Convergence and Holomorphy of Kac-Moody Eisenstein Series

Kyu-Hwan Lee

joint work with L. Carbone, H. Garland, D. Liu and S. D. Miller.

July 27, 2016

1. Motivation

1. Motivation

- Eisenstein series on reductive groups

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
- Affine case:

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
- Affine case:
- Convergence (Garland, 2006)

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
- Affine case:
- Convergence (Garland, 2006)
- Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
- Affine case:
- Convergence (Garland, 2006)
- Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)
- Holomorphy of cuspidal Eisenstein series (Garland, Miller, Patnaik, 2013)

1. Motivation

- Eisenstein series on reductive groups
- Convergence (Godement, 1962)
- Meromorphic continuation (Langlands, 196?-1976)
- Eisenstein series on infinite dimensional Kac-Moody groups
- Affine case:
- Convergence (Garland, 2006)
- Meromorphic continuation of minimal parabolic Eisenstein series (Garland, 2007)
- Holomorphy of cuspidal Eisenstein series (Garland, Miller, Patnaik, 2013)
- Function field analogue (Braverman, Kazhdan, 2012)
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Holomorphy of cuspidal Eisenstein series
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Holomorphy of cuspidal Eisenstein series
- Computation of degenerate Fourier-Whittaker coefficients
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Holomorphy of cuspidal Eisenstein series
- Computation of degenerate Fourier-Whittaker coefficients
- General Kac-Moody case (Fleig, Kleinschmidt, Persson, 2013):
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Holomorphy of cuspidal Eisenstein series
- Computation of degenerate Fourier-Whittaker coefficients
- General Kac-Moody case (Fleig, Kleinschmidt, Persson, 2013):
- Formal computation of degenerate Fourier-Whittaker coefficients
- Rank 2 hyperbolic case (Carbone, Liu, L., 2013):
- Almost everywhere convergence
- Holomorphy of cuspidal Eisenstein series
- Computation of degenerate Fourier-Whittaker coefficients
- General Kac-Moody case (Fleig, Kleinschmidt, Persson, 2013):
- Formal computation of degenerate Fourier-Whittaker coefficients
- Study of special cases of E_{9}, E_{10}, E_{11}
- Question:

Can we generalize convergence and holomorphy

to arbitrary Kac-Moody groups?

- Question:

Can we generalize convergence and holomorphy to arbitrary Kac-Moody groups?

- Today's Answer:

Yes, if we assume some interesting combinatorial conditions for the Kac-Moody groups.

- Why do we care about Kac-Moody Eisenstein series?
- Why do we care about Kac-Moody Eisenstein series?

Potential Applications:

- Why do we care about Kac-Moody Eisenstein series?

Potential Applications:

- Extension of the Langlands-Shahidi method to study automorphic L-functions
- Why do we care about Kac-Moody Eisenstein series?

Potential Applications:

- Extension of the Langlands-Shahidi method to study automorphic L-functions
- Moments of L-functions through multiple Dirichlet series as envisioned by Bump, Friedberg and Hoffstein
- Why do we care about Kac-Moody Eisenstein series?

Potential Applications:

- Extension of the Langlands-Shahidi method to study automorphic L-functions
- Moments of L-functions through multiple Dirichlet series as envisioned by Bump, Friedberg and Hoffstein
- String theory as will be explained in the talks of Persson and Kleinschmidt

2. Kac-Moody Groups

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}:$ nonsingular symmetrizable G.C.M.

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$ satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$
satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.
$\mathfrak{g}=\mathfrak{g}(A)$: Kac-Moody algebra associated to $\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$
satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.
$\mathfrak{g}=\mathfrak{g}(A)$: Kac-Moody algebra associated to $\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$
$\Phi=\Phi^{+} \cup \Phi^{-}:$set of roots of \mathfrak{g}

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$
satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.
$\mathfrak{g}=\mathfrak{g}(A)$: Kac-Moody algebra associated to $\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$
$\Phi=\Phi^{+} \cup \Phi^{-}$: set of roots of \mathfrak{g}
α^{\vee} : coroot corresponding to $\alpha \in \Phi$

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$
satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.
$\mathfrak{g}=\mathfrak{g}(A)$: Kac-Moody algebra associated to $\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$
$\Phi=\Phi^{+} \cup \Phi^{-}$: set of roots of \mathfrak{g}
α^{\vee} : coroot corresponding to $\alpha \in \Phi$
$\varpi_{i} \in \mathfrak{h}^{*}, i=1, \ldots, r$: fundamental weights

