A Hamiltonian approach to p-adic Whittaker functions

BEN BRUBAKER

(based on joint work with Andrew Schultz)

University of Minnesota

BIRS Workshop
July 26, 2016

Some key ideas from the Previous Talk

- In Dan's talk, you saw that the values of the p-adic spherical Whittaker function for GL_{r} (and its metaplectic covers) could be represented by generating functions on 6 -vertex models.
- Summands in the generating function correspond to assignments of edges on a lattice with fixed boundary conditions. E.g.:

- The Yang-Baxter equation was used to explore properties of this generating function, i.e., of the spherical Whittaker functions.

A new point of view: discrete time evolution

Instead, we may view the generating function as the result of (d)evolving from a partition $(6,4,1)$ down to the empty partition \emptyset in which one (non-zero) part is lost with each application:

A new point of view: discrete time evolution

Instead, we may view the generating function as the result of (d)evolving from a partition $(6,4,1)$ down to the empty partition \emptyset in which one (non-zero) part is lost with each application:

A physicist might write (using bra-ket notation):

$$
\langle\emptyset| \phi_{3} \phi_{2} \phi_{1}|(6,4,1)\rangle=c_{1} c_{2} c_{3}
$$

But how to find such operators ϕ_{i} ?

Jimbo and Miwa's "Solitons and ∞-dim'l Lie algebras"

Form a Clifford algebra A over \mathbb{C} using generators ψ_{j} and ψ_{j}^{*} for each half integer j, satisfying relations:

$$
\psi_{k} \psi_{j}+\psi_{j} \psi_{k}=0=\psi_{k}^{*} \psi_{j}^{*}+\psi_{j}^{*} \psi_{k}^{*} \quad \text { and } \quad \psi_{j} \psi_{k}^{*}+\psi_{k}^{*} \psi_{j}=\delta_{k j}
$$

Consider the cyclic left A-module $\mathcal{F}:=A / A \mathcal{W}_{\text {ann }}$ with generator $|\emptyset\rangle$ where

$$
\mathcal{W}_{\mathrm{ann}}:=\oplus_{i<0} \mathbb{C} \psi_{i}^{*} \oplus \oplus_{i>0} \mathbb{C} \psi_{i} .
$$

It is better to understand this module using PICTURES!

The module \mathcal{F} in pictures

First, we represent the vacuum state $|\emptyset\rangle$ with a sea of particles (black dots) occupying each negative half-integer position:

Then ψ_{j} and ψ_{j}^{*} act as deletion and creation operators at the position j, respectively. Trying to create a particle where one already exists, or deleting one that isn't already there, produces 0. E.g., $\psi_{-\frac{1}{2}}^{*}|\emptyset\rangle=0$.

Given a strict partition $\lambda=(5,3,2)$ we have the fermion representation $|\lambda\rangle:=\psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle=$

Note there are signs: $\psi_{5-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*}|\emptyset\rangle=-|\lambda\rangle$

Back to algebra: \mathcal{F} as a $\mathfrak{g l}(\infty)$ module

The Lie algebra $\mathfrak{g l}(\infty)$ inside A is built from quadratic elements:
$\mathfrak{g l}(\infty):=\mathbb{C} \cdot 1 \oplus\left\{\sum_{i, j} a_{i, j}: \psi_{i}^{*} \psi_{j}: \mid \exists N\right.$ such that $a_{i, j}=0$ if $\left.|i-j|>N\right\}$,
where we take

$$
: \psi_{i}^{*} \psi_{j}:=-: \psi_{j} \psi_{i}^{*}: \stackrel{\text { def }}{=} \begin{cases}\psi_{i}^{*} \psi_{j} & \text { if } i>0 \\ -\psi_{j} \psi_{i}^{*} & \text { if } i<0\end{cases}
$$

