x}}) & =\left[t^{m}\right] \begin{cases}\left(\frac{1}{1-t x_{1}}+\frac{1}{1-t x_{1}^{-1}}-\delta_{m 0}\right) & \text { if } n=1 \\
\left(1-t^{2}\right) \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} & \text { if } n>1\end{cases}
\end{aligned}
$$

OUTLINE OF COMBINATORIAL PROOF OF JACOBI-TRUDI

$$
s_{\lambda}(x)=\left|h_{\lambda_{j}-j+i}(x)\right|_{1 \leq i, j \leq n}
$$

- Each row i in tableau \Leftrightarrow a lattice path in the plane from P_{i} to $Q_{i} \Leftrightarrow$ a complete symmetric function.
- Each of these complete symmetric functions corresponds to a term on diagonal of J-T determinant.
- If we swap ending points, we can define an offdiagonal term in J-T determinant.

LINDSTRÖM-GESSEL-VIENNOT INVOLUTION

COMPLETE FACTORIAL SYM FNS

- To this we add the dependence on the factorial parameters a:

$$
\begin{gathered}
\text { Let } \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \overline{\mathbf{x}}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \text { and } \mathbf{a}=\left(a_{1}, a_{2}, \ldots\right) \\
h_{m}(\mathbf{x} \mid \mathbf{a})=\left[t^{m}\right] \prod_{i=1}^{n} \frac{1}{1-t x_{i}} \prod_{j=1}^{n+m-1}\left(1+t a_{j}\right) ; \\
h_{m}^{s o}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a})=\left[t^{m}\right](1+t) \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} \prod_{j=1}^{n+m-1}\left(1+t a_{j}\right) ; \\
h_{m}^{s p}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a})=\left[t^{m}\right] \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} \prod_{j=1}^{n+m-1}\left(1+t a_{j}\right) ; \\
h_{m}^{o}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a})=\left[t^{m}\right]\left\{\begin{array}{l}
\left(\frac{1}{1-t x_{1}}+\frac{1}{1-t x_{1}^{-1}}-\delta_{m 0}\right) \prod_{j=1}^{m}\left(1+t a_{j}\right) \\
\left(1-t^{2}\right) \prod_{i=1}^{n} \frac{1}{\left(1-t x_{i}\right)\left(1-t x_{i}^{-1}\right)} \prod_{j=1}^{n+m-1}\left(1+t a_{j}\right) \quad \text { if } n>1 .
\end{array}\right.
\end{gathered}
$$

FLAGGED J-T FOR CLASSICAL GROUPS (CHEN ET AL., OKADA, H. \& KING)

For $\mathbf{x}^{(i)}=\left(x_{i}, x_{i+1}, \ldots, x_{n}\right)$ and $\overline{\mathbf{x}}^{(i)}=\left(\bar{x}_{i}, \bar{x}_{i+1}, \ldots, \bar{x}_{n}\right)$

$$
\begin{aligned}
s_{\lambda}(\mathbf{x} \mid \mathbf{a}) & =\left|h_{\lambda_{j}-j+i}\left(\mathbf{x}^{(i)} \mid \mathbf{a}\right)\right| ; \\
s o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a}) & =\left|h_{\lambda_{j}-j+i}^{s o}\left(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)}, 1 \mid \mathbf{a}\right)\right| ; \\
s p_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) & =\left|h_{\lambda_{j}-j+i}^{s p}\left(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)} \mid \mathbf{a}\right)\right| ; \\
o_{\lambda}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) & =\left|h_{\lambda_{j}-j+i}^{o}\left(\mathbf{x}^{(i)}, \overline{\mathbf{x}}^{(i)} \mid \mathbf{a}\right)\right|,
\end{aligned}
$$

- Independently obtained by Okada (personal communication).

FLAGGED JACOBI-TRUDI FOR CLASSICAL GROUPS

Some History....