2. Kac-Moody Groups

- $I=\{1,2, \ldots, r\}$
$A=\left(a_{i j}\right)_{i, j \in I}$: nonsingular symmetrizable G.C.M.
$\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$: realization of A
That is, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{r}^{\vee}\right\} \subset \mathfrak{h}$ satisfy $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$.
$\mathfrak{g}=\mathfrak{g}(A)$: Kac-Moody algebra associated to $\left(\mathfrak{h}, \Delta, \Delta^{\vee}\right)$
$\Phi=\Phi^{+} \cup \Phi^{-}$: set of roots of \mathfrak{g}
α^{\vee} : coroot corresponding to $\alpha \in \Phi$
$\varpi_{i} \in \mathfrak{h}^{*}, i=1, \ldots, r$: fundamental weights
W : Weyl group generated by simple reflections $w_{i}, i \in I$
- V : integrable highest weight module for $\mathfrak{g}_{\mathbb{C}}$
- V : integrable highest weight module for $\mathfrak{g}_{\mathbb{C}}$ $V_{\mathbb{Z}}: \mathbb{Z}$-form of V
- V : integrable highest weight module for $\mathfrak{g}_{\mathbb{C}}$
$V_{\mathbb{Z}}$: \mathbb{Z}-form of V
Then we have

$$
\frac{e_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { and } \quad \frac{f_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { for } n \in \mathbb{N}, i \in I
$$

thanks to the local nilpotence of e_{i} and f_{i}.

- V : integrable highest weight module for $\mathfrak{g}_{\mathbb{C}}$
$V_{\mathbb{Z}}$: \mathbb{Z}-form of V
Then we have

$$
\frac{e_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { and } \quad \frac{f_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { for } n \in \mathbb{N}, i \in I
$$

thanks to the local nilpotence of e_{i} and f_{i}.

- $V_{\mathbb{R}}=\mathbb{R} \otimes_{\mathbb{Z}} V_{\mathbb{Z}}$
- V : integrable highest weight module for $\mathfrak{g}_{\mathbb{C}}$
$V_{\mathbb{Z}}$: \mathbb{Z}-form of V
Then we have

$$
\frac{e_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { and } \quad \frac{f_{i}^{n}}{n!}\left(V_{\mathbb{Z}}\right) \subseteq V_{\mathbb{Z}} \quad \text { for } n \in \mathbb{N}, i \in I
$$

thanks to the local nilpotence of e_{i} and f_{i}.

- $V_{\mathbb{R}}=\mathbb{R} \otimes_{\mathbb{Z}} V_{\mathbb{Z}}$

For $s, t \in \mathbb{R}$ and $i \in I$, set

$$
\chi_{\alpha_{i}}(s)=\sum_{n=0}^{\infty} s^{n} \frac{e_{i}^{n}}{n!}, \quad \chi_{-\alpha_{i}}(t)=\sum_{n=0}^{\infty} t^{n} \frac{f_{i}^{n}}{n!} .
$$

Then $\chi_{\alpha_{i}}(s)$ and $\chi_{-\alpha_{i}}(t)$ define elements $\operatorname{in} \operatorname{Aut}\left(V_{\mathbb{R}}\right)$.

- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$.
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\Psi=\left\{v_{1}, v_{2}, \ldots\right\}:$ coherently ordered basis of $V_{\mathbb{R}}$
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\psi=\left\{v_{1}, v_{2}, \ldots\right\}$: coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\psi=\left\{v_{1}, v_{2}, \ldots\right\}$: coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_{t}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for $t \in \mathbb{Z}_{>0}, \quad B^{0} U_{t} \subseteq U_{t}$ for each t
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\Psi=\left\{v_{1}, v_{2}, \ldots\right\}$: coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_{t}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for $t \in \mathbb{Z}_{>0}, \quad B^{0} U_{t} \subseteq U_{t}$ for each t B_{t} : image of $B^{0} \operatorname{in} \operatorname{Aut}\left(U_{t}\right)$
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\Psi=\left\{v_{1}, v_{2}, \ldots\right\}:$ coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_{t}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for $t \in \mathbb{Z}_{>0}, \quad B^{0} U_{t} \subseteq U_{t}$ for each t B_{t} : image of $B^{0} \operatorname{in} \operatorname{Aut}\left(U_{t}\right)$
Define B to be the projective limit of the projective family $\left\{B_{t}\right\}$.
- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\Psi=\left\{v_{1}, v_{2}, \ldots\right\}:$ coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_{t}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for $t \in \mathbb{Z}_{>0}, \quad B^{0} U_{t} \subseteq U_{t}$ for each t B_{t} : image of $B^{0} \operatorname{in} \operatorname{Aut}\left(U_{t}\right)$
Define B to be the projective limit of the projective family $\left\{B_{t}\right\}$.
- Topology on $G_{\mathbb{R}}^{0}$: for a base of neighborhoods of the identity, we take

$$
V_{t}=\left\{g \in G_{\mathbb{R}}^{0}: g v_{i}=v_{i}, i=1,2, \ldots, t\right\}
$$

- Set $G_{\mathbb{R}}^{0}=\left\langle\chi_{\alpha_{i}}(s), \chi_{-\alpha_{i}}(t): s, t \in \mathbb{R}, i \in I\right\rangle \subset \operatorname{Aut}\left(V_{\mathbb{R}}\right)$. $\Psi=\left\{v_{1}, v_{2}, \ldots\right\}:$ coherently ordered basis of $V_{\mathbb{R}}$ B^{0} : subgroup consisting of upper triangular matrices w.r.t. Ψ $U_{t}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ for $t \in \mathbb{Z}_{>0}, \quad B^{0} U_{t} \subseteq U_{t}$ for each t B_{t} : image of B^{0} in $\operatorname{Aut}\left(U_{t}\right)$
Define B to be the projective limit of the projective family $\left\{B_{t}\right\}$.
- Topology on $G_{\mathbb{R}}^{0}$: for a base of neighborhoods of the identity, we take

$$
V_{t}=\left\{g \in G_{\mathbb{R}}^{0}: g v_{i}=v_{i}, i=1,2, \ldots, t\right\}
$$

Define $G_{\mathbb{R}}$ to be the completion of $G_{\mathbb{R}}^{0}$ w.r.t. this topology.

