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Some key ideas from the Previous Talk

In Dan’s talk, you saw that the values of the p-adic spherical
Whittaker function for GLr (and its metaplectic covers) could be
represented by generating functions on 6-vertex models.

Summands in the generating function correspond to assignments of
edges on a lattice with fixed boundary conditions. E.g.:
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The Yang-Baxter equation was used to explore properties of this
generating function, i.e., of the spherical Whittaker functions.



A new point of view: discrete time evolution
Instead, we may view the generating function as the result of (d)evolving
from a partition (6, 4, 1) down to the empty partition ∅ in which one
(non-zero) part is lost with each application:

(6, 4, 1)

· · ·

(6, 4) (6, 3) · · ·

(6) (5) (4) (3) · · ·

∅

Step 1 (φ1)

Step 2 (φ2)

Step 3 (φ3)

A physicist might write:

〈∅|φ3φ2φ1 |(6, 4, 1)〉

But how to find such operators φi?



A new point of view: discrete time evolution
Instead, we may view the generating function as the result of (d)evolving
from a partition (6, 4, 1) down to the empty partition ∅ in which one
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Step 1 (φ1)

Step 2 (φ2)

Step 3 (φ3)

A physicist might write (using bra-ket notation):

〈∅|φ3φ2φ1 |(6, 4, 1)〉 = c1c2c3

But how to find such operators φi?



Jimbo and Miwa’s “Solitons and ∞-dim’l Lie algebras”

Form a Clifford algebra A over C using generators ψj and ψ∗j for each half
integer j , satisfying relations:

ψkψj + ψjψk = 0 = ψ∗kψ
∗
j + ψ∗j ψ

∗
k and ψjψ

∗
k + ψ∗kψj = δkj

Consider the cyclic left A-module F := A/AWann with generator |∅〉 where

Wann := ⊕i<0Cψ∗i ⊕⊕i>0Cψi .

It is better to understand this module using PICTURES!



The module F in pictures
First, we represent the vacuum state |∅〉 with a sea of particles (black
dots) occupying each negative half-integer position:

|∅〉 =
0−1−2−3

· · ·
1 2 3

· · ·

Then ψj and ψ∗j act as deletion and creation operators at the position j ,
respectively. Trying to create a particle where one already exists, or
deleting one that isn’t already there, produces 0. E.g., ψ∗− 1

2

|∅〉 = 0.

Given a strict partition λ = (5, 3, 2) we have the fermion representation
|λ〉 := ψ∗

5− 1
2

ψ∗
3− 1

2

ψ∗
2− 1

2

|∅〉 =

0
· · · · · ·

Note there are signs: ψ∗
5− 1

2

ψ∗
2− 1

2

ψ∗
3− 1

2

|∅〉 = − |λ〉



Back to algebra: F as a gl(∞) module
The Lie algebra gl(∞) inside A is built from quadratic elements:

gl(∞) := C ·1⊕

∑
i ,j

ai ,j : ψ∗i ψj : | ∃N such that ai ,j = 0 if |i − j | > N

 ,

where we take

: ψ∗i ψj : = − : ψjψ
∗
i :

def
=

{
ψ∗i ψj if i > 0

−ψjψ
∗
i if i < 0

The element
J0 =

∑
i∈Z− 1

2

: ψ∗i ψi :

is central, and its eigenspaces decompose F into irreducible representations
F` of gl(∞), indexed by integers `. Their highest weight vectors are:

|`〉 :=


ψ`+ 1

2
· · ·ψ− 1

2
|∅〉 if ` < 0

|∅〉 if ` = 0

ψ∗
`− 1

2

· · ·ψ∗1
2

|∅〉 if ` > 0.



Action of creation/annihilation operators

More generally, for q ∈ Z we define the operator Jq by

Jq =
∑

r∈Z+ 1
2

: ψ∗r−qψr : where : ψ∗j ψk :=

{
ψ∗j ψk when j > 0

−ψkψ
∗
j when j < 0.

Let’s do an example using our pictorial model...



Computing J1 |(5, 3, 2)〉 carefully...
Recall

J1 =
∑

r∈Z+ 1
2

: ψ∗r−1ψr : with : ψ∗j ψk :=

{
ψ∗j ψk when j > 0

−ψkψ
∗
j when j < 0.