- Flagged factorial Schur due to Chen et al. (2002).
- Non-factorial symplectic and odd orthogonal due to Chen et al. (2002).
- Non-factorial flagged symplectic, odd orthogonal, and even orthogonal due to Okada (preprint).

SYMPLECTIC: TABLEAUX

- Entries from alphabet

$$
1<\overline{1}<2<\overline{2}<\cdots<n<\bar{n}
$$

- Entries weakly increase across rows.
- Entries strictly increase down columns.
- No entry i or \bar{i} appears below row i.

SYMPLECTIC: LATTICE PATHS

- the factorial contribution is simply to label the steps with an $x+a$ weight instead of an x weight.

ODD ORTHOGONAL: TABLEAUX

- Entries from alphabet

1	$\overline{1}$	2	$\overline{4}$
3	4	0	
4	$\overline{4}$	0	

$$
\{1<\overline{1}<2<\overline{2}<\cdots<n<\bar{n}<0\}
$$

- Entries weakly increase across rows.
- Entries weakly increase down columns.
- No entry i or \bar{i} appears below row i.
- No two non-zero entries in a column are equal.
- In any row, 0 appears at most once.

ODD ORTHOGONAL: LATTICE PATHS

$$
T=\begin{array}{|c|c|c|c|}
\hline 1 & \overline{1} & 2 & \overline{4} \\
\hline 3 & 4 & 0 \\
\hline 4 & \overline{4} & 0 & \quad \operatorname{wgt}(T)=\begin{array}{|c|c|c|c|}
\hline x_{1} & \bar{x}_{1} & x_{2}+a_{2} & x_{\overline{4}}+a_{8} \\
\hline x_{3}+a_{1} & x_{4}+a_{4} & 1-a_{6} \\
\hline x_{4}+a_{2} & x_{4}+a_{4} & 1-a_{5} \\
\hline
\end{array}
\end{array}
$$

THE TOKUYAMA STORY

Tokuyama,1988	\mathbf{x}	$\mathbf{y}=$ tx	$\mathbf{a}=0$
Okada, 1990	\mathbf{x}	$\mathbf{y}=$ tx	$\mathbf{a}=0$
Hamel and King, 2007	\mathbf{x}	\mathbf{y}	$\mathbf{a}=0$
Brubaker, Bump, Friedberg, 2011	\mathbf{x}	\mathbf{y}	$\mathbf{a}=0$
Ikeda, Mihalcea, Naruse, 2011	\mathbf{x}	$\mathbf{y}=\mathbf{x}$	\mathbf{a}
Bump, McNamara, Nakasuji, 2011	\mathbf{x}	$\mathbf{y}=$ tx	\mathbf{a}
Hamel and King, 2015	\mathbf{x}	\mathbf{y}	\mathbf{a}

THE TOKUYAMA STORY

$$
Q_{\lambda}(\mathbf{x} ; \mathbf{y} \mid \mathbf{a})=\prod_{1 \leq i \leq j \leq n}\left(x_{i}+y_{j}\right) s_{\mu}(\mathbf{x} \mid \mathbf{a})
$$

- The Tokuyama story is all about shape. Combinatorially, the left hand side is a shifted shape; the right hand side is a special shifted shape (a staircase) along with a standard tableau shape.

CLASSICAL CHARACTERS AND TOKUYAMA

- The key to Tokuyama is being able to split this shifted tableau into the staircase piece (with primed and unprimed entries) and the standard tableau piece (with unprimed entries only).
- the issue with the classical Q functions is: what are the shifted primed tableaux?
- and what is the appropriate factorial weighting?

SYMPLECTIC: PRIMED SHIFTED TABLEAUX

- Alphabet: $1^{\prime}<1<\overline{1}^{\prime}<\overline{1}<2^{\prime}<2<\overline{2}^{\prime}<\overline{2}<\cdots<n^{\prime}<n<\bar{n}^{\prime}<\bar{n}$
- Entries weakly increase in rows and columns.
- Entries strictly increase along diagonals.
- Unprimed entries occur at most one in each column.
- Primed entries occur at most once in each row.