- We define the following subgroups of $G_{\mathbb{R}}$:
- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$
- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$ $K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$
$K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
$A=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}^{\times}, i \in I\right\rangle$ and $A^{+}=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}_{+}, i \in I\right\rangle$,
- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$ $K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
$A=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}^{\times}, i \in I\right\rangle$ and $A^{+}=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}_{+}, i \in I\right\rangle$, where $w_{\alpha_{i}}(t)=\chi_{\alpha_{i}}(t) \chi_{-\alpha_{i}}\left(-t^{-1}\right) \chi_{\alpha_{i}}(t)$ and
- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$
$K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
$A=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}^{\times}, i \in I\right\rangle$ and $A^{+}=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}_{+}, i \in I\right\rangle$, where $w_{\alpha_{i}}(t)=\chi_{\alpha_{i}}(t) \chi_{-\alpha_{i}}\left(-t^{-1}\right) \chi_{\alpha_{i}}(t)$ and

$$
h_{\alpha_{i}}(t)=w_{\alpha_{i}}(t) w_{\alpha_{i}}(1)^{-1} \text { for } i \in I \text { for } t \in \mathbb{R}^{\times} .
$$

- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$
$K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
$A=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}^{\times}, i \in I\right\rangle$ and $A^{+}=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}_{+}, i \in I\right\rangle$, where $w_{\alpha_{i}}(t)=\chi_{\alpha_{i}}(t) \chi_{-\alpha_{i}}\left(-t^{-1}\right) \chi_{\alpha_{i}}(t)$ and

$$
\begin{aligned}
& h_{\alpha_{i}}(t)=w_{\alpha_{i}}(t) w_{\alpha_{i}}(1)^{-1} \text { for } i \in I \text { for } t \in \mathbb{R}^{\times} . \\
& \Gamma=G_{\mathbb{Z}}=\left\{\gamma \in G_{\mathbb{R}}: \gamma \cdot V_{\mathbb{Z}} \subseteq V_{\mathbb{Z}}\right\}
\end{aligned}
$$

- We define the following subgroups of $G_{\mathbb{R}}$:
$U=$ completion of the subgroup generated by $\chi_{\alpha}, \alpha \in \Phi^{+}$
$K=\left\{k \in G_{\mathbb{R}}: k\right.$ preserves \langle,$\left.\rangle on V_{\mathbb{R}}^{\lambda}\right\}$
$A=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}^{\times}, i \in I\right\rangle$ and $A^{+}=\left\langle h_{\alpha_{i}}(s): s \in \mathbb{R}_{+}, i \in I\right\rangle$,
where $w_{\alpha_{i}}(t)=\chi_{\alpha_{i}}(t) \chi_{-\alpha_{i}}\left(-t^{-1}\right) \chi_{\alpha_{i}}(t)$ and

$$
\begin{aligned}
& h_{\alpha_{i}}(t)=w_{\alpha_{i}}(t) w_{\alpha_{i}}(1)^{-1} \text { for } i \in I \text { for } t \in \mathbb{R}^{\times} . \\
& \Gamma=G_{\mathbb{Z}}=\left\{\gamma \in G_{\mathbb{R}}: \gamma \cdot V_{\mathbb{Z}} \subseteq V_{\mathbb{Z}}\right\}
\end{aligned}
$$

- We have the Iwasawa decomposition

$$
G_{\mathbb{R}}=U A^{+} K
$$

with uniqueness of expression.

3. Eisenstein series and their constant terms

3. Eisenstein series and their constant terms

- Write $g=u a k \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda: A^{+} \rightarrow \mathbb{C}^{\times}$.

3. Eisenstein series and their constant terms

- Write $g=u a k \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda: A^{+} \rightarrow \mathbb{C}^{\times}$.

Define $\Phi_{\lambda}: G_{\mathbb{R}} \rightarrow \mathbb{C}^{\times}$by

$$
\Phi_{\lambda}(g)=a^{\lambda+\rho}
$$

where $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1, i \in I$.

3. Eisenstein series and their constant terms

- Write $g=u a k \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda: A^{+} \rightarrow \mathbb{C}^{\times}$.

Define $\Phi_{\lambda}: G_{\mathbb{R}} \rightarrow \mathbb{C}^{\times}$by

$$
\Phi_{\lambda}(g)=a^{\lambda+\rho}
$$

where $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1, i \in I$.