The element

$$
J_{0}=\sum_{i \in \mathbb{Z}-\frac{1}{2}}: \psi_{i}^{*} \psi_{i}:
$$

is central, and its eigenspaces decompose \mathcal{F} into irreducible representations \mathcal{F}_{ℓ} of $\mathfrak{g l}(\infty)$, indexed by integers ℓ. Their highest weight vectors are:

$$
|\ell\rangle:= \begin{cases}\psi_{\ell+\frac{1}{2}} \cdots \psi_{-\frac{1}{2}}|\emptyset\rangle & \text { if } \ell<0 \\ |\emptyset\rangle & \text { if } \ell=0 \\ \psi_{\ell-\frac{1}{2}}^{*} \cdots \psi_{\frac{1}{2}}^{*}|\emptyset\rangle & \text { if } \ell>0\end{cases}
$$

Action of creation/annihilation operators

More generally, for $q \in \mathbb{Z}$ we define the operator J_{q} by

$$
J_{q}=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-q}^{*} \psi_{r}: \quad \text { where }: \psi_{j}^{*} \psi_{k}:= \begin{cases}\psi_{j}^{*} \psi_{k} & \text { when } j>0 \\ -\psi_{k} \psi_{j}^{*} & \text { when } j<0\end{cases}
$$

Let's do an example using our pictorial model...

Computing $J_{1}|(5,3,2)\rangle$ carefully...

Recall

$$
J_{1}=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-1}^{*} \psi_{r}: \quad \text { with } \quad: \psi_{j}^{*} \psi_{k}:= \begin{cases}\psi_{j}^{*} \psi_{k} & \text { when } j>0 \\ -\psi_{k} \psi_{j}^{*} & \text { when } j<0\end{cases}
$$

Up to sign, : $\psi_{r-1}^{*} \psi_{r}$: deletes a particle at position $r-1 / 2$ and fills a particle one slot to the left at $r-3 / 2$.
Let's apply it to $|(5,3,2)\rangle:=\psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle$:

Computing $J_{1}|(5,3,2)\rangle$ carefully...

Recall

$$
J_{1}=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-1}^{*} \psi_{r}: \quad \text { with } \quad: \psi_{j}^{*} \psi_{k}:= \begin{cases}\psi_{j}^{*} \psi_{k} & \text { when } j>0 \\ -\psi_{k} \psi_{j}^{*} & \text { when } j<0\end{cases}
$$

Up to sign, : $\psi_{r-1}^{*} \psi_{r}$: deletes a particle at position $r-1 / 2$ and fills a particle one slot to the left at $r-3 / 2$.
Let's apply it to $|(5,3,2)\rangle:=\psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle$:

$$
\begin{align*}
J_{1}|(5,3,2)\rangle & =\left(\psi_{4-\frac{1}{2}}^{*} \psi_{5-\frac{1}{2}}+\psi_{1-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}\right)|(5,3,2)\rangle \\
& =\psi_{4-\frac{1}{2}}^{*} \psi_{5-\frac{1}{2}} \psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle+\psi_{1-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}} \psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*} \\
& =\psi_{4-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle+(-1)^{2} \psi_{1-\frac{1}{2}}^{*} \psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*}|\emptyset\rangle \\
& =\psi_{4-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle+(-1)^{2}(-1)^{2} \psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{1-\frac{1}{2}}^{*}|\emptyset\rangle \\
& =|(4,3,2)\rangle+|(5,3,1)\rangle
\end{align*}
$$

Time evolution of fermions

We calculated $J_{1}|(5,3,2)\rangle=|(4,3,2)\rangle+|(5,3,1)\rangle$. In general...

Proposition

If q is positive, then J_{q} acts on states by considering all ways to move one particle q units leftward.