SYMPLECTIC: WEIGHTED TABLEAUX

Weights:

$P_{i i}$	$\operatorname{wgt}\left(P_{i i}\right)$	$P_{i j}(i<j)$	$\operatorname{wgt}\left(P_{i j}\right) \quad(i<j)$
k	x_{k}	k	$x_{k}+a_{j-i}$
k^{\prime}	y_{k}	k^{\prime}	$y_{k}-a_{j-i}$
\bar{k}	x_{k}^{-1}	\bar{k}	$x_{k}^{-1}+a_{j-i}$
$\overline{k^{\prime}}$	y_{k}^{-1}	\bar{k}^{\prime}	$y_{k}^{-1}-a_{j-i}$

x_{1}	$\bar{x}_{1}+a_{1}$	$y_{2}+a_{2}$	$\bar{y}_{2}+a_{3}$	$x_{3}+a_{4}$	$x_{3}+a_{5}$	$y_{4}+a_{6}$	$\bar{y}_{4}+a_{7}$	$\bar{x}_{5}+a_{8}$
	y_{2}	$x_{2}+a_{1}$	$\bar{x}_{2}+a_{2}$	$\bar{y}_{3}+a_{3}$	$x_{4}+a_{4}$	$x_{4}+a_{5}$	$\bar{y}_{4}+a_{6}$	
		\bar{y}_{3}	$x_{4}+a_{1}$	$\bar{y}_{4}+a_{2}$	$\bar{x}_{4}+a_{3}$	$\bar{x}_{4}+a_{4}$	$\bar{x}_{4}+a_{5}$	
			\bar{x}_{4}	$\bar{x}_{4}+a_{1}$				
				x_{5}				

SYMPLECTIC: WEIGHTS AND PATHS

$P_{i i}$	$\operatorname{wgt}\left(P_{i i}\right)$	$P_{i j}(i<j)$	$\operatorname{wgt}\left(P_{i j}\right)(i<j)$
k	x_{k}	k	$x_{k}+a_{j-i}$
k^{\prime}	y_{k}	k^{\prime}	$y_{k}-a_{j-i}$
\bar{k}	x_{k}^{-1}	\bar{k}	$x_{k}^{-1}+a_{j-i}$
$\overline{k^{\prime}}$	y_{k}^{-1}	\bar{k}	$y_{k}^{\prime}-a_{j-i}$

(i, i)	i	x_{i}	\ddots	(i, i)	i^{\prime}	y_{i}	
(i, i)	\bar{i}	\bar{x}_{i}	\ddots	(i, i)	\bar{i}^{\prime}	\bar{y}_{i}	
$(i, j) i<j$	k	$x_{k}+a_{j-i}$	\ddots	$(i, j) i<j$	k^{\prime}	$y_{k}-a_{j-i}$	
$(i, j) i<j$	\bar{k}	$\bar{x}_{k}+a_{j-i}$	\bullet	$(i, j) i<j$	\bar{k}^{\prime}	$\bar{y}_{k}-a_{j-i}$	

1	$\overline{1}$	2^{\prime}	$\overline{2}^{\prime}$	3		4	$4^{\prime} \overline{4}^{\prime}$	5
	2^{\prime}	2	$\overline{2}$	$\overline{3}^{\prime}$	4	4	$4 \overline{4}^{\prime}$	
		$\overline{3}^{\prime}$	4	$\overline{4}^{\prime}$	$\overline{4}$	$\overline{4}$	$\overline{4}$	
			$\overline{4}$	$\overline{4}$				
				5				

OUTLINE OF PROOF OF FACTORIAL TOKUYAMA

- Start from expression for $Q_{\lambda}(x ; y \mid a)$ as a determinant.
- Extract factors $\left(x_{i}+y_{i}\right)$.
- Subtract successive rows from one another to give factors of the form $\left(x_{i}+y_{i+1}\right)$.
- Repeat the process to obtain factors of the form $\left(x_{i}+y_{i+2}\right)$.
- Continue until all factors of the form $\left(x_{i}+y_{j}\right)$ are extracted for $\mathrm{i} \leq \mathrm{j}$.
- Show that what remains is a factorial character $\mathrm{s}_{\mu}(\mathrm{x} \mid \mathrm{a})$.