- Define the Eisenstein series on $G_{\mathbb{R}}$ to be the infinite formal sum

$$
E_{\lambda}(g)=\sum_{\gamma \in \Gamma \cap B \backslash \Gamma} \Phi_{\lambda}(\gamma g) .
$$

3. Eisenstein series and their constant terms

- Write $g=u a k \in G_{\mathbb{R}}$ and consider a quasi-character $\lambda: A^{+} \rightarrow \mathbb{C}^{\times}$.

Define $\Phi_{\lambda}: G_{\mathbb{R}} \rightarrow \mathbb{C}^{\times}$by

$$
\Phi_{\lambda}(g)=a^{\lambda+\rho}
$$

where $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1, i \in I$.

- Define the Eisenstein series on $G_{\mathbb{R}}$ to be the infinite formal sum

$$
E_{\lambda}(g)=\sum_{\gamma \in \Gamma \cap B \backslash \Gamma} \Phi_{\lambda}(\gamma g) .
$$

We define for all $g \in G_{\mathbb{R}}$ the constant term

$$
E_{\lambda}^{\sharp}(g)=\int_{\Gamma \cap \cup \backslash U} E_{\lambda}(u g) d u .
$$

- Applying the Gindikin-Karpelevich formula, we obtain

$$
E_{\lambda}^{\sharp}(g)=\sum_{w \in W} a(g)^{w \lambda+\rho} c(\lambda, w),
$$

where

$$
c(\lambda, w)=\prod_{\alpha>0, w \alpha<0} \frac{\xi\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right)}{\xi\left(1+\left\langle\lambda, \alpha^{\vee}\right\rangle\right)},
$$

and $\xi(s)$ is the completed Riemann zeta function.

- Applying the Gindikin-Karpelevich formula, we obtain

$$
E_{\lambda}^{\sharp}(g)=\sum_{w \in W} a(g)^{w \lambda+\rho} c(\lambda, w),
$$

where

$$
c(\lambda, w)=\prod_{\alpha>0, w \alpha<0} \frac{\xi\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right)}{\xi\left(1+\left\langle\lambda, \alpha^{\vee}\right\rangle\right)},
$$

and $\xi(s)$ is the completed Riemann zeta function.

- $\mathcal{C}=\left\{x \in \mathfrak{h}:\left\langle\alpha_{i}, x\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}: W$-orbit of \mathcal{C}
- Applying the Gindikin-Karpelevich formula, we obtain

$$
E_{\lambda}^{\sharp}(g)=\sum_{w \in W} a(g)^{w \lambda+\rho} c(\lambda, w),
$$

where

$$
c(\lambda, w)=\prod_{\alpha>0, w \alpha<0} \frac{\xi\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right)}{\xi\left(1+\left\langle\lambda, \alpha^{\vee}\right\rangle\right)},
$$

and $\xi(s)$ is the completed Riemann zeta function.

- $\mathcal{C}=\left\{x \in \mathfrak{h}:\left\langle\alpha_{i}, x\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}: W$-orbit of \mathcal{C}

Using $\exp : \mathfrak{h} \rightarrow A^{+}$, set $A_{\mathcal{C}}=\exp \mathcal{C}$ and $A_{\mathfrak{C}}=\exp \mathfrak{C}$.

- Applying the Gindikin-Karpelevich formula, we obtain

$$
E_{\lambda}^{\sharp}(g)=\sum_{w \in W} a(g)^{w \lambda+\rho} c(\lambda, w),
$$

where

$$
c(\lambda, w)=\prod_{\alpha>0, w \alpha<0} \frac{\xi\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right)}{\xi\left(1+\left\langle\lambda, \alpha^{\vee}\right\rangle\right)},
$$

and $\xi(s)$ is the completed Riemann zeta function.

- $\mathcal{C}=\left\{x \in \mathfrak{h}:\left\langle\alpha_{i}, x\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}: W$-orbit of \mathcal{C}

Using $\exp : \mathfrak{h} \rightarrow A^{+}$, set $A_{\mathcal{C}}=\exp \mathcal{C}$ and $A_{\mathfrak{C}}=\exp \mathfrak{C}$.
$\mathcal{C}^{*}=\left\{\lambda \in \mathfrak{h}^{*}:\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}^{*} \subset \mathfrak{h}^{*}:$ dual of \mathfrak{C}

- Applying the Gindikin-Karpelevich formula, we obtain

$$
E_{\lambda}^{\sharp}(g)=\sum_{w \in W} a(g)^{w \lambda+\rho} c(\lambda, w),
$$

where

$$
c(\lambda, w)=\prod_{\alpha>0, w \alpha<0} \frac{\xi\left(\left\langle\lambda, \alpha^{\vee}\right\rangle\right)}{\xi\left(1+\left\langle\lambda, \alpha^{\vee}\right\rangle\right)},
$$

and $\xi(s)$ is the completed Riemann zeta function.