We prove a more general identity for the following power series. Let

$$
H[\mathbf{t}]:=\sum_{q=1}^{\infty} t_{q} J_{q}, \quad \text { with } \mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)
$$

and

$$
e^{H[t]}:=\sum_{k=1}^{\infty} \frac{H[\mathbf{t}]^{k}}{k!}
$$

Then one can prove

$$
e^{H[\mathrm{t}]}\left(\sum_{k \in \mathbb{Z}-\frac{1}{2}} \psi_{-k} z^{k-\frac{1}{2}}\right) e^{-H[\mathrm{t}]}=e^{\sum_{q=1}^{\infty} t_{q} z^{q}} \sum_{k \in \mathbb{Z}-\frac{1}{2}} \psi_{-k} z^{k-\frac{1}{2}}
$$

Tau functions

Boson-Fermion Correspondence

The following map is an isomorphism of vector spaces from \mathcal{F}_{ℓ} to V_{ℓ}, where each $V_{\ell} \simeq \mathbb{C}[\mathbf{t}]$:

$$
a|\emptyset\rangle \longmapsto\langle\ell| e^{H[t]} a|\emptyset\rangle .
$$

Moreover, choosing a with $a|\emptyset\rangle=|\lambda ; \ell\rangle(|\lambda\rangle$ with a shifted vacuum at $\ell)$,

$$
\langle\ell| e^{H[t]}|\lambda ; \ell\rangle=: s_{\lambda}[\mathbf{t}]
$$

where the variables t_{q} in $\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)$ are (up to a simple factor of $\frac{1}{q}$) equal to the power sum symmetric functions. Thus changing variables:

$$
t_{q}=\frac{1}{q} \sum_{i=1}^{n} x_{i}^{q}
$$

gives the Schur function s_{λ} as a symmetric polynomial in x_{1}, \ldots, x_{n}. Bra-kets of this form are called "tau functions."

Everything we've discussed so far...

- We use configurations of fermions to model this module for $\mathfrak{g l}(\infty)$
- Out of this analysis, we produce a Hamiltonian operator in three steps:
(1) $J_{q}:=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-q}^{*} \psi_{r}:$
(2) $H[\mathbf{t}]:=\sum_{q=1}^{\infty} t_{q} J_{q}, \quad$ with $\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)$
(3) $e^{H[t]}:=\sum_{k=1}^{\infty} \frac{H[t]^{k}}{k!}$.
- The so-called "tau functions" $\langle\ell| e^{H[t]}|\lambda ; \ell\rangle$ are Schur functions upon setting

$$
t_{q}=\frac{1}{q} \sum_{i=1}^{n} x_{i}^{q}
$$

In light of this last change of variables we could factor

$$
e^{H[t]}=\prod_{i=1}^{n} e^{\phi_{+}\left(x_{i}\right)} \quad \text { with } \quad \phi_{+}\left(x_{i}\right)=\sum_{q \geq 1} \frac{x_{i}^{q}}{q} J_{q}
$$

And the deformation is...

The operator

$$
e^{\phi_{+}\left(x_{i}\right)} \quad \text { with } \quad \phi_{+}\left(x_{i}\right)=\sum_{q \geq 1} \frac{x_{i}^{q}}{q} J_{q} \quad \text { and } \quad J_{q}:=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-q}^{*} \psi_{r}:
$$

gives one step in the evolution of our fermionic system leading to Schur functions.

Its states are in bijection with those of a five-vertex model.
Can we deform this operator and simultaneously arrive at the six-vertex model?

And the deformation is...

The operator

$$
e^{\phi_{+}\left(x_{i}\right)} \quad \text { with } \quad \phi_{+}\left(x_{i}\right)=\sum_{q \geq 1} \frac{x_{i}^{q}}{q} J_{q} \quad \text { and } \quad J_{q}:=\sum_{r \in \mathbb{Z}+\frac{1}{2}}: \psi_{r-q}^{*} \psi_{r}:
$$

gives one step in the evolution of our fermionic system leading to Schur functions.

Its states are in bijection with those of a five-vertex model.
Can we deform this operator and simultaneously arrive at the six-vertex model?

YES!