Up to sign, : ψ∗r−1ψr : deletes a particle at position r − 1/2 and fills a
particle one slot to the left at r − 3/2.

Let’s apply it to |(5, 3, 2)〉 := ψ∗
5− 1

2

ψ∗
3− 1

2

ψ∗
2− 1

2

|∅〉:

0
· · · · · ·

J1 |(5, 3, 2)〉 =
(
ψ∗
4− 1

2
ψ5− 1

2
+ ψ∗

1− 1
2
ψ2− 1

2

)
|(5, 3, 2)〉

= ψ∗
4− 1

2
ψ5− 1

2
ψ∗
5− 1

2
ψ∗
3− 1

2
ψ∗
2− 1

2
|∅〉+ ψ∗

1− 1
2
ψ2− 1

2
ψ∗
5− 1

2
ψ∗
3− 1

2
ψ∗
2− 1

2
|∅〉

= ψ∗
4− 1

2
ψ∗
3− 1

2
ψ∗
2− 1

2
|∅〉+ (−1)2ψ∗

1− 1
2
ψ∗
5− 1

2
ψ∗
3− 1

2
|∅〉

= ψ∗
4− 1

2
ψ∗
3− 1

2
ψ∗
2− 1

2
|∅〉+ (−1)2(−1)2ψ∗

5− 1
2
ψ∗
3− 1

2
ψ∗
1− 1

2
|∅〉

= |(4, 3, 2)〉+ |(5, 3, 1)〉 .
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Time evolution of fermions
We calculated J1 |(5, 3, 2)〉 = |(4, 3, 2)〉+ |(5, 3, 1)〉. In general...

Proposition

If q is positive, then Jq acts on states by considering all ways to move one
particle q units leftward.

We prove a more general identity for the following power series. Let

H[t] :=
∞∑
q=1

tqJq, with t = (t1, t2, . . .)

and

eH[t] :=
∞∑
k=1

H[t]k

k!
.

Then one can prove

eH[t]

 ∑
k∈Z− 1

2

ψ−kz
k− 1

2

 e−H[t] = e
∑∞

q=1 tqz
q ∑
k∈Z− 1

2

ψ−kz
k− 1

2



Tau functions

Boson-Fermion Correspondence

The following map is an isomorphism of vector spaces from F` to V`,
where each V` ' C[t]:

a |∅〉 7−→ 〈` | eH[t]a |∅〉 .

Moreover, choosing a with a |∅〉 = |λ; `〉 (|λ〉 with a shifted vacuum at `),

〈`| eH[t] |λ; `〉 =: sλ[t],

where the variables tq in t = (t1, t2, ...) are (up to a simple factor of 1
q )

equal to the power sum symmetric functions. Thus changing variables:

tq =
1

q

n∑
i=1

xqi

gives the Schur function sλ as a symmetric polynomial in x1, . . . , xn.

Bra-kets of this form are called “tau functions.”



Everything we’ve discussed so far...

We use configurations of fermions to model this module for gl(∞)

Out of this analysis, we produce a Hamiltonian operator in three
steps:

1 Jq :=
∑

r∈Z+ 1
2

: ψ∗r−qψr :

2 H[t] :=
∑∞

q=1 tqJq, with t = (t1, t2, . . .)

3 eH[t] :=
∑∞

k=1
H[t]k

k! .

The so-called “tau functions” 〈`| eH[t] |λ; `〉 are Schur functions upon
setting

tq =
1

q

n∑
i=1

xqi

In light of this last change of variables we could factor

eH[t] =
n∏

i=1

eφ+(xi ) with φ+(xi ) =
∑
q≥1

xqi
q
Jq



And the deformation is...

The operator

eφ+(xi ) with φ+(xi ) =
∑
q≥1

xqi
q
Jq and Jq :=

∑
r∈Z+ 1

2

: ψ∗r−qψr :

gives one step in the evolution of our fermionic system leading to Schur
functions.

Its states are in bijection with those of a five-vertex model.

Can we deform this operator and simultaneously arrive at the six-vertex
model?

YES!