- $\mathcal{C}=\left\{x \in \mathfrak{h}:\left\langle\alpha_{i}, x\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}: W$-orbit of \mathcal{C}

Using $\exp : \mathfrak{h} \rightarrow A^{+}$, set $A_{\mathcal{C}}=\exp \mathcal{C}$ and $A_{\mathfrak{C}}=\exp \mathfrak{C}$.
$\mathcal{C}^{*}=\left\{\lambda \in \mathfrak{h}^{*}:\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle>0, i \in I\right\}, \quad \mathfrak{C}^{*} \subset \mathfrak{h}^{*}:$ dual of \mathfrak{C}
P : weight lattice

Lemma (Looijenga)

Let \mathcal{K} be a compact subset of \mathfrak{C} and $\mu \in P \cap \mathfrak{C}^{*}$. If $A_{\mathcal{K}, \mu}(N)$ is the number of $\mu^{\prime} \in W \cdot\{\mu\}$ whose maximum on \mathcal{K} is $\geq-N$, then $A_{\mathcal{K}, \mu}(N)=O\left(N^{r}\right)$ as $N \rightarrow \infty$.

Lemma (Looijenga)

Let \mathcal{K} be a compact subset of \mathfrak{C} and $\mu \in P \cap \mathfrak{C}^{*}$. If $A_{\mathcal{K}, \mu}(N)$ is the number of $\mu^{\prime} \in W \cdot\{\mu\}$ whose maximum on \mathcal{K} is $\geq-N$, then $A_{\mathcal{K}, \mu}(N)=O\left(N^{r}\right)$ as $N \rightarrow \infty$.

Theorem

Assume that $\lambda \in \mathfrak{h}_{\mathbb{C}}^{*}$ with $\operatorname{Re}(\lambda)-\rho \in \mathcal{C}^{*}$. Then $E_{\lambda}^{\sharp}(g)$ converges absolutely for $g \in U A_{\mathfrak{c}} K$.

Lemma (Looijenga)

Let \mathcal{K} be a compact subset of \mathfrak{C} and $\mu \in P \cap \mathfrak{C}^{*}$. If $A_{\mathcal{K}, \mu}(N)$ is the number of $\mu^{\prime} \in W \cdot\{\mu\}$ whose maximum on \mathcal{K} is $\geq-N$, then $A_{\mathcal{K}, \mu}(N)=O\left(N^{r}\right)$ as $N \rightarrow \infty$.

Theorem

Assume that $\lambda \in \mathfrak{h}_{\mathbb{C}}^{*}$ with $\operatorname{Re}(\lambda)-\rho \in \mathcal{C}^{*}$. Then $E_{\lambda}^{\sharp}(g)$ converges absolutely for $g \in U A_{\mathfrak{c}} K$.

Corollary

For $\lambda \in \mathfrak{h}_{\mathbb{C}}^{*}$ with $\operatorname{Re}(\lambda)-\rho \in \mathcal{C}^{*}$, there exists a measure zero subset S_{0} of $U \mathfrak{S}$ such that the series $E_{\lambda}(g)$ converges absolutely for $g \in U \subseteq K$ off the set $S_{0} K$, where \mathfrak{S} is an arbitrary compact subset of $A_{\mathbb{C}}$.

4. Convergence of Eisenstein series

4. Convergence of Eisenstein series

- Assume that $\lambda-\rho \in \mathcal{C}^{*}$. Then there exists a constant $M>0$ depending on λ such that, for $\alpha \in \Delta, x \in \mathbb{R}$ and $g=u a k \in G_{\mathbb{R}}$,

$$
\sum_{m \in \mathbb{Z}} a\left(w_{\alpha} u_{\alpha}(x+m) g\right)^{\lambda+\rho} \leq M a^{w_{\alpha}(\lambda+\rho)}\left(1+a^{\alpha}\right)
$$

where $a(g)$ is the A^{+}-component of g.

4. Convergence of Eisenstein series

- Assume that $\lambda-\rho \in \mathcal{C}^{*}$. Then there exists a constant $M>0$ depending on λ such that, for $\alpha \in \Delta, x \in \mathbb{R}$ and $g=u a k \in G_{\mathbb{R}}$,

$$
\sum_{m \in \mathbb{Z}} a\left(w_{\alpha} u_{\alpha}(x+m) g\right)^{\lambda+\rho} \leq M a^{w_{\alpha}(\lambda+\rho)}\left(1+a^{\alpha}\right)
$$

where $a(g)$ is the A^{+}-component of g.

- Using induction, we want to have, for $w=w_{\beta_{1}} \ldots w_{\beta_{\ell}}$,
(\&) $\sum_{m_{1}, \ldots, m_{\ell} \in \mathbb{Z}} a\left(w_{\beta_{1}} u_{\beta_{1}}\left(x_{1}+m_{1}\right) \cdots w_{\beta_{\ell}} u_{\beta_{\ell}}\left(x_{\ell}+m_{\ell}\right) g\right)^{\lambda+\rho}$

$$
\leq M^{\ell} a^{w^{-1}(\lambda+\rho)} \prod_{\alpha>0, w \alpha<0}\left(1+a^{\alpha}\right)
$$

- However, we need the following property to prove (\&).
- However, we need the following property to prove (\%).