Use $e^{\phi_{+}(x ; v)} \psi_{-\frac{1}{2}} \quad$ with $\quad \phi_{+}(x ; v):=\sum_{q \geq 1} \frac{x^{q}}{q}\left(1-(-v)^{q}\right) J_{q}$

Let's do an example!

Now consider, in our continuing example with $\lambda=(5,3,2)$:

$$
e^{\phi_{+}(x ; v)} \psi_{-\frac{1}{2}}|(5,3,2)\rangle=e^{\phi_{+}(z ; t)} \psi_{-\frac{1}{2}} \psi_{5-\frac{1}{2}}^{*} \psi_{3-\frac{1}{2}}^{*} \psi_{2-\frac{1}{2}}^{*}|\emptyset\rangle
$$

where

$$
e^{\phi_{+}(x ; v)}:=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{q \geq 1} \frac{\left(1+(-1)^{q+1} v^{q}\right) x^{q}}{q} J_{q}\right)^{k}
$$

and where, as before,

$$
J_{q}=\sum_{r}: \psi_{r-q}^{*} \psi_{r}:
$$

Remember that $\psi_{-\frac{1}{2}}|(5,3,2)\rangle=$

When we expand the powers of k, which products of $J_{i}^{\prime} s$ can occur?

Answer: Lots of J's

$$
\psi_{-\frac{1}{2}}|(5,3,2)\rangle=
$$

$J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{1} J_{1}, J_{1} J_{3}, J_{2} J_{1}, J_{2} J_{2}, J_{2} J_{3}, J_{2} J_{5}, J_{3} J_{1}, J_{3} J_{2}, J_{3} J_{4}$, $J_{4} J_{2}, J_{4} J_{3}, J_{5} J 1, J_{5} J_{2}, J_{1} J_{1} J_{1}, J_{1} J_{1} J_{2}, J_{1} J_{1} J_{3}, J_{1} J_{1} J_{5}, J_{1} J_{2} J_{1}, J_{1} J_{2} J_{2}$, $J_{1} J_{2} J_{3}, J_{1} J_{2} J_{4}, J_{1} J_{3} J_{1}, J_{1} J_{3} J_{2}, J_{1} J_{3} J_{3}, J_{1} J_{4} J_{1}, J_{1} J_{4} J_{2}, J_{2} J_{1} J_{1}, J_{2} J_{1} J_{2}$, $J_{2} J_{1} J_{3}, J_{2} J_{1} J_{4}, J_{2} J_{2} J_{1}, J_{2} J_{2} J_{2}, J_{2} J_{2} J_{3}, J_{2} J_{3} J_{1}, J_{2} J_{3} J_{2}, J_{2} J_{4} J_{1}, J_{3} J_{1} J_{1}$, $J_{3} J_{1} J_{2}, J_{3} J_{1} J_{3}, J_{3} J_{2} J_{2}, J_{4} J_{1} J_{1}, J_{4} J_{1} J_{2}, J_{4} J_{2} J_{1}, J_{5} J_{1} J_{1}$

Answer: Lots of J's

$$
\psi_{-\frac{1}{2}}|(5,3,2)\rangle=
$$

$J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{1} J_{1}, J_{1} J_{3}, J_{2} J_{1}, J_{2} J_{2}, J_{2} J_{3}, J_{2} J_{5}, J_{3} J_{1}, J_{3} J_{2}, J_{3} J_{4}$, $J_{4} J_{2}, J_{4} J_{3}, J_{5} J 1, J_{5} J_{2}, J_{1} J_{1} J_{1}, J_{1} J_{1} J_{2}, J_{1} J_{1} J_{3}, J_{1} J_{1} J_{5}, J_{1} J_{2} J_{1}, J_{1} J_{2} J_{2}$, $J_{1} J_{2} J_{3}, J_{1} J_{2} J_{4}, J_{1} J_{3} J_{1}, J_{1} J_{3} J_{2}, J_{1} J_{3} J_{3}, J_{1} J_{4} J_{1}, J_{1} J_{4} J_{2}, J_{2} J_{1} J_{1}, J_{2} J_{1} J_{2}$, $J_{2} J_{1} J_{3}, J_{2} J_{1} J_{4}, J_{2} J_{2} J_{1}, J_{2} J_{2} J_{2}, J_{2} J_{2} J_{3}, J_{2} J_{3} J_{1}, J_{2} J_{3} J_{2}, J_{2} J_{4} J_{1}, J_{3} J_{1} J_{1}$, $J_{3} J_{1} J_{2}, J_{3} J_{1} J_{3}, J_{3} J_{2} J_{2}, J_{4} J_{1} J_{1}, J_{4} J_{1} J_{2}, J_{4} J_{2} J_{1}, J_{5} J_{1} J_{1}$