ODD ORTHOGONAL: LATTICE PATHS

$$
P=\begin{array}{|c|c|c|c|c|c|}
\hline 1 & \overline{1} & 2^{\prime} & \overline{2}^{\prime} & 3 & 0 \\
\hline & \overline{2}^{\prime} & \overline{2} & 3 & 4^{\prime} \\
\hline
\end{array}
$$

THE RESULT (H. \& KING, 2016)

$$
\begin{aligned}
Q_{\lambda}(\mathbf{x} ; \mathbf{y} \mid \mathbf{a}) & =\prod_{1 \leq i \leq j \leq n}\left(x_{i}+y_{j}\right) s_{\mu}(\mathbf{x} \mid \mathbf{a}) \\
Q_{\lambda}^{s p}(\mathbf{x}, \overline{\mathbf{x}} ; \mathbf{y}, \overline{\mathbf{y}} \mid \mathbf{a}) & =\prod_{1 \leq i \leq j \leq n}\left(x_{i}+y_{j}+\bar{x}_{i}+\bar{y}_{j}\right) s p_{\mu}(\mathbf{x}, \overline{\mathbf{x}} \mid \mathbf{a}) \\
Q_{\lambda}^{s o}(\mathbf{x}, \overline{\mathbf{x}} ; \mathbf{y}, \overline{\mathbf{y}}, 1 \mid \mathbf{a}) & =\prod_{1 \leq i \leq j \leq n}\left(x_{i}+y_{j}+\bar{x}_{i}+\bar{y}_{j}\right) s o_{\mu}(\mathbf{x}, \overline{\mathbf{x}}, 1 \mid \mathbf{a})
\end{aligned}
$$

STILL TO DO....

- Finish the combinatorial proof of the even orthogonal Tokuyama....
- But, for the combinatorial proof, defining exactly the correct tableaux and lattice paths is tricky....

REFERENCES

- T. Tokuyama, A generating function of strict Gelfand patterns and some formulas on characters of general linear group, J. Math. Soc. Japan, 40 (1988), 671-685.
- S. Okada, Partially strict shifted plane partitions, JCTA, 53 (1990), 143-156.
- T. Ikeda, L.C. Mihalcea, H. Naruse, Double Schubert polynomials for the classical groups, Adv. in Math. 226 (2011), 840-896.
- S. Okada, Lattice path methods and characters of classical Groups, preprint.
- W.Y.C. Chen, B. Li, J.D. Louck, The flagged double Schur function, J. Alg. Comb., 15 (2002), 7-26.
- B. Brubaker, D. Bump, S. Friedberg, Schur polynomials and the Yang-Baxter equation, Comm. in Math. Physics 308 (2011), 1563-1571.
- D. Bump, P.J. McNamara, M. Nakasuji, Factorial Schur functions and the Yang-Baxter equation, arXiv: 1108.3087, 2011.
- A.M. Hamel, R.C. King, Symplectic shifted tableaux and deformations of Weyl's denominator formula for sp(2n), J. Alg. Comb. 16 (2002), 269-300.
- A.M. Hamel, R.C. King, Bijective proofs of shifted tableau and alternating sign matrix identities, J. Alg. Comb. 25 (2007), 417-458.
- A.M. Hamel and R.C. King, Tokuyama's identity for factorial Schur P and Q functions, Electronic J. Combinatorics, 22 (2015), \#P2.42.