Property (\star) : Assume that $\lambda-\rho \in \mathcal{C}^{*}$. Every $w \neq \mathrm{id} \in W$ can be written as $w=v w_{\beta}$ where $\beta \in \Delta$ and $\ell(v)<\ell(w)$, such that for any subset S of $\Phi_{+} \cap v^{-1} \Phi_{-}$one has

$$
\left\langle v^{-1}(\lambda+\rho)+\sum_{\alpha \in S} \alpha, \beta^{\vee}\right\rangle>1 .
$$

- However, we need the following property to prove (\%).

Property (\star) : Assume that $\lambda-\rho \in \mathcal{C}^{*}$. Every $w \neq \mathrm{id} \in W$ can be written as $w=v w_{\beta}$ where $\beta \in \Delta$ and $\ell(v)<\ell(w)$, such that for any subset S of $\Phi_{+} \cap v^{-1} \Phi_{-}$one has

$$
\left\langle v^{-1}(\lambda+\rho)+\sum_{\alpha \in S} \alpha, \beta^{\vee}\right\rangle>1
$$

Theorem

Assume Property (\star) and $\operatorname{Re}(\lambda)-\rho \in \mathcal{C}^{*}$. Then the series $E_{\lambda}(g)$ converges absolutely for $g \in U A_{\mathfrak{C}} K$.

- However, we need the following property to prove (\%).

Property (\star) : Assume that $\lambda-\rho \in \mathcal{C}^{*}$. Every $w \neq \mathrm{id} \in W$ can be written as $w=v w_{\beta}$ where $\beta \in \Delta$ and $\ell(v)<\ell(w)$, such that for any subset S of $\Phi_{+} \cap v^{-1} \Phi_{-}$one has

$$
\left\langle v^{-1}(\lambda+\rho)+\sum_{\alpha \in S} \alpha, \beta^{\vee}\right\rangle>1 .
$$

Theorem

Assume Property (\star) and $\operatorname{Re}(\lambda)-\rho \in \mathcal{C}^{*}$. Then the series $E_{\lambda}(g)$ converges absolutely for $g \in U A_{\mathfrak{c}} K$.

- Use the inequality ($\boldsymbol{\rho})$ and bound $E_{\lambda}(g)$ by its constant term.
- Property (\star) holds in the following cases:
- Property (\star) holds in the following cases:
- All rank 2 root systems
- Property (\star) holds in the following cases:
- All rank 2 root systems
- $\left|a_{i j}\right| \geq 2$ for all $i, j \in I$ for the Cartan matrix $A=\left(a_{i j}\right)$
- Property (\star) holds in the following cases:
- All rank 2 root systems
- $\left|a_{i j}\right| \geq 2$ for all $i, j \in I$ for the Cartan matrix $A=\left(a_{i j}\right)$
- Feingold-Frenkel rank 3 hyperbolic algebra
- Property (\star) holds in the following cases:
- All rank 2 root systems
- $\left|a_{i j}\right| \geq 2$ for all $i, j \in I$ for the Cartan matrix $A=\left(a_{i j}\right)$
- Feingold-Frenkel rank 3 hyperbolic algebra
- In general, Property (\star) is not true. For example, the root system A_{3} and w the longest element.
- Property (\star) holds in the following cases:
- All rank 2 root systems
- $\left|a_{i j}\right| \geq 2$ for all $i, j \in I$ for the Cartan matrix $A=\left(a_{i j}\right)$
- Feingold-Frenkel rank 3 hyperbolic algebra
- In general, Property (\star) is not true. For example, the root system
A_{3} and w the longest element.
- Property (\star) is related to holomorphy of cuspidal Eisenstein series.

5. Cuspidal Eisenstein series

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group. α_{P} : simple root corresponding to P

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group. α_{P} : simple root corresponding to P

Write $\Delta_{M}=\Delta \backslash\left\{\alpha_{P}\right\}$.

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.
α_{P} : simple root corresponding to P
Write $\Delta_{M}=\Delta \backslash\left\{\alpha_{P}\right\}$.
ϖ_{P} : fundamental weight corresponding to P

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.
α_{P} : simple root corresponding to P
Write $\Delta_{M}=\Delta \backslash\left\{\alpha_{P}\right\}$.
ϖ_{P} : fundamental weight corresponding to P
$H=\left\{a \in A: a^{\alpha}= \pm 1, \alpha \in \Delta_{M}\right\}$

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.
α_{P} : simple root corresponding to P
Write $\Delta_{M}=\Delta \backslash\left\{\alpha_{P}\right\}$.
ϖ_{p} : fundamental weight corresponding to P
$H=\left\{a \in A: a^{\alpha}= \pm 1, \alpha \in \Delta_{M}\right\}$
H^{+}: identity component of H

5. Cuspidal Eisenstein series

- $P=M N$: maximal parabolic subgroup of G

Assume that M is a finite-dimensional split reductive group.
α_{P} : simple root corresponding to P
Write $\Delta_{M}=\Delta \backslash\left\{\alpha_{P}\right\}$.
ϖ_{p} : fundamental weight corresponding to P
$H=\left\{a \in A: a^{\alpha}= \pm 1, \alpha \in \Delta_{M}\right\}$
H^{+}: identity component of H

- L: subgroup of $M(\mathbb{R})$ generated by $\chi_{ \pm \alpha}(t), \alpha \in \Delta_{M}, t \in \mathbb{R}$

Then we have $M=L H$.