Use eφ+(x ;v)ψ− 1
2

with φ+(x ; v) :=
∑
q≥1

xq

q
(1− (−v)q)Jq
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Let’s do an example!

Now consider, in our continuing example with λ = (5, 3, 2):

eφ+(x ;v)ψ− 1
2
|(5, 3, 2)〉 = eφ+(z;t)ψ− 1

2
ψ∗
5− 1

2
ψ∗
3− 1

2
ψ∗
2− 1

2
|∅〉

where

eφ+(x ;v) :=
∞∑
k=0

1

k!

∑
q≥1

(1 + (−1)q+1vq)xq

q
Jq

k

.

and where, as before,
Jq =

∑
r

: ψ∗r−qψr :

Remember that ψ− 1
2
|(5, 3, 2)〉 =

0
· · · · · ·

When we expand the powers of k , which products of J ′i s can occur?



Answer: Lots of J ’s

ψ− 1
2
|(5, 3, 2)〉 =

0
· · · · · ·

J1, J2, J3, J4, J5, J1J1, J1J3, J2J1, J2J2, J2J3, J2J5, J3J1, J3J2, J3J4,
J4J2, J4J3, J5J1, J5J2, J1J1J1, J1J1J2, J1J1J3, J1J1J5, J1J2J1, J1J2J2,
J1J2J3, J1J2J4, J1J3J1, J1J3J2, J1J3J3, J1J4J1, J1J4J2, J2J1J1, J2J1J2,
J2J1J3, J2J1J4, J2J2J1, J2J2J2, J2J2J3, J2J3J1, J2J3J2, J2J4J1, J3J1J1,
J3J1J2, J3J1J3, J3J2J2, J4J1J1, J4J1J2, J4J2J1, J5J1J1

More refined question – what is〈
(4, 3)

∣∣∣ eφ+(x ;v)ψ− 1
2

∣∣∣ (5, 3, 2)
〉

? (w/ orthonormal inner product)

It comes from the action with J31 , J2J1, and J1J2 which produces...
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Migrations from ψ− 1
2
|(5, 3, 2)〉 to |(4, 3)〉 under Jq’s

0

0

0

0

0

12 3

13 2

23 1

1 2

2 1



Matching rows of the six vertex model...
Analyzing the contribution from each of these yields a coefficient of

−3
1

3!
(1 + v)3x3 − 2

1

2!

1

2
(1− v2)(1 + v)x3 = −x3(1 + v)2.

In other words, this is the value of〈
(4, 3)

∣∣∣ eφ+(x ;v)ψ− 1
2

∣∣∣ (5, 3, 2)
〉

One can check that, using the Boltzmann weights in Dan’s talk, this
matches the contributions of a single row of ice with top boundary given
by (5, 3, 2) and bottom boundary given by (4, 3):

x x x x x

− + − − +

+ − + + − −

+ − − + +
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Connecting to Tokuyama’s formula

This point of view can be used to give a completely different proof of
Tokuyama’s formula, whose output is the Shintani-Casselman-Shalika
formula in type A.

Theorem (B.-Schultz)

Given a partition λ with n parts, then

〈∅; 0|
n∏

i=1

[
eφ+(xi ;v)ψ−1/2

]
|λ; n〉

matches Tokuyama’s generating function term by term. Moreover, we can
prove independently that it equals the Shintani-Casselman-Shalika formula.

We also treat the cases of Cartan type C and a double cover of type B in
the paper.



Final Remarks

In the case of one variable, the Hamiltonian eφ+(x ;v) appears in the
super Boson-Fermion correspondence for Lie superalgebras
(Kac-van de Leur)

This gives a connection with skew super-symmetric Schur functions:

〈µ; n − 1 | eφ+(x ;v)ψ−1/2 | λ; n〉 = (−1)nsλ/µ(x | vx).

But we lose this connection upon applying the operator multiple
times.

This gives a point of contact with the results of B-Buciumas-Bump
and one hopes that a common generalization to the metaplectic case
exists.

These Hamiltonians are operators on rows. We can think of Hecke
operators (or Gerasimov-Lebedev-Oblezin’s Baxter operators) as
acting on the columns. Is there a link between them? Or a unifying
theory here?