More refined question - what is

$$
\langle(4,3)| e^{\phi_{+}(x ; v)} \psi_{-\frac{1}{2}}|(5,3,2)\rangle ? \quad \text { (w/ orthonormal inner product) }
$$

It comes from the action with $J_{1}^{3}, J_{2} J_{1}$, and $J_{1} J_{2}$ which produces...

Migrations from $\psi_{-\frac{1}{2}}|(5,3,2)\rangle$ to $|(4,3)\rangle$ under J_{q} 's

Matching rows of the six vertex model...

Analyzing the contribution from each of these yields a coefficient of

$$
-3 \frac{1}{3!}(1+v)^{3} x^{3}-2 \frac{1}{2!} \frac{1}{2}\left(1-v^{2}\right)(1+v) x^{3}=-x^{3}(1+v)^{2} .
$$

In other words, this is the value of

$$
\langle(4,3)| e^{\phi_{+}(x ; v)} \psi_{-\frac{1}{2}}|(5,3,2)\rangle
$$

Matching rows of the six vertex model...

Analyzing the contribution from each of these yields a coefficient of

$$
-3 \frac{1}{3!}(1+v)^{3} x^{3}-2 \frac{1}{2!} \frac{1}{2}\left(1-v^{2}\right)(1+v) x^{3}=-x^{3}(1+v)^{2} .
$$

In other words, this is the value of

$$
\langle(4,3)| e^{\phi_{+}(x ; v)} \psi_{-\frac{1}{2}}|(5,3,2)\rangle
$$

One can check that, using the Boltzmann weights in Dan's talk, this matches the contributions of a single row of ice with top boundary given by $(5,3,2)$ and bottom boundary given by $(4,3)$:

Connecting to Tokuyama's formula

This point of view can be used to give a completely different proof of Tokuyama's formula, whose output is the Shintani-Casselman-Shalika formula in type A.

Theorem (B.-Schultz)

Given a partition λ with n parts, then

$$
\langle\emptyset ; 0| \prod_{i=1}^{n}\left[e^{\phi_{+}\left(x_{i} ; v\right)} \psi_{-1 / 2}\right]|\lambda ; n\rangle
$$

matches Tokuyama's generating function term by term. Moreover, we can prove independently that it equals the Shintani-Casselman-Shalika formula.

We also treat the cases of Cartan type C and a double cover of type B in the paper.

Final Remarks

- In the case of one variable, the Hamiltonian $e^{\phi_{+}(x ; v)}$ appears in the super Boson-Fermion correspondence for Lie superalgebras (Kac-van de Leur)
- This gives a connection with skew super-symmetric Schur functions:

$$
\langle\mu ; n-1| e^{\phi_{+}(x ; v)} \psi_{-1 / 2}|\lambda ; n\rangle=(-1)^{n} s_{\lambda / \mu}(x \mid v x) .
$$

But we lose this connection upon applying the operator multiple times.

- This gives a point of contact with the results of B-Buciumas-Bump and one hopes that a common generalization to the metaplectic case exists.
- These Hamiltonians are operators on rows. We can think of Hecke operators (or Gerasimov-Lebedev-Oblezin's Baxter operators) as acting on the columns. Is there a link between them? Or a unifying theory here?