- Using the Iwasawa decomposition $G_{\mathbb{R}}=N M K$, we define

$$
\operatorname{Iw}_{L}: G_{\mathbb{R}} \rightarrow L / L \cap K, \quad \operatorname{Iw}_{H^{+}}: G_{\mathbb{R}} \rightarrow H^{+} \cong H / H \cap K
$$

- Using the Iwasawa decomposition $G_{\mathbb{R}}=N M K$, we define

$$
\operatorname{Iw}_{L}: G_{\mathbb{R}} \rightarrow L / L \cap K, \quad \operatorname{Iw}_{H^{+}}: G_{\mathbb{R}} \rightarrow H^{+} \cong H / H \cap K
$$

- For $s \in \mathbb{C}$, define the auxiliary Eisenstein series

$$
E(s, g)=\sum_{\gamma \in \Gamma \cap P \backslash \Gamma} \mathrm{Iw}_{H^{+}}(\gamma g)^{s \varpi \varpi_{p}}
$$

- Using the Iwasawa decomposition $G_{\mathbb{R}}=N M K$, we define

$$
\operatorname{Iw}_{L}: G_{\mathbb{R}} \rightarrow L / L \cap K, \quad \operatorname{Iw}_{H^{+}}: G_{\mathbb{R}} \rightarrow H^{+} \cong H / H \cap K
$$

- For $s \in \mathbb{C}$, define the auxiliary Eisenstein series

$$
E(s, g)=\sum_{\gamma \in \Gamma \cap P \backslash \Gamma} \mathrm{Iw}_{H^{+}}(\gamma g)^{s \varpi_{p}}
$$

- For an unramified cusp form f on $L(\mathbb{Z}) \backslash L(\mathbb{R})$, we define the cuspidal Eisenstein series

$$
E_{f}(s, g)=\sum_{\gamma \in \Gamma \cap P \backslash \Gamma} \operatorname{Iw}_{H^{+}}(\gamma g)^{s \varpi p} f\left(\operatorname{Iw}_{L}(\gamma g)\right)
$$

6. Holomorphy of Cuspidal Eisenstein series

6. Holomorphy of Cuspidal Eisenstein series

- Set $W^{M}=\left\{w \in W: w^{-1} \alpha>0, \alpha \in \Delta_{M}\right\}$.

6. Holomorphy of Cuspidal Eisenstein series

- Set $W^{M}=\left\{w \in W: W^{-1} \alpha>0, \alpha \in \Delta_{M}\right\}$.

For $w \in W$, define

$$
\Phi_{w}^{\prime}=\Phi_{+} \cap w \Phi_{-}=\left\{\alpha \in \Phi: \alpha>0, w^{-1} \alpha<0\right\} .
$$

6. Holomorphy of Cuspidal Eisenstein series

- Set $W^{M}=\left\{w \in W: w^{-1} \alpha>0, \alpha \in \Delta_{M}\right\}$.

For $w \in W$, define

$$
\Phi_{w}^{\prime}=\Phi_{+} \cap w \Phi_{-}=\left\{\alpha \in \Phi: \alpha>0, w^{-1} \alpha<0\right\} .
$$

Definition

A maximal parabolic subgroup $P=M N$ with a finite dimensional Levi subgroup M is said to be ample if there exist constants $C, D>0$ such that for every $w \in W^{M}, w \neq \mathrm{id}$,
(P1) $\left(C \varpi_{p}-\rho\right)\left(\alpha^{\vee}\right)>0$ for $\alpha \in \Phi_{w}^{\prime}$,
(P2) $\left(D \varpi_{P}+\rho_{M}\right)\left(\alpha^{\vee}\right)<0$ for $\alpha \in \Phi_{w}^{\prime}$,
(P3) $w^{-1}\left(D \varpi_{P}+\rho_{M}\right)$ is a positive linear combination of simple roots.

Proposition

If P satisfies condition (P1), then for $R e s \geq s_{0}$ and any compact subset \mathfrak{S} of $A_{\mathfrak{C}}$, there exists a measure zero subset S_{0} of US such that $E(s, g)$ converges absolutely for $g \in U \subseteq K$ off the set $S_{0} K$.

Proposition

If P satisfies condition (P1), then for $R e s \geq s_{0}$ and any compact subset \mathfrak{S} of $A_{\mathfrak{C}}$, there exists a measure zero subset S_{0} of $U \subseteq$ such that $E(s, g)$ converges absolutely for $g \in U \subseteq K$ off the set $S_{0} K$.

Theorem

If the maximal parabolic subgroup P is ample, then for any compact subset \mathfrak{S} of $A_{\mathfrak{C}}$, there exists a measure zero subset S_{0} of $U \subseteq$ such that $E_{f}(s, g)$ is an entire function of $s \in \mathbb{C}$ for $g \in U \subseteq K$ off the set $S_{0} K$.

Proposition

If P satisfies condition (P1), then for $R e s \geq s_{0}$ and any compact subset \mathfrak{S} of $A_{\mathfrak{C}}$, there exists a measure zero subset S_{0} of $U \subseteq$ such that $E(s, g)$ converges absolutely for $g \in U \subseteq K$ off the set $S_{0} K$.

Theorem

If the maximal parabolic subgroup P is ample, then for any compact subset \mathfrak{S} of $A_{\mathfrak{C}}$, there exists a measure zero subset S_{0} of $U \subseteq$ such that $E_{f}(s, g)$ is an entire function of $s \in \mathbb{C}$ for $g \in U \subseteq K$ off the set $S_{0} K$.

- We use rapid decay of cusp forms due to Miller and Schmid.
- Let $A_{1}=A \cap L \quad$ and $\quad A_{1}^{+} \cong A_{1} / A_{1} \cap K$.
- Let $A_{1}=A \cap L \quad$ and $\quad A_{1}^{+} \cong A_{1} / A_{1} \cap K$.
- (Rapid Decay) For any $n>0$ there exists a constant $C_{1}>0$ depending on n such that

$$
|f(g)| \leq C_{1} \operatorname{Iw}_{A_{1}^{+}}(g)^{-n \rho_{M}}
$$

- Let $A_{1}=A \cap L \quad$ and $\quad A_{1}^{+} \cong A_{1} / A_{1} \cap K$.
- (Rapid Decay) For any $n>0$ there exists a constant $C_{1}>0$ depending on n such that

$$
|f(g)| \leq C_{1} \operatorname{Iw}_{A_{1}^{+}}(g)^{-n \rho_{M}}
$$

- Take $n=\left(s_{0}-\operatorname{Re} s\right) / D>0$, with D given in the definition of ample parabolic subgroup.
- Let $A_{1}=A \cap L \quad$ and $\quad A_{1}^{+} \cong A_{1} / A_{1} \cap K$.
- (Rapid Decay) For any $n>0$ there exists a constant $C_{1}>0$ depending on n such that

$$
|f(g)| \leq C_{1} \operatorname{Iw}_{A_{1}^{+}}(g)^{-n \rho_{M}}
$$

- Take $n=\left(s_{0}-\operatorname{Re} s\right) / D>0$, with D given in the definition of ample parabolic subgroup.
- Now we have

$$
\begin{aligned}
& \left|\operatorname{Iw}_{H^{+}}(\gamma g)^{s \varpi_{P}} f\left(\operatorname{Iw}_{L}(\gamma g)\right)\right| \\
\leq & C_{1} \operatorname{Iw}_{H^{+}}(\gamma g)^{(\operatorname{Res}) \varpi_{P}} \operatorname{Iw}_{A_{1}^{+}} \circ \operatorname{Iw}_{L}(\gamma g)^{-n \rho_{M}} \\
\leq & C_{1} \operatorname{Iw}_{H^{+}}(\gamma g)^{\left(\operatorname{Res} s \varpi_{P}\right.} \operatorname{Iw}_{H^{+}}(\gamma g)^{n D \varpi_{P}} \\
= & C_{1} \operatorname{Iw}_{H^{+}}(\gamma g)^{s_{0} \varpi_{P}} .
\end{aligned}
$$

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.
If $\left\langle\alpha_{i}, \alpha^{\vee}\right\rangle \leq 0$ for any $\alpha_{i} \in \Delta, \alpha \in \Phi_{w}^{\prime}$ where $w^{-1} \alpha_{i}>0$,

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.
If $\left\langle\alpha_{i}, \alpha^{\vee}\right\rangle \leq 0$ for any $\alpha_{i} \in \Delta, \alpha \in \Phi_{w}^{\prime}$ where $w^{-1} \alpha_{i}>0$, then every maximal parabolic P with a finite dimensional Levi is ample.

7. Ample parabolic subgroups

Proposition

Assume that G is infinite dimensional.
If $\left\langle\alpha_{i}, \alpha^{\vee}\right\rangle \leq 0$ for any $\alpha_{i} \in \Delta, \alpha \in \Phi_{w}^{\prime}$ where $w^{-1} \alpha_{i}>0$, then every maximal parabolic P with a finite dimensional Levi is ample.

- The condition in the above proposition implies that the group G satisfies Property (\star).
- If G is finite dimensional, then G does not have any ample parabolic subgroup.
- If G is finite dimensional, then G does not have any ample parabolic subgroup.
- If G is a rank 2 hyperbolic group, then every maximal parabolic is ample.
- If G is finite dimensional, then G does not have any ample parabolic subgroup.
- If G is a rank 2 hyperbolic group, then every maximal parabolic is ample.
- Feingold-Frenkel algebra: both maximal parabolic subgroups with finite dimensional Levi are ample.

Thank You

